新城疫病毒气溶胶发生与传染机制及其在生产鸡舍环境中的监测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
畜禽传染病如新城疫(Newcastle disease,ND)、禽流感(Avian Influenza,AI)、口蹄疫(Foot-and-Mouth disease,FMD)等疾病的病原都可以通过空气传播,造成传染病的流行。2002-2003年SARS和近几年来高致病性禽流感(Highly pathogenic avian influenza,HPAI)的暴发流行,警示人们应重视病毒气溶胶及其气源性传染规律的研究。ND是危害最严重的家禽传染病之一,世界动物卫生组织(World Organisation for Animal Health, OIE)将其定为法定报告类疫病。然而,ND传播途径研究没能得到应有的重视。Gloster (1983)通过对两起ND爆发的分析,认为ND流行主要是由气载新城疫病毒(Newcastle disease virus, NDV)引起的;气源传播在新城疫流行中起着重要作用。这种传播方式在1970–1971年的英格兰ND爆发和1973年北爱尔兰ND流行中起了重要作用,并已经有证据证明NDV可发生远距离的传播。以上学者的观点尽管确认了ND的气源性传染途径,然而,NDV气溶胶的发生和传染机制不详,需要实验证明。因此,开展本研究。本课题建立了NDV气溶胶发生及传播感染的实验模型,动态检测了人工感染鸡NDV气溶胶排出的时间,浓度;验证NDV F48E9株可以通过气源传播感染健康鸡群。并进一步研究了感染NDV的鸡群排出的NDV气溶胶向周围环境扩散并感染10m、20m外的鸡群;对NDV气溶胶不同感染途径的感染剂量进行对比研究;在此基础上,收集生产鸡舍中的空气,对其中的NDV进行分子检测及分离鉴定,对气载NDV分离株的部分分子特性进行了研究;应用ERIC-PCR动态监测了感染NDV气溶胶SPF鸡肠道菌群的变化。本研究不仅对深入认识ND的传染机制非常必要,而且对揭示像SARs、禽流感等气源性传染病的传播机制带来有益的启示。
     1新城疫病毒气溶胶发生及其传染的实验研究
     本实验建立一个NDV气溶胶发生、传播及感染的实验模型,进行实验1(T1)和实验2(T2)。隔离器A中的SPF鸡(G1)点眼、滴鼻接种NDV后用AGI-30收集A中的气体,检测气体样品中的NDV,用蚀斑计数法测定NDV气溶胶浓度;隔离器B中的SPF鸡(G2)接受气源性被动感染。定期收集实验鸡的口咽和泄殖腔拭子,检测拭子中的NDV,确定排毒情况;每7天收集实验鸡血液样品,应用HI-T检测抗体。试验结果发现:T1和T2分别在攻毒后第二天和第三天检测到NDV气溶胶,其浓度分别在第13天和第11天达到高峰,为1.69×104 PFU/m3空气和9.14×103 PFU/m3空气,到第40天NDV气溶胶浓度仍分别为6.98×103 PFU /m3空气和3.78×103 PFU/m3空气;T1G1和T2G1组鸡均在攻毒后第二天检测到排毒;T1G2组和T2G2组接受气源被动感染7天后检测分别有80%和60%的鸡排毒,抗体分别在感染后第7天和第14天呈阳性,为4.07和7.40,一直到第四十天均为阳性。
     结果表明SPF鸡在感染NDV后三天内排出NDV,并能够很快形成气溶胶;NDV气溶胶能够感染健康鸡只。
     2新城疫病毒气溶胶向周围环境扩散感染的实验研究
     共进行两组实验,一组是新城疫病毒气溶胶向周围环境扩散的实验研究;一组是10m,20m气源传播感染实验。扩散试验时设一组SPF鸡经点眼、滴鼻接种NDV后用AGI - 30收集接种鸡处(S0)距离接种感染鸡10m (S10)、20m(S20)处中的气体,检测并定量气体样品中的NDV,揭示动物舍NDV气溶胶向周围环境的传播情形。结果表明,S0处气体样品中从接种后第3天开始检测到NDV,浓度在11天达到高峰,一直到第30天RT-PCR检测结果仍为阳性;S10处及S20处气体样品中均从接种后第5天开始检测到NDV,浓度在11-13天达到最大值,一直到第25天RT-PCR检测结果仍为阳性。感染试验时设三组试验鸡,分别为人工接种鸡(G0),点眼、滴鼻接种NDV,在距离接种鸡10m (G10)、20m (G20)处SPF鸡接受气源感染的哨兵组鸡,通过检测哨兵组鸡的排毒及抗体来确定是否发生气源感染,具体检测方法同试验一。气源扩散感染试验结果表明G10及G20持续气源被动感染7后开始检测,均检测到排毒直到第28天仍然排毒。
     结果表明SPF鸡在感染NDV后三天内排出NDV,并能够很快形成气溶胶,传播扩散到20m;NDV气溶胶能够感染10m、20m处健康鸡只。
     3 SPF鸡经不同途径的感染剂量及致死剂量实验研究
     本实验分别通过呼吸道(通过人工发生定量NDV气溶胶感染SPF鸡)、消化道(喂服)及肌肉注射途径定量感染NDV,通过检测鸡的特异性抗体判定鸡是否发生感染,ID50、LD50计算方法采用的加权直线回归法(Bliss法)。结果表明NDV气溶胶半数感染吸入剂量为30.53 PFU,95%置信区间为9.46 - 98.54 (PFU);半数致死剂量为117.05 PFU,95%置信区间为23.71 - 577.92 PFU。NDV通过消化道半数感染灌服剂量为4419.78 PFU,95%置信区间为1095.34 -17834.14 (PFU);半数致死剂量为44743.91PFU,95%置信区间为10161.62 - 197017.62 (PFU)。NDV经肌肉注射途径半数感染注射剂量为16.63 PFU,95%置信区间为4.85 - 57.00 (PFU);半数致死剂量为69.60 PFU,95%置信区间为14.24 - 340.27 (PFU)。
     结果表明不同感染途径的致病性有差异,肌肉注射致病性最强,气溶胶次之,消化道最弱。
     4鸡舍中气载鸡新城疫病毒的检测及分离鉴定
     本研究采用AGI-30气体收集器在五个大型鸡舍舍内收集气体(15份/舍),同时采集鸡的气管和泄殖腔拭子,采用兼并引物RT-PCR检测气体样品和拭子中的新城疫病毒(NDV),并鉴别NDV的毒力;同时分离、纯化气体样品中的NDV,用常规毒力学实验鉴别分离株的毒力。结果五个鸡舍中,在鸡舍A中,2份气体样品和4份口咽及泄殖腔拭子中检测到弱毒,均没检测到强毒。在鸡舍B中,7份气体样品和5份口咽及泄殖腔拭子中检测到弱毒,而仅在5份气体样品中检测到强毒;在鸡舍C中,6份气体样品和5份口咽及泄殖腔拭子中检测到弱毒,而仅在2份气体样品中检测到强毒;在鸡舍E中,7份气体样品和1份口咽及泄殖腔拭子中检测到弱毒,而在所有样品中均未检测到强毒。分离纯化后总共得到7株NDV,其中3株为强毒,4株为弱毒。在鸡舍A中得到一株弱毒YTCX08,在鸡舍B中得到一株强毒DZ07和一株弱毒DZ0702,在鸡舍C中得到2株强毒MH07和MH0702和1株弱毒MH0703,在鸡舍E中得到一株弱毒NY06。结果表明兼并引物RT-PCR可快速、直接对气体样品进行检测及鉴别诊断,有助于ND的防治。
     5气载新城疫病毒野毒株F基因重要片段的克隆及遗传变异分析
     根据已发表文献针对新城疫病毒(NDV) F基因序列设计了1对引物,对从气体中分离的7株NDV毒株的F基因重要功能区片段扩增进行了扩增和序列测定,并与多株已报道的NDV参考株相应片段进行序列比较,经遗传基因进行化树分析。结果表明,七株气载新城疫病毒分离株之间的同源性为79.3% - 100%;氨基酸的同源性为77.4% - 100%,分离到的四株野毒NY06、MH0703、YTCX08与DZ0702均属于基因II型,在裂解位点的氨基酸序列(111GGRQGRL117)与NDV弱毒株特征相符合;MH07属于基因IX型;DZ07、MH0702均属于基因VII型,这三株在裂解位点的氨基酸序列( 111GRRQK RF117 )与NDV强毒株特征相符合。
     6新城疫病毒气溶胶感染SPF鸡肠道菌群结构变化的研究
     SPF鸡定量感染NDV气溶胶后,定期采集试验鸡的粪便,检测其中大肠杆菌的浓度变化,同时应用ERIC-PCR对肠道菌群结构进行了动态检测;同时对健康鸡进行同样研究作对比。结果表明,通过与对照组肠道大肠杆菌的检测比较,结果大肠杆菌在感染初期高于对照组(P<0.01),而严重感染开始出现死亡时开始降低,明显低于对照组(P<0.01),恢复期大肠杆菌总数开始回升,与对照组差异不显著(P>0.05)。ERIC-PCR结果比较发现NDV气溶胶感染组鸡只与同日龄对照组鸡肠道菌群的图谱间有一定的差异。在大多数鸡群出现临床症状(2-10天)菌群结构也发生了改变,在恢复期(10-15天)菌群重新建立,并有一个重新选择的过程,到完全恢复后菌群结构基本稳定。
     结果表明感染NDV气溶胶后鸡群肠道菌群发生了改变,采用ERCI-PCR指纹图谱技术可以动态监测动物肠道菌群结构变化。
Airborne and droplet transmission are one of the major routes for spreading animal viral diseases, such as Newcastle disease, Avian Influenza and foot-and-mouth disease. Recent emergence of respiratory viral pathogens such as SARS and avian influenza viruses have attracted public attention and are believed to be transmitted via the airborne route, raising various scientific and public health issues related to airborne transmission and control of infectious agents. Newcastle disease (ND) is included in the World Organization (OIE) for Animal Health list of notifiable diseases (former list A). Airborne transmission was also one of the important routes for spreading of Newcastle disease, which was considered a significant factor in the 1970-1971 ND outbreaks in England and the 1973 ND epidemic in Northern Ireland. Airborne transport over long distances was known to have occurred. Despite the recognition of airborne as a spread route for NDV, the mechanism of aerosol generation, transmission is still unclear. The notion of airborne spread needs experiment authentication. Therefore, we experimentally investigated airborne transmission of ND in a model system. Using this model system, we monitored occurrence and transmission of NDV aerosol. We have not only established the time of aerosol occurrence but also determined the aerosol concentrations, dynamic changes and their relationship with virus shedding. This experiment also confirmed the airborne transmission of the F48E9 strain. NDV aerosol originating from infected chickens could spread to their surrounding air (10m, 20m away) from the infected chickens and could infect the healthy chickens at that point. The infectious and lethal doses of NDV aerosol were compared by other infectious routs. The difference of intestinal flora of NDV aerosol infected group and healthy group by ERIC-PCR based fringerprint on molecular ecology. Airborne Newcastle disease (ND) viruses in the air of five chicken houses were detected and differentiated by reverse transcriptase polymerase chain reaction (RT-PCR) using degenerate primers. Airborne ND viruses were also isolated and virulence identified by in-vivo tests. Part of the fusion gene of isolate s were amplified by RT- PCR and sequenced.
