食管癌侵袭转移相关基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食管癌是人类十大恶性肿瘤之一,尽管食管癌的诊断和治疗取得了较大进展,但食管癌仍然严重威胁着人类的生命和健康。食管癌预后差的主要原因是肿瘤对周围组织的侵袭,以及在肿瘤早期就发生邻近组织和远端组织的转移。目前的研究表明肿瘤微环境中的各种理化因素以及肿瘤间质细胞等都对肿瘤的侵袭转移发挥着重要的调控作用。肿瘤组织中缺氧、酸中毒、大量生长因子、大量蛋白水解酶以及免疫炎性反应等构成了肿瘤组织代谢环境的生物学特征。这种特性不仅对肿瘤的增殖、侵袭、迁移、细胞黏附以及新生血管的形成具有重要影响,同时也对肿瘤组织内的间质细胞产生了广泛的影响。新近的研究表明肿瘤转移依赖于肿瘤细胞与各种基质细胞的协调有效的相互作用。组成肿瘤微环境的基质细胞参与了肿瘤侵袭转移的整个过程。
     本研究针对食管癌侵袭转移与微血管内皮的关系,采用内皮细胞磁珠分选系统从新鲜食管癌组织中分离获得了食管癌微血管内皮,体外成功培养并命名为ECEC。食管癌微血管内皮相对正常内皮具有更强的增殖能力、抗凋亡能力。基因芯片分析发现食管癌内皮高表达趋化因子家族基因以及一些与肿瘤细胞侵袭转移密切相关的基因。将食管癌内皮与食管癌细胞共培养后食管癌细胞的侵袭及运动能力大大增强(P<0.01),并且这种增强作用依赖于肿瘤细胞与内皮细胞的直接接触。将食管癌内皮与食管癌细胞混合接种裸鼠,食管癌内皮可以明显促进移植瘤的生长(4-8倍)、肿瘤的局部侵袭以及远端肺转移的发生(P<0.01)。利用基因芯片分析体外共培养后肿瘤细胞中表达变化的基因,有一系列的侵袭相关基因在肿瘤细胞中上调表达。通过对其中一部分基因如AREG, EREG, MMP1、IL6、MMP3、IL1B、ADM以及Cyr61等的功能验证,其中的AREG和EREG都可以明显促进食管癌细胞的侵袭和迁移,体内移植瘤实验发现AREG和EREG基因都可以明显促进移植瘤的生长(P<0.01),远端肺转移的发生(P<0.01)。并且可以明显缩短实验组裸鼠的存活时间(P<0.01)。这些研究表明食管癌内皮可以促进食管癌细胞体内外的侵袭转移,并且这种作用可能通过食管癌内皮上调食管癌细胞中的一系列侵袭转移基因来实现。我们对其中的基因EREG进行了深入研究,EREG在食管癌细胞系的表达与各细胞系的侵袭能力存在密切关系。分析136例食管癌及配对正常组织中EREG的表达情况发现EREG基因在食管癌及淋巴结转移组织中表达强度明显高于对照正常组织(P<0.01)。分析124例具有完整临床资料的食管癌组织发现EREG的表达与食管癌的原位侵袭(T)和淋巴结转移(N)都密切相关(P分别为0.0001和0.016)。进一步的分析发现EREG高表达的病人生存时间明显短于EREG阴性或低表达病人(P<0.01)。通过COX多因素分析显示EREG是一个独立于肿瘤侵袭以及淋巴结转移的有价值的预后因子。随后我们研究了该基因在食管癌中发挥功能的分子机制。EREG基因可以明显改变食管癌细胞的形态,EREG高表达的细胞呈明显的梭形,相互之间的粘附降低,细胞呈现松散分布。利用EREG的中和抗体进一步明确了EREG对于食管癌细胞侵袭及运动能力的促进作用。细胞免疫荧光显示EREG可以促进肿瘤细胞丝状伪足及片状伪足的形成,并且可以促进应激蛋白c-Jun分子的入核。分子实验表明EREG分子可以活化EGFR信号通路,并激活下游的Src/FAK信号分子,从而影响细胞的骨架蛋白分布以及细胞的运动侵袭能力。这些有关食管癌内皮可以促进肿瘤侵袭转移、食管癌血管内皮特异表达趋化因子等侵袭转移基因、食管癌内皮可以上调肿瘤细胞侵袭转移基因、EREG在食管癌的侵袭转移中发挥重要作用等研究国内外都未见报道。
     利用高侵袭能力的细胞亚克隆EC9706细胞分离获得了一系列食管癌侵袭转移相关基因,其中TFPI-2在很多肿瘤中都提示与肿瘤侵袭转移密切相关。我们的研究提示TFPI-2在食管癌的侵袭转移中发挥重要作用。Western-blot实验提示75%的食管癌标本中TFPI-2下调表达,在大部分食管癌细胞系中也是下调表达。免疫组化显示在肿瘤组织和淋巴结转移灶中TFPI-2均显著下调(P<0.05)。在KYSE450、KYSE510、YES2和EC9706细胞中转染TFPI-2表达质粒,可以显著抑制细胞的侵袭。EC9706细胞中高表达TFPI-2可以显著抑制移植瘤的生长及对邻近组织的侵袭。进一步的研究发现TFPI-2重组蛋白可以显著抑制基质金属蛋白酶的活性以及肿瘤血管的生成。使用TFPI-2的重组蛋白可以显著抑制移植瘤的生长、侵袭以及血管生成(P<0.05)。这些结果提示TFPI-2在食管癌治疗中的潜在应用价值。
