牙釉质型颅咽管瘤基因表达变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的牙釉质细胞型颅咽管瘤发生的分子机制目前仍不清楚。本研究拟建立牙釉质细胞型颅咽管瘤的基因表达谱,筛选差异表达基因,进一步分析差异表达基因与牙釉质细胞型颅咽管瘤的关系。
     方法采用含有16450个Unigene的cDNA微阵列分析牙釉质细胞型颅咽管瘤组织与正常垂体柄组织表达谱的变化,应用荧光定量PCR技术验证cDNA微阵列检测出差异基因的可靠性,分析牙釉质细胞型颅咽管瘤组织相关基因的差异表达。
     结果二倍以上的差异表达基因453条,表达增加195条,表达减少258条。随机选择CGA、HBG2、ADAMDEC1、SCAPER和TRPM2基因做RT-PCR验证,发现ADAMDEC1、CGA、HBG2及TRPM2基因在牙釉质型颅咽管瘤组织中存在表达异常。
     结论初步筛选出牙釉质型颅咽管瘤异常表达基因。
Objective:The molecular mechanism of the pathogenesis of adamantinomatous craniopharyngiomas is unclear. The study was designed to establish the gene expression profile of adamantinomatous craniopharyngiomas and investigate the diferential gene expression related to adamantinomatous craniopharyngiomas.
     Methods:The changes of gene expression profile between adamantinomatous craniopharyngiomas and normal tissue of stalk hypophysial were analyzed by cDNA microarray which represented approximately 16450 Unigene that would be tested in the assay.RT-PCR technology were employed to validate the authenticity of cDNA microarray.
     Results:453 genes that were differentially expressed in tumors and normal tissues were identified;Of which 195 genes were up—regulated and 258 were down—regulated.ADAMDEC1,CGA,HBG2,SCAPER and TRPM2 genes were selected randomly and were testified by Real-Time quantitative PCR.We found that ADAMDEC1,CGA,HBG2 and TRPM2 genes were differential expression gene.
     Conclusions : several genes are invovled in the pathogenesis of adamantinomatous craniopharyngiomas,however,their relation to the formation of adamantinomatous craniopharyngiomas needs to be declared.
引文
[1] Kim SK, Wang KC , Shin SH , et al. Radical excision of pediatric craniopharyngioma : recurrence pattern and prognostic factors.Child’s Nerv Syst, 2001, 17(9): 531 - 537.
    [2] Rienstein S,Adamss EF, Pilzer D, et al. Comparative genomic hybridization in central and peripheral nervous system tumors of childhood and adolescence. J Neuropathol Exp Neurol. 2004, 63(5):399-417.
    [3] Momota H, Ichimiya S, Ikeda T, et al. Immunohistochemical analysis of the p53 family members in human craniopharyngiomas. Brain Tumor Pathol, 2003, 20(2): 73-7.
    [4] Nakasu S, Matsumura K, Nioka H, et a1.Lectin binding and bcl-2 protein expression in craniopharyngiomas. Neurol Med Chir (Tokyo). 1994, 34(7):429-35.
    [5] ZHOU J,NONG L,WlDCH M.et a1.Expression of early lung cancer detectionmltker:hnRNP A2/B1 and its relation to microsatellite alteralionin in non—small cell lung cancer.Lung Cancer,2001, 34(3):34l一350.
    [6] Liu BG, Qi ST, Pan J, et a1.Growth of craniopharyngioma involving the third ventricular floor in relation to the hypothalamus. Nan Fang Yi Ke Da Xue Xue Bao,2007,27(3):377-9.
    [7] Denhardt DT,Giachelli CM,Rittling SR.Role of osteopontin in cellular signaling and toxicant injury.Annu Rev Pharmacol Toxicol.2001,41(4):723-749.