     Not only is this result important in better understanding the mechanism of ND transmission, it also has implications in controlling avian influenza and other contagious diseases.
     The study consists of six parts:
     1. Occurrence and transmission of Newcastle Disease Virus aerosol originating from infected chickens under experimental conditions.
     One model was established to better study emission, transmission and infection mechanism of NDV (Newcastle Disease Virus, NDV) aerosol. Two trials (T1) and (T2) were performed. SPF chickens (G1) were housed in the isolator A and were inoculated with NDV strain F48E9 by means of dripping noses and eyes. After G1 was inoculated, the air in the isolator A was sampled by AGI-30 and airborne NDV was detected and quantified (Plaque per m3 air). SPF chickens were housed in the isolator B, which were used as aerosol challenged group (G2). Oropharyngeal and cloacal swabs were collected from each chicken, which used for NDV detection and determined virus shedding of chickens. The antibody response to NDV infection of Serum samples was assessed by the hemagglutination inhibition (HI) test. In T1 and T2, NDV aerosol could be detected at 2 dpi (days post inoculation) and 3 dpi respectively, at 13 dpi and 11 dpi the concentration of NDV aerosol respective was 1.69×104 PFU/m3 air and 9.14×103 PFU/m3 air which reached a peak, at 40 dpi the concentration still was 6.98×103 PFU/m3 air and 3.78×103 PFU/m3 air; at 2 dpi the shedding NDV in the swaps of chickens in T1G1 and T2G1 were confirmed; 7 days post infected by NDV aerosol, the presence of NDV in the swaps of 80% chickens in T1G2 and 60% chickens in T2G2 could be detected, The chickens of T1G2 and T2G2 had antibody titers for NDV reaching 4.07 and 7.40 at 7 dpi and 14 dpi respectively, positive results according to OIE standards, the antibody was consistently detected positive up to 40 dpi.
     The results of two trials showed that infected SPF chickens could emission NDV within 3 days post inoculation and come into NDV aerosol and then infected healthy chickens.
     2. Spread and infection of Newcastle disease virus aerosol under field conditions.
     In this study, two trials were conducted, I: Study on spread of NDV aerosol to their surrounding air; II: Infection of NDV aerosol. I: After SPF chickens were inoculated with NDV and were housed in one cage , the NDV aerosol originating from inoculated chickens (S0) and10m (S10)、20m (S20) away were collected with All Glass Impinger-30 (AGI-30) to studied the occurrence and concentration of NDV aerosol.The spreading of NDV aerosol from the infected chickens to the ambient air was characterized. Th results showed that NDV aerosol was initially detectabl at day 3 post inoculation (dpi) at the S0 Aand at day5 post inoculation (dpi) at S10 and S20. The aerosol concentration peaked at 11dpi at S0 and was consistently detectable up to 30 dpi. , at 11-13 dpi at S10 and S20 and was consistently detectable up to 25 dpi. II: 3 groups (infected group, 10m aerosol infected group and 20 m aerosol infected group as sentinel chickens). Aerosol infection did occur, as shown by NDV shedding and seroconversion to NDV in sentinel chickens. The detailed methods were in accordance with the methods in Trial I. Th results showed that after 7 days of aerosol exposed infection, all the sentinel chickens were tested positive. Up to 28 dpi, some sentinel chickens were still positive.
     The results indicated that viruses shed from infected chickens readily aerosolized and aerosol could spread into the ambient air (20m away) and the chickens there were infected by the NDV aerosol.
     3. Studies to quantify the infectious and lethal dose of Newcastle disease virus for chickens through defferent routs.
     In this study, SPF chickens were ramdomly divided into 3 groups: aerosol infectedgroup, intramuscular injection, gastrointestinal tract infected group. Each chicken was challenged with the same volume of different dilution of NDV. Infection was determined by the specific antibody to NDV. Computation Method for ID50 and LD50 Based on Bliss. The results showed that aerosol routs: ID50 was 30.53 PFU, 95% confidence interval was 9.46 - 98.54 (PFU); LD50 was 117.05 PFU,95% confidence interval was 23.71 - 577.92 (PFU). Gastrointestinal tract infected rout: ID50 was 4419.78 PFU, 95% confidence interval was 1095.34 -17834.14 (PFU); LD50 was 44743.91 PFU,95% confidence interval was 10161.62 - 197017.62 (PFU). Intramuscular injection rout: ID50 was 16.63 PFU, 95% confidence interval was 14.85 - 57.00 (PFU); LD50 was 69.60 PFU,95% confidence interval was 14.24 - 340.27 (PFU).
     The results indicated that it was stronger with Intramuscular injection than aerosol infection. That with Gastrointestinal tract infection was weakest.
     4. Molecular detection and isolation of airborne chicken Newcastle disease virus in chicken houses
     Airborne Newcastle disease (ND) viruses in the air of five chicken houses were detected and differentiated by reverse transcriptase polymerase chain reaction (RT-PCR) using degenerate primers. Fifteen air samples were collected with All Glass Impinger-30 (AGI-30) air samplers in each house. Airborne ND viruses were also isolated and virulence identified by in-vivo tests. Only avirulent viruses were detected in two air samples and four swab samples in house A. Avirulent viruses were detected in seven air samples and five swab samples and virulent viruses were detected only in five air samples in house B. Avirulent viruses were detected in six air samples and five swab samples and virulent viruses were detected only in two air samples in house C. Avirulent viruses were detected in seven air samples and one swab samples in house E. Seven NDV strains were obtained. Three were virulent strains and four were avirulent strains. One strain avirulent (YTCX08) was isolated in house A; One virulent strain (DZ07) and one avirulent strain (DZ0702) were isolated in house B; Two virulent strains (MH07, MH0702) and one avirulent strain (MH0703) were isolated in house C; one avirulent strain (NY06) was isolated in house The results showed that it was feasible to detect and differentiate NDV in the air samples using degenerate primers based RT-PCR. This technique could decrease the time it required identify NDV infected flocks while distinguishing between virulent and avirulent viruses. It will help effectively to control Newcastle disease.
     5. Nucleotide Sequence Analysis of Main Function Domain of F Gene of airborne Newcastle disease virus
     One pair of specific primers was designed and synthesized according to fusion ( F) protein gene sequences of Newcastle disease virus (NDV), Part of the fusion gene of seven isolates were amplified by RT- PCR and sequenced. A phylogenetic tree based on obtained sequences of reference NDV strains was constructed and the deduced amino acid sequences showed that the homologies of t he nucleotide are 79.3% - 100 % and the homologies of the deduced amino acid sequences are77.4% - 100%. NY06、MH0703、YTCX08 and DZ0702 belong to the genotype II and their amino acid sequences of the cleavage site region residues (111GG RQGRL117 ) matched to the characteristics of avirulent strains; MH07 belongs to the genotype IX and DZ07、MH0702 belong to genotype VII, and their amino acid sequences of the cleavage site region residues (111GRRQK RF117 ) matched to the characteristics of virulent strains.
     6. Analysis of the structure features of Intestinal communities of chickens infected with NDV aerosol
     The article compare the difference of intestinal E. coli floras between healthy chickens and the chickens infected with NDV aerosol. The results showed that Significant difference in E. coli floras in the feces of the group infected with NDV aerosol increased (P<0.01) in Early infection and also was detected in the later phase (P<0.01). The difference of intestinal flora of NDV aerosol infected group and healthy group by ERIC-PCR based fringerprint on molecular ecology. Some difference was detected in the ERIC-PCR fingerprints between infected group and healthy group. The intestinal microbial population was changed when the chickens exhibited clinical symptoms (2-10 dpi), and was rebuilt in the recovery stage (10-15 dpi), and then was stable after fully recovery.
     The results showed that the intestinal flora of NDV aerosol infected chickens was changed and ERIC–PCR based fingerprints can analyze the dynamic monitoring of animal intestinal flora.
引文
曹殿军,卢景良,王莉林等.应用单克隆抗体鉴别新城疫病毒强、弱毒株的研究[J];中国预防兽医学报,1996, 5:38-40
    曹殿军,刘春丽.应用单克隆抗体鉴别新城疫病毒强弱毒株的研究[J].中国畜禽传染病, 1996, 5:36-38
    曹殿军,郭鑫,梁荣等.我国部分地区NDV的分子流行病学研究[A].中国畜牧兽医学会
    禽病学分会.中国畜牧兽医学会禽病学分会第十次学术研讨会论文集[C].杭州:中国畜牧兽医学会禽病学分会, 2000, 10-13
    曹殿军,刘培欣,闫丽辉等.鸡新城疫病毒强弱毒株RT-PCR鉴别诊断方法[J].中国预防兽医学报, 2000, 6:415-417
    曹殿军,苑纯秀,郭鑫等.新城疫病毒F48E9株及东北流行株F基因遗传变异分析[J].中国兽医学报, 2000, 20(2):117-1120
    曹又方,赵立平. ERIC序列在不同细菌基因组中分布的分析[J].山西大学学报(自然科学版),2002 ,25 (4) :354-357
    柴同杰,牛钟相,姜世金.犊牛舍内外环境空气中厌氧菌含量测定[J].中国兽医科技, 1999, 29(3):612-615
    柴同杰,柴家前, Wolfgang Mueller.牛舍空气微生物及向环境传播的研究[J].中国预防兽医学报, 1999, 21(4): 311-313
    柴同杰,马瑞华.生物垃圾加工厂供料厅空气微生物菌群的研究[J].环境与健康志, 2000, 6:323-326
    常国权,高伟.单克隆抗体夹心ELISA试验检测鸡新城疫病毒抗原的研究[J].江苏农学院学报, 1990(2): 41-44
    车风翔.空气生物学研究现状和进展[J].环境科学, 1986, (7) : 85
    车凤翔.病毒气溶胶检测的进展和评论[J].中国卫生检验杂志,1992, 2(5): 259-263
    车凤翔,孟令英,陈振生等.肾综合征出血热病毒气溶胶动物实验感染研究[J].解放军预防医学杂志, 1993, 1: 26-31
    车凤翔.生物气溶胶与人体疾病[J].中国卫生检验杂志, 1997, 7(4) : 252-256
    车风翔,于玺华.空气微生物采检理论及其技术应用[M].北京:中国大百科全书出版社,1998, 1, 15
    车风翔,李劲松,柴同杰.空气生物学原理与应用[M].北京:科学出版社, 2004, 163, 312 - 313, 319, 314, 321, 323-333, 372-385, 684-685
    陈天寿.微生物培养基的制造与应用[M].中国农业出版社, 1995:407-444
    陈祥.家禽的免疫抑制与免疫失败[J].养禽与禽病防治, 2002, (2): 2-5
    陈迎春,曹又方,赵立平.大肠杆菌MG1655菌株ERIC - PCR图谱主带序列组成分析[J].微生物学通报, 2002, 29 (6): 28-32
    成大荣,徐建生,朱丽华等.免疫蛋鸡携带新城疫病毒的调查研究[J].动物医学进展, 2004, 25(1): 101-102
    程龙飞,柯美峰,郑腾等.猪源新城疫病毒的分离鉴定[J].中国兽医科技, 2004, 34 (12 ): 66-68
    程龙飞,傅光华,黄瑜等.半番鸭源禽Ⅰ型副粘病毒FN01株的分离鉴定与F蛋白基因分析[J].中国预防兽医学报,2006, 28(5): 499-502
    程相朝,张春杰,李银聚等.新城疫野毒株与F48 E9强毒株对不同抗体水平雏鸡的感染试验[J] .中国兽医科技, 2002 , 32(6):24-25
    崔治中.我国家禽新城疫流行现状[J].中国家禽, 2002, 24(4):4-6
    丁铲,于圣青,刘学贤等.鸡新城疫酶联免疫诊断试剂盒的研制[J].中国兽医学报, 1997, 2: 23-27
    段会勇,柴同杰,蔡玉梅等. ERIC-PCR对鸡舍大肠杆菌气溶胶向舍外环境传播的鉴定[J]. 中国科学(C辑:生命科学), 2008, (01) :74-83
    段会勇,柴同杰.鸡舍内外环境中气载大肠杆菌同源性的分子鉴定[J].畜牧兽医学报, 2008, (05):87-93
    段宁. http://www.fx120.net/news/news-zt/rdzt-SARS/20031124082051.htm. SARS可借空气传播25米. 2003.