     越来越多的证据表明microRNA在肿瘤的发生发展中发挥着广泛的作用。我们使用基因芯片技术筛选获得了一些与食管癌侵袭相关的microRNA,初步的功能实验显示mir10a以及mir663是肿瘤侵袭相关的microRNA。随后的实验发现mir663对胃癌细胞侵袭能力的抑制更明显,而且还可以抑制胃癌细胞的增殖。进一步的RT-PCR显示胃癌细胞系中普遍低表达mir663,将mir663慢病毒感染BGC823及SNU5胃癌细胞,可以引起明显的细胞形态变化及增殖抑制。细胞周期及染色体分析显示mir663可以导致胃癌细胞的有丝分裂灾难,mir663可以导致细胞的G2/M周期阻滞以及扰乱细胞的DNA含量,mir663还可以导致细胞染色体数量出现异常并导致细胞的死亡。Westeren-blot实验显示mir663可以引起胃癌细胞中cyclingB1蛋白的表达上调,cyclinB1作为细胞进入G2/M期的关键蛋白被mir663扰乱可能导致了胃癌细胞的G2/M阻滞。为了进一步研究mir663作为胃癌基因治疗药物的潜力,我们使用mir663的慢病毒表达载体进行了裸鼠移植瘤治疗实验。慢病毒感染胃癌细胞后进行的裸鼠移植瘤实验显示mir663慢病毒可以明显抑制胃癌细胞裸鼠移植瘤的生长,抑制率高达60%,并且mir663慢病毒明显影响胃癌细胞的增殖以及凋亡。以上结果均显示mir663作为胃癌基因治疗药物的潜在应用前景。
Esophageal cancer is one of the ten most common malignancy, although we have developed and made significant progress in the treatment and diagnosis of tumor, it still threatened the health of human. Esophageal cancer is characterized by rapid clinical progression and poor prognosis due to adjacent tissue invasion and distant organs metastasis at a very early stage. Many researches have suggested that tumor microenvironment and interstitial cells play an important role in mediating invasion and metastasis. These malignant tumors always consume a large quantity of oxygen, contain acidosis、growth factor、proteases or proteolytic enzymes and the inflammatory cells. The special microinviroment not only influence the prolifation、invasion、migration、adhesion and angiogenesis of cancer cells but also have profound influence on interstitial cells related with tumor. Recent studies show that metastasis of tumor were determined by the coordination and cooperation between cancer cells and interstitial cells. Interstitial cells participate the whole process of metastasis.