    [8] Smith ER, Manfredi M, Scott RM,et al A recurrent craniopharyngioma illustrates the potential usefulness of urinary matrix metalloproteinases as noninvasive biomarkers. Neurosurgery. 2007, 60(6):1148-9.
    [9] Ito K ,Sa,Yabuki N ,et a1. Immunohistochemical study of Ki一67 and DNA topoisomerase II in human endometrlum . Mod Pathol,1997,10(4):289—294.
    [10] Pendurkar R, Chatterjee A , Zo rian Y, et a1.Distributed diagnosis of interconnections in SoC and MCM designs. J Electron Test, 2004, 20(3): 291-307.
    [11] Bruni P, Minopoli G, Brancaccio T,et al. Fe65, a ligand of the Alzheimer's beta-amyloid precursor protein, blocks cell cycle progression by down-regulating thymidylate synthase expression. J Biol Chem, 2002, 277(38):35481-8.
    [12] Tzachanis D, Freeman GJ, Hirano N, et al. Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells. Nat Immunol, 2001,2(12):1174-82.
    [13] Kayoko Tanaka, Erich A. Nigg. Cloning and Characterization of the Murine Nek3 Protein Kinase, a Novel Member of the NIMA Family of Putative Cell Cycle Regulators. J Biol Chem, 1999, 274(19):13491-7
    [14] Elena Romm, Joseph A. Nielsen, Jin G. Kim, et al. Myt1 family recruits histone deacetylase to regulate neural transcription. J Neurochem,2005, 93(6): 1444–1453.
    [15] Kelberman D, Dattani MT. Hypothalamic and pituitary development: novel insights into the aetiology. Eur J Endocrinol, 2007,157 (Suppl 1):S3-14
    [16] Ferrand N, Demange C, Prunier C,et al. A mechanism for mutational inactivation of the homeodomain protein TGIF in holoprosencephaly. FASEB J, 2007,21(2):488-96.
    [17] Attia M, Rachez C, De Pauw A, et al. Nap1l2 promotes histone acetylation activity during neuronal differentiation. Mol Cell Biol, 2007,27(17):6093-102.
    [18] Huang XL, Cui GH, Zhou KY. Correlation of PI3K-Akt Signal Pathway to Apoptosis of Tumor Cells. Ai Zheng,2008,27(3):331-6.
    [19] Irene MG, Daniel JM, Scott HK,et al.Proteomic analysis of mantle-cell lymphoma by protein microarray. Blood, 2005,105(9): 3722–3730.
    [20] Song G,Ouyang G L,Bao S D.The activation of Akt/PKB signaling pathway and cell survival.J Cell Mol Med,2005,9(1):59-71.
    [21] Kristin B, Judith H, Philipp M,et al. Posttranslational Modification of Bcl-2 Facilitates Its Proteasome-Dependent Degradation: Molecular Characterization of the Involved Signaling Pathway. Mol Cell Biol,2000,20(5): 1886–1896.
    [22] Cristina Sanz,Maria J. Calasanz,Enrique Andreu,et al. NALP1 is a transcriptional target for cAMP-response-element-binding protein (CREB) in myeloid leukaemia cells. Biochem J,2004,384(Pt 2): 281–286.
    [23] Robert K, Christian G,Henning F.Inhibition of TRPM2 cation channels by N-(p-amylcinnamoyl)anthranilic acid. British Journal of Pharmacology,2006,148(3):264–273.
    [24] Kovalenko OV, Yang XH, Hemler ME. A novel cysteine cross-linking method reveals a direct association between claudin-1 and tetraspanin CD9. Mol Cell Proteomics, 2007, 6(11):1855-67.
    [25] Do MS, Jeong HS, Choi BH, et al. Inflammatory gene expression patterns revealed by DNA microarray analysis in TNF-alpha-treated SGBS human adipocytes. Yonsei Med J,2006,47(5):729-36.
    [26] Seeberger KL, Dufour JM, Shapiro AM, et al. Expansion of mesenchymal stem cells from human pancreatic ductal epithelium. Lab Invest,2006,86(2):141-53.