    甘孟候,张中值.鸡新城疫发生新特点及其诊断和防治[J].中国兽医杂志, 1989, 3:48-50
    甘孟候,王永坤,王红宁等.中国禽病学[M].北京:中国农业出版社,1999, 8-24
    高卫科,王川庆,吴高锋等. ERIC-PCR及在肠道菌群分析中的应用[J].上海畜牧兽医通讯, 2008, 2:52-53
    高云英,张永才,张碧侠等.新城疫病毒单克隆抗体研究Ⅲ酶标单克隆抗体ELISA夹心法检测鸡新城疫病毒抗原[J].西北农业学报,1997, 1:14-17
    葛忠源,程安春,汪铭书等. DPV弱毒皮下注射免疫对雏鸭消化道大肠杆菌、葡萄球菌和乳酸杆菌数量的影响[A].第三届第八次全国学术研讨会暨动物微生态企业发展战略论坛论文集[C]. 2006.
    Gerry.美国研究人员发现苍蝇可以传播新城疫病毒.中国动物保健,2008, 2:121-122
    古长庆,金宁一,金扩世.应用抗多肽抗体鉴别新城疫病毒强弱毒株[J].中国兽医学报, 2000, 2:121-123
    谷守林,高磊,李成等.应用电镜技术对病毒混合感染的研究[J].电子显微学报, 2000, 19 (3): 331-332
    郭明磊,王学静,裴淑艳等.鸡肠道菌群生态调控的研究现状[J].中国禽业导刊, 2006, 9; 43-44
    韩谦等. Fraser C.M., et al.默克兽医手册[M].第7版.北京:中国农业大学出版社,1997, 1288-1289
    何明清,程安春主编.动物微生态学[M] .四川出版集团四川科学技术出版社:2004. 329
    何永强,云涛,梁华丽等.鸭新城疫病毒和流感病毒多重RT-PCR鉴别诊断技术的建立和应用[J].中国兽医学报,2007,27(3):296-299
    何忠武(摘译).家蝇可能是禽流感病毒(AI)的携带者.环球畜牧, 2008, 3
    贺东生,吴红专. NDV小片段多肽F14a的融合表达和应用研究[J].畜牧兽医学报,2000, 3:224-228
    胡子信,张歧蜀,门常平.鸡新城疫免疫防制研究进展[J].京农学院学报, 1996, 11 (1): 115-123
    黄德生,关鹏,周宝森. SIR模型对北京市SARS疫情流行规律的拟合研究[J].疾病控制杂志, 2004, 8(5):399-400
    黄庚明.应用逆转录套式PCR检测鸡新城疫核酸[J].中国预防兽医学报. 2001, 23(2): 415-417
    黄小波,文心田.新城疫病毒强弱毒株鉴别方法的研究进展[J].中国兽医科技, 2002, 32 (10) :20-22
    黄小波. Dot-ELISA检测鸡新城疫抗体方法的建立与应用研究[D].四川农业大学硕士学位论文, 2003. 6.1
    黄瑜,李文扬,程龙飞等.番鸭副粘病毒Ⅰ型的分离鉴定[J].中国预防兽医学报,27(2): 148-150
    黄祯祥.医学病毒学基础及其实验技术[M].北京:科学出版社, 1990:108-143
    姬学谦,张晖兰.鹌鹑新城疫的诊断与防制[J].中国兽医科技,2003,33(7): 63-64
    靳祯,潘晋孝.具有连续预防接种的流行病模型研究[J].应用基础与工程科学学报, 2001, 9 ( 2-3 ):120-124
    康白,朱传义,席玉莲.人体正常微生态研究进展[J].流行病学杂志, 1975, 49(1):80-85
    邝荣禄.禽病学[M].中国农业出版社,1997,42-49
    李国平,周伦江,邵良平等.日粮中添加复合菌制剂对雏鸡盲肠大肠杆菌数、肠道pH值、血液SOD和GSH-px影响的研究[J].中国兽医杂志, 1999, 25(8) : 7-8
    李劲松,刘敏霞,鹿建春等. EHFV气溶胶感染乳小鼠抗原在体内的动态分布[J].解放军预防医学杂志, 1993, 6: 14-17
    李劲松,遇秀玲,鹿建春等.肾综合征出血热病毒气溶胶感染乳小鼠脑的研究[J].中国公共卫生学报, 1994, 4: 197-199, 224
    李劲松,鹿建春,刘敏霞等.肾综合征出血热病毒气溶胶感染乳小鼠抗原定位和病理的研究[J].中华实验和临床病毒学杂志, 1995, 3:239-242, 239
    李劲松,鹿建春,车凤翔等.汉坦病毒气溶胶感染实验动物的特征和抗体反应[J].中国人兽共患病杂志, 1998, 5:3-6
    李劲松,鹿建春,车凤翔等.汉坦病毒空气传播感染的实验室和野外采样研究[J].中国病毒学, 2001, 2:29-32
    李涛.空气微生物采样及发展趋势[J] .中国卫生检验杂志, 2003, 13 (5) :538-539
    李曦,符芳,崔尚金等.自主活动鸟类禽流感及新城疫的生态学与流行病学调查分析[J]. 中国预防兽医学报, 2006,28(3): 327-331
    李晓岩,刘启才,彭燕等.腺病毒气溶胶的实时荧光定量PCR检测和绿色荧光蛋白活细胞检测[ J ].环境科学学报, 2007, 27 (5) : 785-789
    李犹平.采用ERIC-PCR技术研究鸡白痢、新城疫感染雏鸡及健康鸡肠道菌群结构[D];四川农业大学, 2007
    李玉峰,王永坤,严维巍等.禽副粘病毒Ⅰ型结构蛋白分析[J] .山东家禽, 2000, 5 :729
    李筑眉,李凤山.黑颈鹤研究[M].上海:上海科技教育出版社, 2005, 145-147
    李子剑,李玉峰,陈苏等.鸭瘟病毒基因组核酸的提取方法比较[J].山东师范大学学报(自然科学版), 2008, 1:140-142
    刘春燕.大气气溶胶与畜禽和人体健康[J].中国家禽, 2003, 25(2):7-9
    刘华雷,王永坤,严维巍等.中国部分地区新城疫病毒的分子流行病学研究[J].扬州大学学报(自然科学版), 2001, 4(1):35-38
    刘华雷,王志良,吴延功等. 2005年中国新城疫病毒分子流行病学研究[J].畜牧兽医学报,2006,37(12):1340-1344
    刘健宏,王标,庄向生.单克隆抗体与免疫荧光染色技术[J].福建畜牧兽医, 2001: 13-14
    刘文斌,崔尚金,李秀云等.新城疫病毒分离株APMVⅠ/chicken/china/JL-Ⅱ/02的致病性研究[J].中国兽医杂志,2005,41(5):8-10
    刘永杰,赵艳兵,何梦辉等.饲喂乳杆菌对雏鸡盲肠8种正常菌群定植的影响[J].中国微生态学杂志, 1999, 11(1):32-33
    柳洪洁.鸡消化道正常菌群生态平衡的研究[D].山东农业大学, 2005年
    卢建红,张如宽,焦新安等.快速检测鸡新城疫病毒的聚乙二醇单抗夹心ELISA试验的建立和应用[ J].中国兽医科技, 1994(2): 3-4
    卢受升,王秉红,林乃峰等.一例雏鸡新城疫的报道[A].中国畜牧兽医学会禽病学分会.