     Our research aimed at realizing the relationship between the metastasis and microvascular endothelial cells of esophageal cancer. Microvascular endothelial cells(ECEC) were separated by MACS system from fresh samples. We found that ECEC can promote the prolifation and have anti-apoptotic ability similar with cancer cells. Analysis of gene expression pattern in ECEC by microarray, there are a lot of genes specially high expressed in ECEC such as chemotatic factor superfamily and some genes related with tumor metastasis. The invasion and migration ability of esophageal cancer cells was significantly improved when these cells co-cultured with ECEC cells (P<0.01) And this improvement depends on the direct contact of tumor cells with ECEC. ECEC can promote the growth、invasion and lung metastasis of xenografts when ECEC and cancer cells were mixed injected into nude mice (P<0.01). Analysis of gene expression pattern in cancer cells when co-cultured with ECEC by microarray, we found that there are so many up-regulated genes related with tumor invasion and metastasis. After function verification of these genes such as AREG、EREG、MMP1、IL6、MMP3、IL1B、ADM and Cyr61, we found that transfection of AREG and EREG can significantly promote the invasion and migration of tumor cells (P<0.01). AREG and EREG gene transfection can also promote the growth of human esophageal cancer cells transplanted subcutaneously into nude mice in vivo (P<0.01). Compared with control, mice of AREG and EREG group showed shorten survival time (P<0.01). In short, ECEC can ptomote the invasion and metastasis of tumor cells in vitro and in vivo. Additionally, ECEC play a critical role in invasion promotion by regulating gene expression of the co-cultured tumor cells. Meanwhile, we put forwards an incisive analysis of the gene EREG. First, we found there was high relationship whit expression of EREG and invasion ability of esophageal cancer cell lines. Immunofluorescence revealed that EREG was over-expressed in esophageal cancer cell lines with high-invasive potential. Immunohistochemical analysis showed EREG was over-expressed in esophageal cancer (P<0.01). The expression of EREG was closely related with local invasion (T) and lymph node metastasis (N). The patients with EREG high expression always show shorten survival time compared with EREG low or negative patients. The over-expressed EREG is a valuable prognostic factor independent of lymph node metastasis or local invasion. The further analysis on the function and molecular mechanisms of EREG indicated that EREG significantly induced changes in cell morphology. EREG high-expressed cells often with a spindle shape and growing loosely. Neutralizing antibody of EREG further confirmed its invasion promotion ability. By immunofluorescence analysis of F-actin and total actin, there was more filopodia and lamellipodia in the cells transfected with EREG. And we also observed that there are more nuclear import of c-Jun protein in EREG transfected cells. Molecular mechanism analysis indicated that treatment of cells with EREG resulted in invasion and redistribution of cytoskeletal proteins of tumor cells and led to a biphasic activation of EGFR and Src/FAK pathway. Based on these programs we can make a conclusion:ECEC can promote the invasion and metastasis of tumor cell in vitro and in vivo, ECEC specially high expressed genes of chemotatic factor superfamily, ECEC cells specially up-regulate a group of metastasis genes when co-cultured with tumor cells, one of the genes EREG which up-regulated by ECEC plays very important roly in the invasion and metastasis of esophageal carcinoma. All of these results have not been reported as yet.
     A highly invasive sub-cell line EC9706-P4 was established, the expression profile of the EC9706-P4 and the parental cell line EC9706 was analyzed by gene microarray analysis. TFPI-2 (Tissue factor pathway inhibitor 2) was identified as a candidate invasion and metastasis inhibitor of esophageal carcinoma cells. TFPI-2 has been implicated as a metastasis-associated gene in many types of tumors. Here we describe the potential involvement of TFPI-2 in the development of esophageal carcinoma. Western blotting revealed that TFPI-2 was down-regulated in 75% of esophageal carcinomas and in most esophageal carcinoma cell (ESCC) lines. Immunohistochemistry revealed that TFPI-2 was significantly down-regulated in tumor tissues and lymph node metastases. Experimental overexpression of TFPI-2 in KYSE450, KYSE510, YES2, and EC9706 cells significantly inhibited their invasive ability. Overexpression of TFPI-2 in EC9706 cells inhibited xenograft tumor growth and invasion into surrounding tissues, as well as reducing lung metastasis. Further studies demonstrated that recombinant TFPI-2 protein significantly inhibited the activity of matrix metalloproteinases and tumor-related angiogenesis. Parenteral treatment with recombinant TFPI-2 protein significantly suppressed xenograft tumor growth and metastasis. Together, these data indicated that TFPI-2 inhibits tumor invasion and angiogenesis both in vitro and in vivo, and suggest a potentially important therapeutic role for recombinant TFPI-2 in the treatment of malignant esophageal carcinomas.
     Accumulating evidence suggests a role for microRNAs in human carcinogenesis as novel types of tumor suppressors or oncogenes. In this study, we aimed to identify microRNAs species involved in the regulation of tumor invasion and growth. Using quantitative RT-PCR analysis, we demonstrated that mir-663 was down-regulated in human gastric cancer cell lines in contrasted to normal cells. Transient introduction of mir-663 lentiviral vector into human gastric cancer cell lines, BGC823 and SNU5, induced the modality changes and proliferation suppression of these cells. In addition, mir-663 disturbed the DNA content and induced mitotic catastrophe phenotype in tumor cells. More over, mir-663 also suppressed in vivo growth of BGC823 and SNU5 cells.Western-blot analyses revealed up-regulation of cyclin B by mir-663 introduction. Our results provided evidence that down-regulation of mir-663 in tumor cells may contribute to aberrant cell hyperplasia, leading to gastric cancer development. Mir-663 might function as a potent suppressor for tumor gene therapy.