    [27] Uutela M, Laurén J, Bergsten E, et al. Chromosomal location, exon structure, and vascular expression patterns of the human PDGFC and PDGFC genes. Circulation,2001, 103(18):2242-7.
    [28] Dunlap SM, Celestino J, Wang H, et al. Insulin-like growth factor binding protein 2 promotes glioma development and progression. Proc Natl Acad Sci U S A,2007,104(28): 11736-41.
    [29] Yamamoto M, Kiyota T, Walsh SM, et al. Kinetic analysis of aggregated amyloid-beta peptide clearance in adult bone-marrow-derived macrophages from APP and CCL2 transgenic mice. J Neuroimmune Pharmacol, 2007,2(2):213-21.
    [30] Cohen-Solal KA, Sood R, Marin Y, et al. Identification and characterization of mouse Rab32 by mRNA and protein expression analysis.Biochim Biophys Acta,2003,1651(1-2): 68-75.
    [31] Luo RZ, Fang X, Marquez R, et al.ARHI is a Ras-related small G-protein with a novel N-terminal extension that inhibits growth of ovarian and breast cancers. Oncogene,2003,22(19):2897-909.
    [32] Vigorito E, Gambardella L, Colucci F, et al. Vav proteins regulate peripheral B-cell survival. Blood, 2005,106(7):2391-8.
    [33] Nguyen A, Rosner A, Milovanovic T,et al. Wnt pathway component LEF1 mediates tumor cell invasion and is expressed in human and murine breast cancers lacking ErbB2 (her-2/neu) overexpression.Int J Oncol, 2005, 27(4):949-56.
    [34] Nagasaki K, Schem C, von Kaisenberg C, et al. Leucine-zipper protein, LDOC1, inhibits NF-kappaB activation and sensitizes pancreatic cancer cells to apoptosis.Int J Cancer,2003,105(4):454-8.
    [35] Setlur SR, Dighe RR. Single chain human chorionic gonadotropin, hCG alpha beta: effects of mutations in the alpha subunit on structure and bioactivity.Glycoconj J,2007,24(1):97-106.
    [36] Bates EE, Fridman WH, Mueller CG. The ADAMDEC1 (decysin) gene structure: evolution by duplication in a metalloprotease gene cluster on Chromosome 8p12. Immunogenetics,2002,54(2):96-105.4
    [37] Guida V, Cappabianca MP, Colosimo A, et al. Influence of Ggamma-158C --> and beta- (AT)x(T)y globin gene polymorphisms on HbF levels in Italian beta-thalassemia carriers and wild-type subjects. Haematologica,2006,91(9):1275-6.
    [1] Kim SK, Wang KC , Shin SH , et al. Radical excision of pediatric craniopharyngioma : recurrence pattern and prognostic factors.Child’s Nerv Syst, 2001, 17(9): 531 - 537.
    [2] Oikonomou E, Barreto DC, Soares B, et al. β-Catenin mutations in craniopharyngiomas and pituitary adenomas. J Neurooncol, 2005, 73 (3):205 -209.
    [3] Rienstein S,Adamss EF, Pilzer D, et al. Comparative genomic hybridization in central and peripheral nervous system tumors of childhood and adolescence. J Neuropathol Exp Neurol. 2004, 63(5):399-417.
    [4] Momota H, Ichimiya S, Ikeda T, et al. Immunohistochemical analysis of the p53 family members in human craniopharyngiomas. Brain Tumor Pathol, 2003, 20(2): 73-7.
    [5] Korsmeyer SJ. BCL-2 initiate a new category of oncogenes :regulators of cell death.Blood,1992,80(4):879.