    中国畜牧兽医学会仪病学分会第十次学术研讨会论文集[C].杭州:中国畜牧兽医学会禽病了分会,2000.290
    鲁海峰,魏桂芳,李仲逵等. ERIC - PCR分子杂交技术分析大熊猫肠道菌群结构[J].中国微生态学杂志, 2005,17 (2) :81-84
    鹿建春,车凤翔,蔡增林等.流行性出血热鼠间气溶胶传播的实验研究[J].解放军预防医学杂志, 1993, 4: 5-8
    路振香,李立顺,时维静等.中草药制剂对肉仔鸡肠道菌群的影响[J].中兽医医药杂志; 2006, 4:13-14
    罗伟强,谭照清,朱燕秋等.舵鸟新城疫诊断及防制策略[J].养禽与禽病防治,2005,11: 43-44
    罗晓松,廖增鸿,李俊欣.鹧鸪新城疫的疫苗疗法[J].中国兽医科技,2003,33⑽:67-68
    罗兆庄,王以银,刘延芳等.气溶胶在实验动物间传播流行性出血热的作用[J];安徽医学, 1991, 5: 9-11, 67
    马吉飞.应用间接免疫组化法检验鹌鹑新城疫[J].兽医大学学报, 1992, 11(2): 156-159
    马伟,高娟,梁玉玲等.肾综合征出血热病毒经气溶胶感染NIH系裸鼠实验研究[J].济宁医学院学报, 2000, 1:43, 69
    马知恩,靳祯.总人口在变化的流行病动力学模型[J].华北工学院报报, 2001; 22 (4):262-271
    梅双双,杨润德.鸡新城疫强毒株的分离及生物学特性鉴定[J].中国预防兽医学报, 2002, 24 (5) :365-368
    [美]J.萨姆布鲁克等著.分子克隆实验指南(第三版)[M]. 2001, 1595
    美Saif, Y. M.主编(苏敬良、高福译).禽病学(第十一版)[M.北京:中国农业出版社,2005:67-81
    倪耀娣,李睿文,张庆茹等.活菌制剂对肉仔鸡盲肠微生物数量的影响[J].中兽医医药杂志, 2004, 23(4): 44-45
    宁官保,刘晋平,赵宇君.用Dot—ELISA检测鸡新城疫病毒的研究[J].动物医学进展,1998, 19(4):37-39
    农业部畜牧兽医司.中国动物疫病志[M].北京:科学出版社,1993.244-250
    潘莉,杜惠敏,黄海东等.腹泻儿童肠道菌群结构的ERIC -PCR指纹图分析[J].中国微生态学杂志, 2003 ,15 (3) :141-144
    潘莉,杜惠敏,黄海东等.腹泻儿童肠道菌群结构特征的ERIC - PCR指纹图分析[J].中国微生态学杂志, 2003, 15(3):141-143
    钱忠明等.鸭源新城疫病毒的生物学特性[J] .中国家禽,2005,2(6):15-17
    秦卓明,马宝臣,贾强等.一株基因Ⅱ型NDV强毒的分子特性[J].微生物学报,2006, 46 (6) :912-916
    秦卓明.新城疫病毒流行株致病性和抗原性及其与F和HN基因变异的相关性[D].山东泰安:山东农业大学, 2006
    曲鲁江,曹殿军,单文鲁.单克隆抗体技术在新城疫研究中的应用[J].预防兽医学进展, 2000(4): 19-24
    Saif YM.禽病学.苏敬良,高福,索勋等译.11th ed.北京:中国农业出版社, 2005
    沙永刚,程国富,邵华斌.家禽黏膜免疫研究进展[J].湖北农业科学, 2003, 3:87-89
    邵良平,周伦江.不同剂量甘露寡聚糖对鸡细胞免疫和肠道微生态的影响[J].福建农业大学学报, 1999, 1: 86-89
    石火英.影响H9N2亚型AIV传播途径的分子机制和构建致弱的8基因全禽源H5N1亚型重排AIV [D].扬州大学, 2005年.
    石火英,刘秀梵.利用反向遗传技术研究H9N2亚型AIV传播途径的分子机制[J].微生物学报, 2006, 46(1):48-54
    石火英,陈素娟,高崧等. H9N2亚型禽流感病毒传播途径特性的比较及其表面基因序列分析[J].中国兽医学报, 2007, 27(1):26-30
    石立国,王志文.当前鸡新城疫流行特点及防治措施[J].畜牧兽医科技信息, 2005(10):32
    世界动物卫生组织(OIE)著.哺乳动物、禽、蜜蜂A和B类疫病诊断试验和疫苗标准手册.农业部畜牧兽医局译.第一版.北京:中国农业科学技术出版社, 2002.
    斯琴花.微生物气溶胶对畜牧业生产的影响[J].内蒙古畜牧科学,2000,21(4):30-31
    宋长绪,刘福安.用PCR检测鸡NDV的初步试验[J].中国兽医科技, 1995, 25(10): 20-22
    宋战胜,王晶钰,赵伟等.鸭源新城疫病毒的分离鉴定[J].动物医学进展,2007,28(5):22-25
    孙泉云,袁明龙.野鸟传播的重要传染病研究进展[J].动物医学进展,2007,(3): 5
    孙荣华,郭云雷,黄淑红等.消毒剂等因素对饮水免疫中鸡新城疫弱毒苗活力的影响[J].中国家禽, 2005,27(11): 28-29
    孙淑红,崔治中.鸡胚中新城疫强毒的分离、鉴定与生物学特性研究[J].畜牧兽医学报, 2007, 38(7):741-743
    唐小飞,谢芝勋,刘加波等.多重RT-PCR快速检测鉴别新城疫病毒强毒株和弱毒疫苗株方法的建立[J].中国兽医科技, 2005,35(11):888-891
    田夫林,陈静,马惠玲等. 10株新城疫病毒流行株F基因的克隆及遗传变异分析[J].中国预防兽医学报, 2004 , 26 (1) : 28-31
    田富林,王选方,兰邹然等.近年来典型ND分离株的致病性和抗原性变异研究[J].中国预防兽医学报, 2003, 25(6) : 451-454
    汪莉,苏宁,苏军等.低聚糖对蛋雏鸡生长性能及粪臭的影响[J].家畜生态, 2002, (1): 30-32
    汪晓辉,扬瑞馥,张朝隆等.风疹病毒气溶胶的逆转录-半套式PCR检测[J].中国公共卫生学报, 1996, 15 (1) : 10-12
    王长杰.新城疫强毒感染的快速检测和鉴定[D].扬州大学, 2001年
    王林川,游洪.鸽Ⅰ型副粘病毒F基因的序列分析[J].中国预防兽医学报,2003, 25(5): 326-329
    王冉,邵春荣.酸化剂对肉鸡肠道微生物数量的影响研究[J].饲料工业,2001, 7: 31-33
    王冉,邵春荣,胡来根等.低聚糖对肉鸡肠道内主要微生物菌群数量的影响[J].江苏农业学报, 2002, 3: 33-36
    王树林.乡村养鸡新城疫的流行病学(下)[J].辽宁畜牧兽医,1995, 3:41-42
    王秀武,杜昱光,白雪芳等.卡拉胶寡糖对肉仔鸡肠道菌群、小肠微绒毛及免疫功能和生产性能的影响[J].中国兽医学报, 2004, 5:83-85
    王永坤,田慧芳,周继宏等.鹅副粘病毒病的研究[J].江苏农业研究,1998,1:59-62
    王永坤,严维巍,周继宏等.新城疫高抗体水平的鸡群产蛋下降及其原因和防治对策的探讨[J] .中国禽业导刊, 2000, 17 (3) :5
    王永坤,周继宏,严维巍等.重视新鹅病-鹅副粘病毒病的防制[J].中国禽业导刊, 2000,11: 1-3
    王永坤等.水禽病诊断与防治手册[M].上海:上海科学技术出版社,2002, 36-45
    王永坤,田慧芳.鹅副粘病毒病病毒分类地位及其防治研究[J].中国家禽, 2006, 28 (15): 45-50
    王泽霖,张建武.用RT-PCR对新城疫病毒分离株毒力的快速鉴定[J].河南畜牧兽医, 2001, 10(22): 6-7
    王志玉,任桂杰,温红玲等.新城疫病毒F蛋白细胞融合活性位点中保守氨基酸基因突变分析[J] .病毒学报, 2006,22(1): 38-43
    魏宝华.肉用鸡非典型新城疫发病特点[J].中国动物检验, 2002.19(6): 3-8
    温彩霞,许建华,黄秀旺等.复合型菌剂对鸡白痢菌的抑制作用及其各菌在鸡体内定居情况[J].中国微生态学杂志, 2003(2):28-30
    温荣辉,谢琪辉,黄伟坚等.新城疫苗接种孔雀后抗体水平的检测[J].动物医学进展,2007, 28(5):39-40
    吴炳琴.谈福清市鸡新城疫的流行特点和防治措施[J].福建畜牧兽医, 2005,5: 17-18
    吴红专,张如宽,刘秀梵.新城疫单抗ELISA试剂盒的研制及其初步应用[J].中国兽医科技, 1995, 6: 3-6
    吴洪俊,刘文斌,彭永刚.新城疫的流行特点[J].中国兽医杂志,2004,40( 1):34-37
    吴开琛,吴开录,陈文江等. SARS传播数学模型与流行趋势预测研究[J].中国热带医学, 2003, 3(4):421-423
    伍荻滕,隋文,钟耿,陈在贤.免疫微球反向凝集试验检测新城疫病毒抗原的研究[J]. 中国预防兽医学报, 1992, 1:32-35
    谢欣梅,曹颖霞.延胡索酸对肉仔鸡生产性能及肠道微生物区系的影响[J].中国禽业导刊, 2004, (20):32
    谢芝勋,庞耀珊,谢志勤等.应用多重反转录-聚合酶链式反应检测新城疫病毒和传染性支气管炎病毒的研究[J].中国预防兽医学报, 2000, 22(2): 126-130
    辛朝安,任涛.疑似鹅副粘病毒感染诊断初报[J].养禽与禽病防治,1997, (1):5
    邢广林.甘露寡糖、中药和微生态制剂对肉鸡抗病性、消化酶活性及生产性能的影响[D].山东农业大学, 2006
    胥清富,王金洛,李猛等. K94复合活菌剂对蛋鸡产蛋性能、饲料消化率和盲肠菌群的影响[J].畜牧与兽医, 1999, (2):12-14
    徐秀臣,王丽男,邓彦莉.鸡新城疫活疫苗的研究[J].中国预防兽医学报,2003,25(6): 455 -457
    许晖,陈世平.我院空气微生物监测方法及体会[J] .人民军医, 1999 , 42 (4) :240-241
    薛伟光.抗体检测在防制鸡新城疫中的作用[J] .养禽与禽病防治,1992, (4): 30-33
    严维巍,王永坤,周继宏等.一株鸡副粘病毒F基因重要片段的扩增、克隆与分析[J].中国预防兽医学报, 2000, 22(5):368-372
    阎玉河,邓瑞广,赵传壁等.用反转录聚合酶链式反应鉴别新城疫病毒[J].中国兽医科技, 2000, 30(1): 3-4
    杨晓燕.家鸭人工感染鸭瘟强毒株的动态分布、黏膜免疫及对肠道菌群结构的影响[D];四川农业大学, 2006
    殷震,刘景华.动物病毒学(第2版) [M].北京:科学出版社, 1997: 204-246,351-352,736-750
    于辉,孔令达,陈冠春.候鸟迁移与人类健康[J] .畜牧兽医科技信息, 2004, (3): 15-16
    于圣青,丁铲,刘学贤. ELISA检测鸡新城疫病毒特异性IgM抗体的研究[J].中国家禽, 1993, 5: 23-25
    于圣青,丁铲, NORIKO KISHIDA等.新城疫病毒某水禽分离株经鸡体传代后由非致病型转变为速发型的研究[J] .中国预防兽医学报, 2003, 25(1):59-64
    于玺华,车凤翔.现代空气微生物学及采检鉴技术[M].北京:军事医学科学出版社, 1998:146
    占秀安,胡彩虹,许梓荣.果寡糖对肉鸡生长、肠道菌群和肠形态的影响[J].中国兽医学报, 2003(2): 92-94
    张朝隆,陈振生,李军保等.肾综合征出血热病毒气溶胶的生物稳定性实验研究[J].解放军预防医学杂志, 1995, 3:169-173
    张朝隆,张松乐,李军保等.肾综合征出血热病毒气溶胶的物理稳定性实验研究[J].解放军预防医学杂志, 1995, 3:174-178
    张德纯.健康动物肠道正常菌群的分离与鉴定[J].中国微生态学杂志.1997, 9(2): 23-25
    张鹤平.养殖场及其周围环境空气中细菌播散研究[D].中国优秀博硕士学位论文全文数据库(硕士), 2005, (05)
    张宏表.疫苗使用不当造成肉仔鸡新城疫免疫失败一例[J].浙江畜牧兽医, 1997, 22 (4):31
    张敏,苗晓微,段渴慧等.合生素替代金霉素对肉鸡肠道菌群的影响[J].黑龙江畜牧兽医, 2007, 4: 63-64
    张云,李越希,陶开华等.大白鼠吸入EHFV气溶胶后病毒在各脏器的分布[J].中国人兽共患病杂志, 1993, 1:122-125
    张云,陶开华,李越希等.流行性出血热病毒气溶胶在动物体内沉积分布的研究[J].中国公共卫生学报, 1993, 4: 60-61
    赵红梅.微生物气溶胶对畜牧业生产的影响[J].畜牧兽医杂志, 2001, 20 (4): 16- 18
    赵虎,文其乙,吴艳涛等.免疫鸡群中新城疫强毒感染流行趋势[J].中国兽医杂志, 2002,38(2):10-12
    赵虎,吴艳涛,文其乙等.新城疫单抗酶联免疫试剂盒的完善及其应用[J].中国兽医学报, 2002, 22(1): 25-28
    浙江省农业厅畜牧管理局.浙江省畜禽疫病志[M].杭州:浙江大学出版社,1993, 222- 228
    郑世民,刘忠贵,葛铭等.鸡贫血病毒感染新城疫免疫雏鸡VNDV攻击后免疫病理学变化[J].畜牧兽医学报,1999, 30(3): 273-278
    钟召兵,柴同杰,段会勇等.鸡舍环境金黄色葡萄球菌气溶胶产生及其传播的REP-PCR鉴定[J].畜牧兽医学报, 2008, (10): 111-117
    周锦平,孙泉云,刘佩红等.上海地区近几年鸭病毒性传染病的血清学调查[J].中国家禽, 2005, 27(3): 9-11
    周秀红,祁克宗,朱良强等.人工诱发鸡新城疫的攻毒条件的比较研究[J].家禽科学, 2005, 8:10-13
    朱森树,李志刚.家兔饲养室空气微生物浓度及通风效果观察[J].中国养兔杂志, 2000, 5:4-6
    Agranovski I., Myojo T., Braddock R.D. Removal of aerosols by bubbling through porous media. Aerosol Sci. Tech.1999, 31: 249-257
    Agranovski I., Myojo T. and Braddock R.D. Comparative study of the performance of nine filters utilized in filtration of aerosols by bubbling. Aerosol Sci.Tech. 2001, 35: 852-859
    Agranovski I., Agranovski V., Grinshpun S., et al. Collection of airborne microorganisms into liquid by bubbling through porous medium. Aerosol Sci. Tech. 2002a, 36: 502-509