引文
1. Parkin, D.M., Bray, F., Ferlay, J. and Pisani, P. (2005) Global cancer statistics,2002. CA Cancer J Clin,55,74-108.
    2. Enzinger, P.C. and Mayer, R.J. (2003) Esophageal cancer. N Engl J Med,349,2241-52.
    3. Kim, J.E., Kim, S.J., Jeong, H.W., Lee, B.H., Choi, J.Y, Park, R.W., Park, J.Y. and Kim, I.S. (2003) RGD peptides released from beta ig-h3, a TGF-beta-induced cell-adhesive molecule, mediate apoptosis. Oncogene,22,2045-53.
    4. Furihata, T., Sakai, T., Kawamata, H., Omotehara, F., Shinagawa, Y., Imura, J., Ueda, Y., Kubota, K. and Fujimori, T. (2001) A new in vivo model for studying invasion and metastasis of esophageal squamous cell carcinoma. IntJ Oncol,19,903-7.
    5. Eckstein, N., Servan, K., Girard, L., Cai, D., von Jonquieres, G., Jaehde, U., Kassack, M.U., Gazdar, A.F., Minna, J.D. and Royer, H.D. (2008) Epidermal growth factor receptor pathway analysis identifies amphiregulin as a key factor for cisplatin resistance of human breast cancer cells. J Biol Chem,283,739-50.
    6. Cao, Y, Kang, Q., Zhao, Z. and Zolkiewska, A. (2002) Intracellular processing of metalloprotease disintegrin ADAM12.J Biol Chem,277,26403-11.
    7. Dasgupta, S., Yanagisawa, M., Krishnamurthy, K., Liour, S.S. and Yu, R.K. (2007) Tumor necrosis factor-alpha up-regulates glucuronosyltransferase gene expression in human brain endothelial cells and promotes T-cell adhesion. J Neurosci Res,85,1086-94.
    8. Shimoda, M., Mellody, K.T. and Orimo, A. (2009) Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin Cell Dev Biol.
    9. Shih, S.C., Zukauskas, A., Li, D., Liu, G., Ang, L.H., Nagy, J.A., Brown, L.F. and Dvorak, H.F. (2009) The L6 protein TM4SF1 is critical for endothelial cell function and tumor angiogenesis. Cancer Res,69,3272-7.
    10. Roccaro, A.M., Sacco, A., Chen, C., Runnels, J., Leleu, X., Azab, F., Azab, A.K., Jia, X., Ngo, H.T., Melhem, M.R., Burwick, N., Varticovski, L., Novina, C.D., Rollins, B.J., Anderson, K.C. and Ghobrial, I.M. (2008) microRNA expression in the biology, prognosis and therapy of Waldenstrom macroglobulinemia. Blood.
    11. Tjiu, J.W., Chen, J.S., Shun, C.T., Lin, S.J., Liao, Y.H., Chu, C.Y., Tsai, T.F., Chiu, H.C., Dai, Y.S., Inoue, H., Yang, P.C., Kuo, M.L. and Jee, S.H. (2009) Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. J Invest Dermatol,129,1016-25.
    12. Shieh, Y.S., Hung, Y.J., Hsieh, C.B., Chen, J.S., Chou, K.C. and Liu, S.Y. (2009) Tumor-associated macrophage correlated with angiogenesis and progression of mucoepidermoid carcinoma of salivary glands. Ann Surg Oncol,16,751-60.
    13. Ishigami, S., Natsugoe, S., Tokuda, K., Nakajo, A., Okumura, H., Matsumoto, M., Miyazono, F., Hokita, S. and Aikou, T. (2003) Tumor-associated macrophage (TAM) infiltration in gastric cancer. Anticancer Res,23,4079-83.
    14. al-Sarireh, B. and Eremin, O. (2000) Tumour-associated macrophages (TAMS):disordered function, immune suppression and progressive tumour growth. J R Coll Surg Edinb,45,1-16.
    15. Wan, T., Liu, J.H., Zheng, L.M., Cai, M.Y. and Ding, T. (2009) Prognostic significance of tumor-associated macrophage infiltration in advanced epithelial ovarian carcinoma. Chin J Cancer, 28,268-71.