    [6] Hannun YA. Apoptosis and the dilemma of cancer chemotherapy. Blood 1997, 89(6):1845
    [7] Krajewska M,Moss S, Krajewski S,et al. Elevated expression of BCL-X and reduced Bak in primary colorectal adenocarcinomas. Cancer Res,1996, 56 (10):2422.
    [8] Nakasu S, Matsumura K, Nioka H, et a1.Lectin binding and bcl-2 protein expression in craniopharyngiomas. Neurol Med Chir (Tokyo). 1994, 34(7):429-35.
    [9] ZHOU J,NONG L,WlDCH M.et a1.Expression of early lung cancer detectionmltker:hnRNP A2/B1 and its relation to microsatellite alteralionin in non—small cell lung cancer.Lung Cancer,2001, 34(3):34l一350.
    [10] Chen MY, Li WM, Xu D, Chen WB. Experimental study for the targeting therapy of mouse lung carcinoma treated by anti-hnRNPB1 monoclonal antibody with 131. Sichuan Da Xue Xue Bao Yi Xue Ban. 2007, 38(5):766-9.
    [11] 陈状,漆松涛等。颅咽管瘤p21及hnRNP A2/B 1表达的研究。广东医学,2006, 2(9):1335-1337
    [12] Romero IA, Anlos CL, Greenwood J, et a1. Ezrin and moesin CO—localise with ICAM-l in brain endothelial cells but are not directly associated.Brain Res Mol Brain Res,2002, 105(1):47-59.
    [13] Weber GF,Zawaideh S,Hikita S,et al.Phosphorylation-dependent interaction of osteopontin with its receptors regulates macrophage migration and activation.J Leukoc Biol,2002,72(4):752-761.
    [14] Gericke A,Qin C,Spevak L,et al.Importance of phosphorylation for osteopontin regulation of biomineralization .Calcif Tissue Int,2005,77(1):45-54.
    [15] Khan SA,Cook AC,Kappil M,et al.Enhanced cell surface CD44 variant(v6,v9)expression by osteopontin in breast cancer epithelial cells facilitates tumor cell migration:novel post-transcriptional,post-translational regulation.Clin Exp Metastasis,2005,22(8):663-673.
    [16] Gao C,Guo H,Downey L,et al.Osteopontin-dependent CD44v6 expression and cell adhesion in HepG2 cells.Carcinogenesis.2003,24(12):1871-1878.
    [17] Katagiri YU,Sleeman J,Fujii H,et a1.CD44 variants but not CD44s cooperate with beta 1-containing integrins to permit cells to bind to osteopontin independently of arginine-glycine-aspartic acid,thereby stimulating cell motility and chemotaxis.Cancer Res,1999,59(1):219-226.
    [18] Denhardt DT,Giachelli CM,Rittling SR.Role of osteopontin in cellular signaling and toxicant injury.Annu Rev Pharmacol Toxicol.2001,41(4):723-749.
    [19] Smith ER, Manfredi M, Scott RM,et al A recurrent craniopharyngioma illustrates the potential usefulness of urinary matrix metalloproteinases as noninvasive biomarkers. Neurosurgery. 2007, 60(6):E1148-9.
    [20] Turley H , Comley M , Houlbrook S, et a1. The distribution and expression of the two isoform s of DNA topoisomerase Ⅱ in normal and neoplastic human tissues.Br J Cancer,1997, 75(9):1340一l346.
    [21] Ito K ,Sasano H,Yabuki N ,et a1. Immunohistochemical study of Ki一67 and DNA topoisomerase II in human endometrlum . Mod Pathol,1997,10(4):289—294.
    [22] Xu J, Zhang S, You C, et al. Expression of human MCM6 and DNA Topo II alpha in craniopharyngiomas and its correlation with recurrence of the tumor. J Neurooncol. 2007, 83(2):183-9.
    [23] Pendurkar R, Chatterjee A , Zo rian Y, et a1.Distributed diagnosis of interconnections in SoC and MCM designs. J Electron Test, 2004, 20(3): 291-307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700