    Agranovski I., Agranovski V., Reponen T., et al. Development and evaluation of a new personal sampler for viable airborne microorganisms. Atmos. Environ. 2002b, 36, 889-898
    Agranovski I., Safatov A., Pyankov O., et al. Monitoring of viable airborne SARS virus in ambient air. Atmos. Environ. 2004, 38: 3879-3884
    Ahlert T. and Schirrmacher V. Isolation of a human melanoma adapted Newcastle disease virus mutant with highly selective replication patterns. Cancer Res. 1990, 50(18): 5962-5968
    Alqdous E.W. and Alexander D. J. Technical review: Detection and differentiation of Newcastle disease virus (avian paramyxovirus type 1). Avian pathol. 2001, 30(2):117-129
    Aldous E.W., Collins M.S., McGoldrick A., et al. Rapid pathotyping of Newcastle disease virus (NDV) using fluorogenic probes in a PCR assay. Vet. Microbiol. 2001, 80(3):201-212
    Alexander D.J., Parsons G., Marshall R. Infection of fowls with Newcastle disease virus by food contaminated with pigeon faces. Vet. Rec. 1984, 115(23):601-602
    Alexader D.J., Russel P.H., Parsons G., et al. Antigenic and biological characterization of avain paramyxovirus type 1 isolates from pigeons- an international collaborative study. Avain pathol. 1985, 14: 365-367
    Alexander D. J., Manvell R. J., Kemp P.A., et al. Use of monoclonal antibodies in the characterization of avian paramyxovirus type 1 (Newcastle disease virus) isolates submitted to an international reference laboratory. Avian Pathol. 1987, 16: 553-565
    Alexander D.J. Newcastle disease: Methods of spread. In: Saif, Y.M., Barnes, H.J., Glisson, J.R., Fadly, A.M., McDougald, D.J., Swayne, D.E. (Eds.), Diseases of Poultry. 11th ed. Iowa State Press, Ames, 1988, pp. 63-100
    Alexander D. J., Manvell R.J., Collins M.S., et al.. Characterization of paramyxoviruses isolated from penguins in Antarctica and sub-Antarctica during 1976-1979. Arch. Virol. 1989, 109(1-2):135-143
    Alexander D.J. Avian Paramyxoviridae--recent developments. Vet . Microbiol. 1990, 23 (1- 4):103-114
    Alexander D.J.and Arp H.G. Newcastle disease and other paramyxoviorus infection [A]. Disease of Poultry 9th Edition [M]. Lowa State University Press, USA, 1991, 496 - 519
    Alexander D. J.and Melino G. The immunology of virus infections. La Clinica terapeutica, 1992, 140(2):101-14
    Alexander D.J. The Epidemiology and Control of Avian Influenza and Newcastle Disease. J. Comp. Pathol. 1995, 112 (2): 105-126
    Alexander D.J. Newcastle disease and other paramyxoviridae infections. In: Calnek, B.W. (Ed.), Diseases of Poultry, 10th Ed. Mosby-Wolfe, London, 1997, pp. 541-569
    Alexander D. J. Morris H. T. Pollitt W. J. , et al.. Newcastle disease outbreaks in domestic fowl and turkeys in Great Britain during 1997. Vet. Rec. 1998, 143: 8, 209-212.
    Alexander D.J. Newcastle disease and other avian paramyxoviruses. Rev. Sci. Tech. (OIE), 2000, 19 (2): 443-462
    Alexander D. J. Report on avian influenza in the Eastern Hemisphere during 1997-2002. Avian Dis. 2003, 47 (3) Supplement: 792-797
    Alexander D.J. Newcastle disease, other paramyxoviruses and pneumovirus infections. In: Saif, Y.M., Barnes, H.J., Glisson, J.R., Fadly, A.M., McDougald, D.J., Swayne, D.E. (Eds.), Diseases of Poultry. 11th ed Iowa State Press, Ames, IA, 2003, pp. 63-100
    Alexandersen S. and Donaldson A.I. Further studies to quantify the dose of natural aerosols of foot-and-mouth disease virus for pigs. Epidemiol. Infect. 2002, 128(2): 313-323
    Allan W.H., Lancaster J.E. and Toth B., 1978. Newcastle disease virus-Their production and use. FAO Animal Production and health Series NO.10.FAO Rome, Italy.Hanson, R.P., Spalatin, and G.S.Jacobson..The visceropic pathotype of Newcastle disease virus[J]. Avian Dis.,1973,17:354-361.
    Alvarez A.J., Buttner M.P. and Stetzenbach L.D. PCR for Bioaerosol Monitoring: Sensitivity and Environmental Interference. Appl. Environ. Microb. 1995, 61(10): 3639-3644
    Anderson R.M. and May R.M. Population biology of infectious diseases I . Nature, 1989, 180 : 361-367
    Artenstein M.S.and Miller W.S. Lager volume air sampling of human respiratory disease pathogens. AM J.Epidemical.1967, 85:479-485
    Ballagi-Pordany A., Wehman E., Herczeg J., et al.. Identification and grouping of Newcastle disease virus strains by restriction site analysis of a region from F gene. Arch. Virol.1996, 141:243–261
    Beard C. W. and hanson R. P. Newcastle disease. In M.S.Hofstad, H.J.arnes. B.W.Calnek, W.M.Reid, H.W.Yord(eds). Disease of Poultry, 8 th ed. Iowa State University Press:Ames, IA, 452-470
    Borges L.G..A., Vechia V.N.D.and Cor?? G.. Characterisation and genetic diversity via REP-PCR of Escherichia coli isolates from polluted waters in southern Brazil. FEMS Microb. Eco. 2003, 45:173-180
    Bowman M.C., Smallwood S., Moyer S.A. Dissection of individual functions of the Sendai virus phosphoprotein in transcription. J.Virol. 1999, 73(8): 6474-6483
    Brachmann P. S., Ehrlich R., Eichenwald H.F. Standard sampler for assay of airborne microorganisms. Science, 1964, 144: 1295
    Bram R.A., Willson S.W. and Sardesai J.B. Fly control in support of the exotic Newcastle disease eradication program in southern California. Bull Entomol. Soc. Amer. 1974, 20 (3): 228-280
    Brockmeier S.L. and Lager K.M. Experimental airborne transmission of porcine reproductive and respiratory syndrome virus and Bordetella bronchiseptica. Vet. Microbiol. 2002, 89, 267 - 275
    Brown J.K.M and Hovmoller M.S. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 2002, 297: 537-541
    Bruce S.S., John M. Crawford, H.S. Sellers, et al. Nucleotide sequence analysis of the Newcastle disease virus nucleocapsid protein gene and phylogenetic relationships among the Paramyxoviridae. Virus Res. 2002, 26; 83(1-2):119-129
    Burridge M. J., Riemann H.P.and Utterback W.W. Methods of spread of velogenic viscerotropic Newcastle disease virus in the southern Californian epidemicof 1971-1973. Avian Dis. 1975, 19(4): 666-678
    Calnek B.W.,Barnes H.J.,Beard C.W., et al . Diseases of poultry[M]. Ames, Iowa, USA: Iowa State University Press,Tenth edition . 1997, 541-569
    Capua I., Scacchia M.,Toscani T., et al. Unexpected isolation of virulent Newcastle disease virus from commercial embryonated fowls'eggs. J. Vet. Med .B 1993, 40:609-612
    Cecilerose. Bioaerosols. The Western Journal of Medicine, 1994, 160 (6): 566.