    16. Fujimoto, H., Sangai, T., Ishii, G., Ikehara, A., Nagashima, T., Miyazaki, M. and Ochiai, A. (2009) Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer,125,1276-84.
    17. Taskinen, M., Karjalainen-Lindsberg, M.L., Nyman, H., Eerola, L.M. and Leppa, S. (2007) A high tumor-associated macrophage content predicts favorable outcome in follicular lymphoma patients treated with rituximab and cyclophosphamide-doxorubicin-vincristine-prednisone. Clin Cancer Res, 13,5784-9.
    18. Mutuberria, R., Satijn, S., Huijbers, A., Van Der Linden, E., Lichtenbeld, H., Chames, P., Arends, J.W. and Hoogenboom, H.R. (2004) Isolation of human antibodies to tumor-associated endothelial cell markers by in vitro human endothelial cell selection with phage display libraries. J Immunol Methods,287,31-47.
    19. Luo, T., Xia, Z., Ansley, D.M., Ouyang, J., Granville, D.J., Li, Y, Xia, Z.Y., Zhou, Q.S. and Liu, X.Y. (2005) Propofol dose-dependently reduces tumor necrosis factor-alpha-Induced human umbilical vein endothelial cell apoptosis:effects on Bcl-2 and Bax expression and nitric oxide generation. AnesthAnalg,100,1653-9.
    20. Warner, K.A., Miyazawa, M., Cordeiro, M.M., Love, W.J., Pinsky, M.S., Neiva, K.G., Spalding, A.C. and Nor, J.E. (2008) Endothelial cells enhance tumor cell invasion through a crosstalk mediated by CXC chemokine signaling. Neoplasia,10,131-9.
    21. Han, Y, Wei, F., Xu, X., Cai, Y, Chen, B., Wang, J., Xia, S., Hu, H., Huang, X., Han, Y, Wu, M. and Wang, M. (2002) [Establishment and comparative genomic hybridization analysis of human esophageal carcinomas cell line EC9706]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi,19,455-7.
    22. Mitsuhashi, A., Matsui, H., Usui, H., Nagai, Y., Tate, S., Unno, Y, Hirashiki, K., Seki, K. and Shozu, M. (2009) Serum YKL-40 as a marker for cervical adenocarcinoma. Ann Oncol,20,71-7.
    23. Pelloski, C.E., Lin, E., Zhang, L., Yung, W.K., Colman, H., Liu, J.L., Woo, S.Y, Heimberger, A.B., Suki, D., Prados, M., Chang, S., Barker, F.G.,3rd, Fuller, GN. and Aldape, K.D. (2006) Prognostic associations of activated mitogen-activated protein kinase and Akt pathways in glioblastoma. Clin Cancer Res,12,3935-41.
    24. Kim, S.H., Das, K., Noreen, S., Coffman, F. and Hameed, M. (2007) Prognostic implications of immunohistochemically detected YKL-40 expression in breast cancer. World J Surg Oncol,5,17.
    25. Kucur, M., Isman, F.K., Balci, C., Onal, B., Hacibekiroglu, M., Ozkan, F. and Ozkan, A. (2008) Serum YKL-40 levels and chitotriosidase activity as potential biomarkers in primary prostate cancer and benign prostatic hyperplasia. Urol Oncol,26,47-52.
    26. Bi, J., Lau, S.H., Lv, Z.L.,Xie, D., Li, W., Lai, Y.R., Zhong, J.M., Wu, H.Q., Su, Q., He, Y.L., Zhan, W.H., Wen, J.M. and Guan, X.Y. (2009) Overexpression of YKL-40 is an independent prognostic marker in gastric cancer. Hum Pathol,40,1790-7.
    27. Fukushima, N., Koopmann, J., Sato, N., Prasad, N., Carvalho, R., Leach, S.D., Hruban, R.H. and Goggins, M. (2005) Gene expression alterations in the non-neoplastic parenchyma adjacent to infiltrating pancreatic ductal adenocarcinoma. Mod Pathol,18,779-87.
    28. Yang, J., Ahmed, A., Poon, E., Perusinghe, N., de Haven Brandon, A., Box, G., Valenti, M., Eccles, S., Rouschop, K., Wouters, B. and Ashcroft, M. (2009) Small-molecule activation of p53 blocks hypoxia-inducible factor lalpha and vascular endothelial growth factor expression in vivo and leads to tumor cell apoptosis in normoxia and hypoxia. Mol Cell Biol,29,2243-53.