    Chambers P., Millar N. S.and Emmerson P. T. Nucleotide sequence of the gene encoding the fusion glycoprotein of Newcastle disease virus. J. Gen. Virol. 1986, 67: 2685-2694
    Chambers P., Pringle C.R., and Easton J.J. Heptad repeat sequences are located adjacent to hydrophobic region in several types of virus fusion glycoproteins. J. Gen.Virol.1990, 71: 3075-3080
    Chandrashekar M.R., Rathish K.C. and Nagesha C.N. Reservoirs of nosocomial pathogens in neonatal intensive care unit. J. Indian. Med .Assoc. 1997, 95: 72-74, 77
    Chang C.W., Chung H., Huang C.F., et al. Exposure of workers to airborne microorganisms in open-air swine houses. Appl. Environ. Microbiol. 2001, 67(1):155-161
    Chen C., Compans R.W. and Choppin P.W. Parainfluenza virus surface p ro jections: glycopr- teins with haemagglutinin and neuram inidase activities. J. Gen. Virol. 1971, 11: 53-58
    Chena W., Rhonda K., John W. A., et al.Low dose aerosol infection of mice with virulent type A Francisellatularensis induces severe thymus atrophy and CD4+ CD8+thymocyte depletion. Microb. Pathog. 2005, 39(5-6): 189–196
    Chinivasagam H.N. and Blackall P.J. Investigation and application of methods for enumerating heterotrophs and Escherichia coli in the air within piggery sheds [J]. J. Appl. Microb. 2005, 98: 1137-1145
    Christensen L.S., Mousing J., Mortensen S., et al. Evidence of long distance airborne transmission of Aujeszky's disease (pseudorabies) virus. Vet. Rec. 1990, 127(19):471-474
    Christensen L.S., Mortensen S., Bùtner A., et al. Further evidence of long distance airborne transmission of Aujeszky's disease (pseudorabies) virus. Vet. Rec., 1993,132, 317-321
    Claudia M.F.A.D., Gloster J., Valarcher J.F. Airborne transmission of foot-and-mouth disease in pigs: Evaluation and optimisation of instrumentation and techniques. Vet. J., 2007, doi: 10. 1016/j. tvjl. 2007.09.010.
    Collins M.S., Bashiruddin J.B.and Alexander D.J. Deduced amino acid sequences at the fusion protein cleavage site of Newcastle disease viruses showing variation in antigenicity and pathogenicity . Arch. Virol. 1993, 128(3-4): 363-370
    Connaris H., Takimoto T., Russell R., et al. Probing the sialic acid binding site of the hemagglutinin -neuraminidase of Newcastle disease virus: identification of key amino acids involved in cell binding, catalysis, and fusion. J. Virol. 2002, 76(4):1816-1824
    Crennell S., Takimoto T., Portner A., et al. Crystal structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase. Nat. Struct. Biol. 2000, 7(11):1068-1074
    Crowe C.K., Harris D.L.H., Elliott L.P., et al. A possible relationship between low facility dust and endotoxin levels and improved growth rates in pigs reared by Isowean SM. Swine– Health– and - Production. 1996, 4(5):231-236
    De Jong M.C.M. and Kimman T.G. Experimental quantification of vaccine - induced reduction in virus transmission. Vaccine, 1994, 12: 761-766
    de Leeuw O. and Peeters B. Complete nucleotide sequence of Newcastle disease virus: evidence for the existence of a new genus within the subfamily Paramyxovirinae. J. Gen. Virol. 1999, 80 ( Pt 1):131-136
    Decker H.M. and Brachmann L.M. Advance in large-volume air sampling. Cantam Cont.1969, 8: 13-17.
    Delay P.D., DeOme K.B. and Bankowski R.A. Recovery of pneumoenc- ephalitis (Newcastle) virus from the air of poultry houses containing infected birds. Science, 1948, 107: 474-475
    Dewulf J., Laevens H., Koenen F., et al.. Airborne transmission of classical swine fever virus under experimental conditions. Vet. Rec. 2000,147, 735-738
    Donaldson A.I., Gloster J., Harvey L.D., et al. Use of prediction models to forecast and analyse airborne spread during the foot-and-mouth disease outbreaks in Brittany, Jersey and the Isle of Wight in 1981. Vet. Rec. 1982, 110:53–57
    Donaldson A. Airborne spread of foot-and-mouth disease. Microbiology Today, 1999, 26:118-119
    Douwes J., Thorne P., Pearce N., et al. Bioaerosol Health Effects and Exposure Assessment: Progress and Prospects. Ann. Occup. Hyg. 2003, 47(3): 187-200
    Doyle T.M. A hitherto unrecorded disease of fowls due to a filter-passing virus. J. Comp. Pathol. Therap. 1927, 40:144-169
    Dutkiewicz J., Pomorski Z.J.H. and Sitkowska J. Airborne microorganisms and endotoxin in animal houses. Grana, 1994, 33(2):85-90
    Earn D.J.D., Rohani P., Bolker B.M., et al . A simple model for complex dynamical transitions in epidemics . Science, 2000, 287: 667-670
    East I., Kite V., Daniels P., et al. Cross-sectional survey of Australian chicken farms to identify risk factors associated with seropositivity to Newcastle-disease virus. Prev. Vet. Med. 2006, 77: 199-214
    Estola T., M?kel? P., and Hovi T. The effect of air ionization on the air-borne transmission of experimental Newcastle disease virus infections in chickens. J. Hyg (Lond). 1979, 83(1): 59-67
    Eubank S., Guclu H., Kumar, et al. Modelling disease outbreaks in realistic urban social networks. Nature, 2004, 429:180
    Field B.N. et al. Virology. New York:Reven Press Ltd , 1990, 97
    Gao L.Q. and Hethcote H.W. Disease transmission models with density2dependent demographics. J. Math. Biol.1992, 30: 717-731
    Garske T., Clarke P. and Ghani A.C. The transmissibility of Highly Pathogenic Avian Influenza in Commercial poultry in industrialized countries. PLoS ONE, 2007; 2(4): e349.
    Glickman R.L., Syddall R.J., Iorio R.M., et al. Quantitative basic residue requirements in the cleavage-activation site of the fusion glycoprotein as a determinant of virulence for Newcastle disease virus. J.Virol. 1988, 62(1):354-356
    Gloster J. Analysis of two outbreaks of Newcastle disease. Agricultural Meteorology, 1983, 28 (2): 177-189
    Gloster J. Factors influencing the airborne spread of Newcastle disease. Br. Vet. J. 1983, 139(5): 445-451
    Gohm D.S, Thur B. and Hofmann M.A. Detection ofNewcastle disease virus in organs and facesofexperimentally infected chickensusing RT-PCR. Avian Pathol. 2000, 29: 143-152
    Gomez-Puertas P., Leahy M.B., Nuttall P.A., et al.. Rescue of synthetic RNAs into thogoto and influenza A virus particles using core proteins purified from Thogoto virus. Virus Res. 2000, 67(1):41-48
    Gorman J.J., Corino G.L. and Selleck P.W. Comparison of the positions and efficiency of cleavage activation of fusion protein precursors of virulent and avirulent strains of Newcastle disease virus: insigh ts into the specificities of activating p ro teases.Virol. 1990, 177 (1) : 339-351
    Goto B., Ohnishi Y., Inocencio N.M., et al.Mammalian subtilisim-related proteinases in cleavage activation of paramyxovirus fusion glycoprotein superiority of furin/PACE to PC2 or PC1/PC3. Virol. 1992, 66:6391-6397
    Graves J.H. and Cunliffe H.R. The infectivity assay of foot and mouth disease in swine. Proceedings of the US Livestock Sanitary Association 1960, 63, 340-345
    Guittet M., Le Coq H. and Picault J.P. Risk for the transmission of Newcastle disease by contaminated poultry products. Rev. Sci. Tech. 1997, 16(1):79-82
    Heesterbeek J.A.P. Metz J.A.J The saturating contact rate in marriage and epidemic models. J. Math. Biol. 1993, 31 : 529-539
    Henderson W.M. A comparison of different routes of inoculation of cattle for detection of the virus of foot-and-mouth disease. J. Hyg. Cambridge 1952, 50, 182-194
    Herczeg J., Wehmann E., Bragg R.R., et al. Two novel genetic groups (Ⅶb andⅧ) responsible for recent Newcastle disease outbreaks in Southern Africa,one(Ⅶb)of which reached southern Europe. Arch. Virol. 1999, 144(11):2087-2099
    Hethcote H.W. A thousand and epidemic models , in frontiers in theoretical biology [M] . LevinS A (ed). Springer-verlag, Berlin, 1994, 504-515
    Hethcote H.W. The mathematics of infectious diseases . SIAM Rev, 2000, 42: 599-653
    Hietala S.K., Hullinger P.J., Crossley B.M., et al. Environmental air sampling to detect exotic Newcastle disease virus in two California commercial poultry flocks. J. Vet. Diagn. Invest. 2005, 17(2): 198-200
    Hodder A.N., Liu Z.Y., Selleck P.W., et al. Characterization of field isolates of Newcastle disease virus using antipeptides antibodies. J. Viro.1994, 164:272-281
    Hogan Jr C. J., KettlesonE. M., Lee M. -H., et al. Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles. J. Appl. Microb. 2005, 99: 1422-1434
    Hugh-Jones M., Allan W.H., Dark F.A., et al. The evidence for the airborne spread of Newcastle disease. J. Hyg. 1973; 71(2): 325-339
    Iorio R.M.and Bratt M.A. Neutralization of Newcastle disease virus by monoclonal antibodies to the hemagglutinin- neuraminidase glycoprotein: requirement for antibodies to four sites for complete neutralization. J. Virol. 1990, 51:445-451
    Iorio R.M. and Glickman R.L. Fusion mutants of Newcastle disease virus selected with monoclonal antibodies to the hemagglutinin-neuraminidase. J. Virol. 1992, 6(11):6626-6633
    Iorio R.M., Field G.M., Sauvron J.M., et al. Structural and functional relationship between the receptor recognition and neuraminidase activities of the Newcastle disease virus hemagglutin- in-neuraminidase protein: receptor recognition is dependent on neuraminidase activity. J. Virol. 2001, 75(4):1918-1927
    Jarecki-Black J.C. A novel olignucle otide probe for the detection of Newcastle disease. virus. Avian Dis. 1992, 36:134-138
    Jarecki-Black J.C. An oligonucleotide probe thatdistinguish isolates of low virolence from themore pathogenic strains of NDV. Avian Dis. 1993, 27: 724-730
    Jayarao B. Agroterrorism: A Potential Threat to US Animal Agriculture I. 2004-04
    Jestin V. and Cherbonnel M. Interferon-induction in mouse spleen cells by the Newcastle disease virus (NDV) HN protein. Ann. Rech. Vet. 1991, 22(4):365-372
    Jestin V. Detection of NDV RNA in infected allantoic fluids by in vitro enzymatic amplification (PCR ). Arch. Virol. 1991, 118: 151-161
    Jones A.M., Govan J.R.W., Doherty C.J., et al. Identification of airborne dissemination of epidemic multiresistant strains of Pseudomonas aeruginosa at a CF centre during a cross infection outbreak. Thorax, 2003, 58: 525-527
    Jones A. M. and Harrison R.M. The effects of meteorological factors on atmospheric bioaerosol concentrations-a review. Sci. Total Environ. 2004, 326: 151-180
    Kalata E. F. and baldauf C. Newcastle disease in freeding and pet birds. In D J Alexander(ed.). Newcastle Disease. Kluwer Academic Publishers: Boston, MA, 197-246.