    29. Gustafsson, A., Bostrom, A.K., Ljungberg, B., Axelson, H. and Dahlback, B. (2009) Gas6 and the receptor tyrosine kinase Axl in clear cell renal cell carcinoma. PLoS One,4, e7575.
    30. Sundberg, C., Thodeti, C.K., Kveiborg, M., Larsson, C., Parker, P., Albrechtsen, R. and Wewer, U.M. (2004) Regulation of ADAM12 cell-surface expression by protein kinase C epsilon. J Biol Chem, 279,51601-11.
    31. Li, M., Lee, K.F., Lu, Y, Clarke, I., Shih, D., Eberhart, C., Collins, V.P., Van Meter, T., Picard, D., Zhou, L., Boutros, P.C., Modena, P., Liang, M.L., Scherer, S.W., Bouffet, E., Rutka, J.T., Pomeroy, S.L., Lau, C.C., Taylor, M.D., Gajjar, A., Dirks, P.B., Hawkins, C.E. and Huang, A. (2009) Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. Cancer Cell,16,533-46.
    32. Ogino, H., Yano, S., Kakiuchi, S., Muguruma, H., Ikuta, K., Hanibuchi, M., Uehara, H., Tsuchida, K., Sugino, H. and Sone, S. (2008) Follistatin suppresses the production of experimental multiple-organ metastasis by small cell lung cancer cells in natural killer cell-depleted SCID mice. Clin Cancer Res, 14,660-7.
    33. Krneta, J., Kroll, J., Alves, F., Prahst, C., Sananbenesi, F., Dullin, C., Kimmina, S., Phillips, D.J. and Augustin, H.G. (2006) Dissociation of angiogenesis and tumorigenesis in follistatin-and activin-expressing tumors. Cancer Res,66,5686-95.
    34. Zhang, J., Patel, L. and Pienta, K.J. CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. Cytokine Growth Factor Rev,21,41-8.
    35. Popivanova, B.K., Kostadinova, F.I., Furuichi, K., Shamekh, M.M., Kondo, T., Wada, T., Egashira, K. and Mukaida, N. (2009) Blockade of a chemokine, CCL2, reduces chronic colitis-associated carcinogenesis in mice. Cancer Res,69,7884-92.
    36. Shintani, S., Kiyota, A., Mihara, M., Nakahara, Y, Terakado, N., Ueyama, Y. and Matsumura, T. (2000) Association of preoperative radiation effect with tumor angiogenesis and vascular endothelial growth factor in oral squamous cell carcinoma. Jpn J Cancer Res,91,1051-7.
    37. Ferreira, B.I., Garcia, J.F., Suela, J., Mollejo, M., Camacho, F.I., Carro, A., Montes, S., Piris, M.A. and Cigudosa, J.C. (2008) Comparative genome profiling across subtypes of low-grade B-cell lymphoma identifies type-specific and common aberrations that target genes with a role in B-cell neoplasia. Haematologica,93,670-9.
    38. Soria, G. and Ben-Baruch, A. (2008) The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett,267,271-85.
    39. Eardley, K.S., Zehnder, D., Quinkler, M., Lepenies, J., Bates, R.L., Savage, C.O., Howie, A.J., Adu, D. and Cockwell, P. (2006) The relationship between albuminuria, MCP-1/CCL2, and interstitial macrophages in chronic kidney disease. Kidney Int,69,1189-97.
    40. Minardi, D., Lucarini, G., Filosa, A., Milanese, G., Zizzi, A., Di Primio, R., Montironi, R. and Muzzonigro, G. (2008) Prognostic role of tumor necrosis, microvessel density, vascular endothelial growth factor and hypoxia inducible factor-1 alpha in patients with clear cell renal carcinoma after radical nephrectomy in a long term follow-up. Int J Immunopathol Pharmacol,21,447-55.
    41. Pungpapong, S., Nunes, D.P., Krishna, M., Nakhleh, R., Chambers, K., Ghabril, M., Dickson, R.C., Hughes, C.B., Steers, J., Nguyen, J.H. and Keaveny, A.P. (2008) Serum fibrosis markers can predict rapid fibrosis progression after liver transplantation for hepatitis C. Liver Transpl,14,1294-302.
    42. Giulianelli, S., Cerliani, J.P., Lamb, C.A., Fabris, V.T., Bottino, M.C., Gorostiaga, M.A., Novaro, V., Gongora, A., Baldi, A., Molinolo, A. and Lanari, C. (2008) Carcinoma-associated fibroblasts activate progesterone receptors and induce hormone independent mammary tumor growth:A role for the FGF-2/FGFR-2 axis. Int J Cancer,123,2518-31.
    43. Hawsawi, N.M., Ghebeh, H., Hendrayani, S.F., Tulbah, A., Al-Eid, M., Al-Tweigeri, T., Ajarim, D., Alaiya, A., Dermime, S. and Aboussekhra, A. (2008) Breast carcinoma-associated fibroblasts and their counterparts display neoplastic-specific changes. Cancer Res,68,2717-25.
    44. Bao, L. and Huang, X.J. (2008) [SDF-1/CXCR4 and multiple myeloma osteolytic bone lesions--review]. Zhongguo Shi Yan Xue Ye Xue Za Zhi,16,442-6.
    45. Lebret, S.C., Newgreen, D.F., Thompson, E.W. and Ackland, M.L. (2007) Induction of epithelial to mesenchymal transition in PMC42-LA human breast carcinoma cells by carcinoma-associated fibroblast secreted factors. Breast Cancer Res,9, R19.
    46. Olaso, E., Santisteban, A., Bidaurrazaga, J., Gressner, A.M., Rosenbaum, J. and Vidal-Vanaclocha, F. (1997) Tumor-dependent activation of rodent hepatic stellate cells during experimental melanoma metastasis. Hepatology,26,634-42.
    47. Olaso, E., Salado, C., Egilegor, E., Gutierrez, V., Santisteban, A., Sancho-Bru, P., Friedman, S.L. and Vidal-Vanaclocha, F. (2003) Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology,37,674-85.
    48. Cheng, H.C., Abdel-Ghany, M., Elble, R.C. and Pauli, B.U. (1998) Lung endothelial dipeptidyl peptidase Ⅳ promotes adhesion and metastasis of rat breast cancer cells via tumor cell surface-associated fibronectin. J Biol Chem,273,24207-15.
    49. Lee, J., Fassnacht, M., Nair, S., Boczkowski, D. and Gilboa, E. (2005) Tumor immunotherapy targeting fibroblast activation protein, a product expressed in tumor-associated fibroblasts. Cancer Res,65,11156-63.
    50. Hildenbrand, R., Wolf, G., Bohme, B., Bleyl, U. and Steinborn, A. (1999) Urokinase plasminogen activator receptor (CD87) expression of tumor-associated macrophages in ductal carcinoma in situ, breast cancer, and resident macrophages of normal breast tissue. J Leukoc Biol,66,40-9.
    51. Luo, T. and Xia, Z. (2006) A small dose of hydrogen peroxide enhances tumor necrosis factor-alpha toxicity in inducing human vascular endothelial cell apoptosis:reversal with propofol. Anesth Analg, 103,110-6, table of contents.
    52. Chen, Z., Varney, M.L., Backora, M.W., Cowan, K., Solheim, J.C., Talmadge, J.E. and Singh, R.K. (2005) Down-regulation of vascular endothelial cell growth factor-C expression using small interfering RNA vectors in mammary tumors inhibits tumor lymphangiogenesis and spontaneous metastasis and enhances survival. Cancer Res,65,9004-11.
    53. Issa, A., Le, T.X., Shoushtari, A.N., Shields, J.D. and Swartz, M.A. (2009) Vascular endothelial growth factor-C and C-C chemokine receptor 7 in tumor cell-lymphatic cross-talk promote invasive phenotype. Cancer Res,69,349-57.
    54. Carson-Walter, E.B., Watkins, D.N., Nanda, A., Vogelstein, B., Kinzler, K.W. and St Croix, B. (2001) Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res,61,6649-55.
    55. Monagle, P., Barnes, C., Ignjatovic, V, Furmedge, J., Newall, F., Chan, A., De Rosa, L., Hamilton,
    S., Ragg, P., Robinson, S., Auldist, A., Crock, G., Roy, N. and Rowlands, S. (2006) Developmental haemostasis. Impact for clinical haemostasis laboratories. Thromb Haemost,95,362-72.
    56. Morange, P.E., Simon, C., Alessi, M.C., Luc, G., Arveiler, D., Ferrieres, J., Amouyel, P., Evans, A., Ducimetiere, P. and Juhan-Vague, I. (2004) Endothelial cell markers and the risk of coronary heart disease:the Prospective Epidemiological Study of Myocardial Infarction (PRIME) study. Circulation,109,1343-8.