    Kant A., Koch G., V an D.J., et al. Differentiation of virulent and non-virulent strains of Newcastle disease virus w ith in 24 hours by polymerase chain reaction. Avian Pathol. 1997, 26: 837-849
    Kant A., koch G.,VanRoozeloar, et al. Diffrerntiation ofvirulentand non-virulent strains of Newcastle disease virus within 24 hours by pohymerase chain reaction. Avian Pathol.1998, 118: 155-159
    Karin N., Mitchell D.J., Brocke S., et al. Reversal of experimental autoimmune encephalomyelitis by a soluble peptide variant of a myelin basic protein epitope: T cell receptor antagonism and reduction of interferon gamma and tumor necrosis factor alpha production. J. Exp. Med. 1994, 180(6):2227-2237
    katz D., ben-moshe H., and alon S. Titration of Newcastle disease virus and its neutralizing antibodies in microplates by a modified Hemadsorption and Hemadsorption inhibition method. J. Clin. Microb. 1976, 3(3): 227 - 232
    Kelly B.P., Furney S.K., Jessen M.T., et al. Low-dose aerosol infection model for testing drugs for efficacy against Mycobacterium tuberculosis. Antimicrob. Agents Ch. 1996, 40 (12):2809
    Kim S.G., Shin S.J., Jacobson R.H., et al. Development and app lication of quantitative po lymerase chain reaction assay based on the AB I 7700 system (TaqMan) for detection and quantification of mycobacterium avium subsp. Paratuberculosis. J. Vet. Diagn. Invest. 2002, 14 (2): 126-131
    Kirkland P.D. Virulent Newcastle disease virus in Australia: in through the 'back door'. Austra.l Vet. J. 2000, 78: 331-333
    Klenk H.D. and Rott R. The molecular biology of influenza virus pathogenicity .Adv. Virus. Res. 1988, 34:247-281
    Kraneveld F.C. A poultry disease in the Dutch East Indies. Nederlands-Indische Bladen voor Diergeneeskunde. 1926, 38:448-450.
    Krbs-Zaleta C.M., Velasco-Hernandez J.X. A simple vaccination model with multiple endemic states . Math Biosci. 2000, 164: 183-201
    Kumanan K, Meignanalakshmi A, Meenu R, et al. Pathotyping of a Newcastle disease virus isolated from emus ( Dromaius novaehollandiae). Trop. Anim. Health Prod. 2003, 35(5): 391 -395
    Lancaster J. E. and Alexander D. J. Newcastle disease virus and spread. A review of some of the literature. Department of Agriculture, Ottawa, Canada, 1975, pp.79
    Lee A.K, Arthur P.S., Lau, et al. Source identification analysis for the airborne bacteria and fungi using a biomarker approach. Atmos. Environ. 2007, 41:2831-2843
    Leung T. F., Ng P. C., Cheng F. W. T., et al. Infection control for SARS in a tertiary centre in Hong Kong. J. Hosp. Infect. 2004, 56: 215- 222
    Li X.X., Chai T.J., Wang Z.L., et al. Occurrence and transmission of Newcastle disease virus aerosol originating from infected chickens under experimental conditions. Veterinary Microbiology, doi:10.1016/j.vetmic.2008.11.002
    Liang R., Cao D. J, Li J.Q., et al. Newcastle disease outbreaks in western China were caused by the genotypesⅦa andⅧ. Vet. Microbiol. 2002, 87: 193-203
    Lin X., Willeke K., Ulevicius V., et al.Effect of sampling time on the collection efficiency of all-glass impinger AIHA. J. 1997, 58: 480-488
    Lin X.J., Reponen T.A., Willeke K., et al. Long-term sampling of airborne bacteria and fungi into a non- evaporating liquid. Atmos. Environ. 1999, 33: 4291-4298
    Liu H. L., Wang Z. L, Wu Y. G., et al. Molecular epidemiological analysis of Newcastle disease virus isolated in China in 2005. J. Virol. Methods 2005, 140: 206 - 211
    Lomniczi B., Wehmann E., Herczeg J., et al. Newcastle disease outbreaks in recent years in western Europe were caused by an old (VI) and a novel genotype (VII). Arch. Virol.1998, 143(1):49-64
    Lutz B., Koch K.M., Müller W., et al. Behavior of Newcastle disease virus in the airborne state. 1. Experimental study of particle binding of the virus. Zentralbl Veterinarmed B. 1984, 31(5):321-328.
    Lutz B., Müller W., Koch K.M., et al. Behavior of Newcastle disease virus in the airborne state. 2. Estimation of aerogenic dissemination . Zentralbl Veterinarmed B. 1984, 31 (5): 329-337
    Mahlum C.E., Haugerud S., Sh ivers J.L., et al. Detection of bovine viral diarrhea virus by TaqM an reverse transcrip tion po lymerase chain reaction. J. Vet. Diagn. Invest. 2002, 14 (2) : 120-125
    Mark G.W., Holly S., Sellers, R.A., et al. RNA-dependent RNA polymerase gene analysis of worldwide Newcastle disease virus isolates representing different virulence types and their phylogenetic relationship with other members of the paramyxoviridae. Virus Res. 2004, 104 (1):71-80.
    Mars M.H., de Jong M.C.M., Van Maanen C., et al. Airborne transmission of bovine herpesvirus 1 infections in calves under field conditions. Vet. Microbiol. 2000, 76: 1-13
    Masaji M., Kunitoshi I. , Yasuyuki S., et al.Phylogenetic analysis of Newcastle disease virus genotype isolated in Japan. J.C.M. 2002, 40(10):3826-3830
    Mavlikaev R.G., Dutko IuS., Burtsev V.I., et al. Survival of the Newcastle disease vaccine virus in the air of poultry houses. Veterinariia 1979, (8):23-25
    May .R. and per J. The efficiency of various liquid impinger counters in bacterial aerosol. Brit. J. Industrial Med.1957, 14: 287-297
    McFerran J.B. Control of Newcastle disease in Northern Ireland. Proceedings -Avian Exotic Disease Control Seminar. Animal Health Report 2, NSW Agriculture and Fisheries, Glenfield, NSW, Australia, 1989, pp. 16-21
    Mcmillar B.C. and Hanson R.P..RNA Oligonucleotide fingerprinting for resolring Newcastle disease virus. Avian Dis. 1980, 24: 1016-1020
    Mehlhorn G., Chai T. j. Lehrbuch derTierhygiene. Aufl. 2002, In Drucklegung. Mena-lorca J. and Hethcote H.W. Dynamic models of infectious diseases as regulatiors of population sizes. J. Math. Biol.1992,30 : 693-716
    Meulemans G.C., letellier C., Gonze M., et al . NDV F glycol protein expressed from a recombinant vaccine virus vector protects chickens against live-virus-challenge. Avian Dis. 1988, 17: 821-827
    Mims S.A.and Mims III F.M. Fungal spores are transported long distances in smoke from biomass fires. Atmos. Environ. 2004, 38: 651-655
    Mitchell B.W., King D.J. Effect of negative air ionization on airborne transmission of Newcastle disease virus. Avian Dis. 1994, 38 (4): 725-732
    Morrison T., McQuain C.and McGinnes L. Complementation between avirulent Newcastle disease virus and a fusion protein gene expressed from a retrovirus vector: requirements for membrane fusion. J. Virol. 1991, 65(2):813-822.
    Nagai Y., Klenk H.D.and Rott R. Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus. Virol. 1976, 69:523 - 538
    Oberdorfer A. and Werner O. Newcastle disease virus detection and characterization by PCR of recent german isolates differing in pathogenicity. Avian Pathol. 1998, 27:237-243
    OIE, 2004. Newcastle disease. In: Office International Des Epizooties-Manual of Standards for Diagnostic Tests and Vaccines, 5th ed. OIE, Paris.
    OIE. OIE Listed diseases. http://www.oie.int/ eng/ maladies/en_classification2008. htm?e1d7, 2008
    Palmieri S. and Michael L.P. An atternative method of oligonucleotide fingerprinting for resolring Newcastle disease virus specific RNA fragments. Avian Dis. 1988, 33: 345-350
    Panda A., Huang Z.H., Elankumaran S. et al. Role of fusion protein cleavage site in the virulence of Newcastle disease virus. Microb. Pathog. 2004, 36(1):1-10
    Panshin A., Shihmanter E., Weisman Y., et al. Antigenic heterogeneity amongst the field isolates of Newcastle Disease Virus (NDV) in relation to the vaccine strain. Part II: studies on viruses isolated from domestic birds in Israel., Comp Immunol Microbiol Infect Dis, 2002, 25(3):173-185
    Peeples M.E. and Bratt M.A. UV irradiation analysis of complementation between, and replication of, RNA-negative temperature-sensitive mutants of Newcastle disease virus[J]. J. Virol. 1982, 41(3):965-973
    Peeters B.P., De Leeuw O.S., Koch G., et al . Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence. J. Vir. 1999, 73(6) : 5001-5009
    Prazmo Z., Dutkiewicz J., Skorska C., et al. Exposure to airborne Gram-negative bacteria, dust, and endotoxin in paper factories. Ann. Agric. Environ. Med. 2003, 10(1):93-100
    Riley E.C., Murphy G.., and Riley R.L. Airborne spread of measles in a suburban elementary school. Am. J. Epidemiol. 1978, 107:421- 432
    Rima B.K., Wishaupt R.G., Welsh M.J., et al. The evolution of morbilliviruses: a comparison of nucleocapsid gene sequences including a porpoise morbillivirus. Vet. Microbiol. 1995, 44 (24):127-134.
    Rodgers R. and Merigan T.C. Interferon production by individual cells. Virol. 1974, 57 (2): 467-474
    Rodriguez-Sanchez B., Sanchez-Vizcaino J.M., Uttenthal A.,et al. Improved diagnosis for nine viral diseases considered as notifiable by the world organization for animal health. Transbound Emerg. Dis. 2008, 55(5-6):215-225
    Rohlf F.J. NTSYS-pc. Numerical Taxonomy and Multi-variate Analysis System, Version 2.1. Exeter Software, Setauket, New York ,2000
    Roy P. and Venugopalan A.T. Dot-enzyme linked immunosorbent assay for demons- tration of Newcastle disease virus infection. Comp. Immunol. Microb. 1999, 22:27-31
    Russel l. P. H., Griffithe P.C., Goswami K.K., et al . The characterization of monoclonal antibiodies to Newcastle disease virus. J. Gen. virol. 1983, 64: 2069-2072
    Sakaguchi T., Toyoda T., Gotoh B., et al. Newcastle disease virus evolution. I. Multiple lineages defined by sequence variability of the hemagglutinin-neuraminidase gene.Virol. 1989, 169(2):260-272
    Sawyer M.H, Chamberlin C.J., Wu Y.N., et al. Detection of varicella-zoster virus DNA in air samples from hospital rooms[ J ]. J. Infect. Dis. 1994, 169 (1) : 91-94
    Schaper U.M., Fuller F.J., Ward M.D.W. et al., Nucleotide sequence of the envolpe protein genes of a highly virulent, Neurotropic strain of Newcastle disease virus. Virology, 1988, 165: 291-295
    Schirrmacher V. Active specific immunotherpy with NDV modified autologous tumor cell following resection of liver metastases in coiorectal cancer. Cancer Immunal Immun.1992, 35 (5): 325-330
    Schloer G. M. and Hanson, R. P. Relationship of Plaque Size and Virulence for Chickens of 14 Representative Newcastle Disease Virus Strains [J]. J. Virol. 1968, 2 (1): 40 - 47
    Schwarte L.H.and Mathews J. Aerosol properties of lyophilized hog cholera virus. Vet. Med. 1954, 49, 233–234
    Seal B.S. ,King D.J. and Bennett J. D. Characterization of Newcastle disease virus isolates by reverse t ranscription PCR coupled to direct nucleotide sequencing and development of epidemiological analysis. J. Clin. Microbial.1995, 33 (10):2 624- 630
    Seal B.S., King D.J. and Meinersmann R.J. Molecular evolution of the Newcastle disease virus matrix protein gene and phylogenetic relationships among the paramyxoviridae. Virus Res. 2000, 66(1):1-11
    Sellers R.F. Quantitative aspects of the spread of foot and mouth disease. Vet. Bulletin 1971, 41: 431-439
    Sellers R. and Gloster J. Foot-and-mouth disease: A review of intranasal infection of cattle, sheep and pigs. Vet. J. doi:10.1016/j.tvjl.2007.03.009
    Sergel T., Mc Ginnes L.W., Morrison T.G. The fusion promotion activity of the NDV HN protein does not correlate with neuraminidase activity. Virology. 1993, 96(2):831-834
    Sergel T.A., McGinnes L.W., Morrison T.G. Mutations in the fusion peptide and adjacent heptad repeat inhibit folding or activity of the Newcastle disease virus fusion protein. J. Virol. 2001, 75(17): 7934-7943
    Sergel-Germano T., Mc Quain C. and Morrison T. Mutations in the fusion peptide and heptad repeat regions of the Newcastle disease virus fusion protein block fusion. J. Virol. 1994, 68 (11):7654-7658.
    Seto W.H., Tsang D., Yung R.W.H., et al. Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome (SARS). Lancet, 2003, 361: 1519 -1520
    Sharman, E. C., and Lamont, J. D. The Velogenic Viscerotropic Newcastle Disease Eradication Program in Southern California. Presented at the XV World Poultry, Congress, Aug. 11-16, 1974, New Orleans, LA.
    Shinn E.A., Smith G.W., Prospero, et al. African dust and the demise of Caribbean coral reefs. Geophysical Research Letters, 2000, 27: 3029-3032
    SimPson J.M. DGGE analysis of 16s rDNA amplicons to monitor changes in fecal bacterial PoPulations of weaning Pigs. App. Enviorn. Microb. 2000, (66):4705-4714
    Song G..,Wei G..,Cao Y., et al. Use of ERIC - PCR as a community fingerprinting technology in elucidation of mode of antion of a new probiotic formulation for prevention and treatment of bacterial diarrhea in piglets. Book of abstracts of the Asis Pacific Conference on Plant Tissue Culture & Agrobiotechnology, 2000, 1923:166
    Stobrwasser K. Zit. Nach Kurzweg, W. (Hrsg.) Aerosol. VEB Deutsch landwirtschaftsverlag Berlin, s.1976, 167-171
    Stolze B. and Kaaden O. R. Efficient medium for impingement and storage of enveloped viruses. J.vet. med.Series B., 1989, 36 (3): 161-167
    Susan L.B. and Kelly M.L.. Experimental airborne transmission of porcine reproductive and respiratory syndrome virus and Bordetella bronchiseptica.Vet. Microbiol. 2002, 89: 267-275
    Sutmoller P., McVicar J.W. and Cottral G.E. The epizootological importance of foot-and-mouth disease carriers. I. Experimentally produced foot-and-mouth disease carriers in susceptible and immune cattle. Archiv furdie Gesamte Virusforschung 1968, 23: 227–235
    Taylor J., Edbauer C., Rey-Senelonge A., et al. Newcastle disease virus fusion protein expressed in a fowlpox virus recombinant confers protection in chickens. J. Virol. 1990, 64(4):1441-1450
    Terpstra C.Pathogenesis of foot-and-mouth disease in experimentally infected pigs. Bulletin de l’Office International des Epizooties 1972, 77:859–874
    Tiwari A.K., Kataria R.S., Nanthakumar T., et al. Differential detection of Newcastle disease virus strains by degenerate primers based RT-PCR. Comp. Immunol. Microb. 2004, 27, 163-169
    Toyoda T., Sakaguchi T., Imai K., et al. Structural comparison of the cleavage-activation site of the fusion glycoprotein between virulent and avirulent strains of Newcastle disease virus. Virol. 1987, 158(1):242-247
    Toyoda T., Gotoh B., Sakaguchi T., et al. Identification of amino acids relevant to three antigenic determinants on the fusion protein of Newcastle disease virus that are involved in fusion inhibition and neutralization. J. Virol. 1988, 62(11):4427-4430
    Toyoda T., Sakaguchi T., Hirota H., et al. Newcastle disease virus evolution II.Lack of gene recombination in generating virulent and avirulent strains. Virology, 1989, 69:273-282
    Trincado C., Dee S., Jacobson L., et al. Attempts to transmit porcine reproductive and respiratory syndrome virus by aerosols under controlled field conditions. Vet. Rec. 2004, 154 (10):294-297
    Tseng C.C. and Li C. S. Collection efficiencies of aerosol samplers for virus-containing aerosols. Aerosol Sci. 2005, 36: 593 - 607
    Ujvári D., Wehmann E., Kaleta E.F., et al. Phylogenetic analysis reveals extensive evolution of avian paramyxovirus type I srains of pigeons (Columba livia) and suggests multiple species transmission. Virus Res. 2003, 96 (1-2): 63-73
    Vennema H., Poland A. , Foley J., et al. Feline infectious peritonitis viruses arise by mutation from endem ic feline enteric co ronaviruses. Virology, 1998, 243: 150-157
    Wallis C., Melnick J.L., Rao V.C., et al. Method for detecting virus in aerosol. Appl. Environ. Microbiol. 1985, 50 (5): 1181
    Wang R.F., Cao W.W., Carl et al. Detection and quantification of predominant Anaerobic Bacteria in Human and Animal Fecal Samples. Appl. Environ Microbiol, 1996, 62(4): 1242 -1247
    Wang Z.L., Liu H.L. , Xu J.T., et al. Genotyping of Newcastle Disease Viruses Isolated from 2002 to 2004 in China. Ann. N.Y. Acad. Sci. 2006, 1081: 228-239
    Weesendorp E., Wil J.M. L., Stegeman A.,et al.. Detection and quantification of classical swine fever virus in air samples originating from infected pigs and experimentally produced aerosols. Vet. Microbiol. 2007, doi:10.1016/j.vetmic.2007.08.013.
    Wehman E., Herczeg J., Ballagi-Pordany A., et al. Rapid identification of Newcastle disease virus vaccine strains LaSota and B-1 by restriction site analysis of their matrix gene. Vaccine 1997, 15:1430–1433
    Weiss R.A., McMichael A.J. Social and environmental risk factors in the emergence of infectious diseases. Nat. Med, 2004, 10 (Suppl. 12):S70-S76
    Westbury H.C. Newcastle disease virus: an evolving pathogen. Avian Pathology. 2001, 30: 5-11
    Winslow N S., Hanson R P., Upton E., et al. Agglutination of mammalian erythrocytes by Newcastle disease virus. Pro. Soc. Exp. Biol. 1950, 74:174-178
    Wong H.-C. and Lin C.-H. Evaluation of typing of Vibrio parahaemolyticus by throe PCR methods using special pfimem. J. Clin. Microbiol. 2001, 39 (12) :4233-4240
    Yoshida I. Early interferon production in human diploid cells induced by Newcastle disease virus in the presence of protein synthesis inhibitors. Tohoku. J. Exp. Med. 1985, 147 (2): 113-124
    Yoshida I., Sakata M., Fujita K., et al. Modification of low virulent Newcastle disease virus infection in chickens infected with reticuloendotheliosis virus. Natl. Inst. Anim. Health .Q (Tokyo). 1981, 21(1):1-6
    Yu L., Wang Z., Jiang Y., et al .Characterization of newly emerging Newcastle disease virus isolates from the people's Republic of China and Taiwan. J. Clin. Microbiol. 2001, 39(10): 3512-3519
    Yusoff K., Nesbit M., McCartney H., et al. Mapping of three antigenic sites on the haemagglutinin-neuraminidase protein of Newcastle disease virus. Virus Res. 1988, 11 (4):319-333
    Zeng J., Fournier P..and Schirrmacher V. Induction of interferon-alpha and tumor necrosis factor-related apoptosis-inducing ligand in human blood mononuclear cells by hemagglutinin -neuraminidase but not F protein of Newcastle disease virus. Virology. 2002, 297(1):19-30
    Zhilan feng and Horst R.T., recurrent outbreaks of childhood diseases revisited: The impact of isolation. Math. Biosci. 1995, 128: 93-130
    zoetendal E.G and Akermans A.D.L. TGGE analysis from human fecal salmples esreveal stable and host-Specific communities of active bacteria. Appl. Enviorn.Microb. 1998, (64):436-445

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700