    57. Kumar, P., Ning, Y. and Polverini, P.J. (2008) Endothelial cells expressing Bcl-2 promotes tumor metastasis by enhancing tumor angiogenesis, blood vessel leakiness and tumor invasion. Lab Invest, 88,740-9.
    58. Kinoshita, A., Wanibuchi, H., Morimura, K., Wei, M., Nakae, D., Arai, T., Minowa, O., Noda, T., Nishimura, S. and Fukushima, S. (2007) Carcinogenicity of dimethylarsinic acid in Oggl-deficient mice. Cancer Sci,98,803-14.
    59. Goerge, T., Barg, A., Schnaeker, E.M., Poppelmann, B., Shpacovitch, V., Rattenholl, A., Maaser, C., Luger, T.A., Steinhoff, M. and Schneider, S.W. (2006) Tumor-derived matrix metalloproteinase-1 targets endothelial proteinase-activated receptor 1 promoting endothelial cell activation. Cancer Res, 66,7766-74.
    60. Margheri, F., Serrati, S., Lapucci, A., Anastasia, C., Giusti, B., Pucci, M., Torre, E., Bianchini, F., Calorini, L., Albini, A., Ventura, A., Fibbi, G. and Del Rosso, M. (2009) Systemic sclerosis-endothelial cell antiangiogenic pentraxin 3 and matrix metalloprotease 12 control human breast cancer tumor vascularization and development in mice. Neoplasia,11,1106-15.
    61. Peyri, N., Berard, M., Fauvel-Lafeve, F., Trochon, V, Arbeille, B., Lu, H., Legrand, C. and Crepin, M. (2009) Breast tumor cells transendothelial migration induces endothelial cell anoikis through extracellular matrix degradation. Anticancer Res,29,2347-55.
    62. Jacobsen, J., Visse, R., Sorensen, H.P., Enghild, J.J., Brew, K., Wewer, U.M. and Nagase, H. (2008) Catalytic properties of ADAM12 and its domain deletion mutants. Biochemistry,47,537-47.
    63. Wang, J.S., Chang, C.Y., Chow, S.E., Chen, Y.W. and Yang, C.M. (2007) Exercise modulates platelet-nasopharyngeal carcinoma cell aggregation and subsequent tissue factor and matrix metalloproteinase activities. JAppl Physiol,103,763-70.
    64. Rollin, J., Regina, S., Vourc'h, P., Iochmann, S., Blechet, C., Reverdiau, P. and Gruel, Y. (2007) Influence of MMP-2 and MMP-9 promoter polymorphisms on gene expression and clinical outcome of non-small cell lung cancer. Lung Cancer,56,273-80.
    65. Mochizuki, S. and Okada, Y. (2007) ADAMs in cancer cell proliferation and progression. Cancer Sci, 98,621-8.
    66. Conaldi, P.G., Serra, C., Dolei, A., Basolo, F., Falcone, V, Mariani, G., Speziale, P. and Toniolo, A. (1995) Productive HIV-1 infection of human vascular endothelial cells requires cell proliferation and is stimulated by combined treatment with interleukin-1 beta plus tumor necrosis factor-alpha. J Med Virol,47,355-63.
    67. Li, Z., Mao, Z., Lin, Y, Liang, W., Jiang, F., Liu, J., Tang, Q. and Ma, D. (2008) Dynamic changes of tissue factor pathway inhibitor type 2 associated with IL-1beta and TNF-alpha in the development of murine acute lung injury. Thromb Res.
    68. Scaife, S., Brown, R., Kellie, S., Filer, A., Martin, S., Thomas, A.M., Bradfield, P.F., Amft, N., Salmon, M. and Buckley, C.D. (2004) Detection of differentially expressed genes in synovial fibroblasts by restriction fragment differential display. Rheumatology (Oxford),43,1346-52.
    69. Singh, R.J., Mason, J.C., Lidington, E.A., Edwards, D.R., Nuttall, R.K., Khokha, R., Knauper, V., Murphy, G. and Gavrilovic, J. (2005) Cytokine stimulated vascular cell adhesion molecule-1 (VCAM-1) ectodomain release is regulated by TIMP-3. Cardiovasc Res,67,39-49.
    70. Tanida, S., Joh, T., Itoh, K., Kataoka, H., Sasaki, M., Ohara, H., Nakazawa, T., Nomura, T., Kinugasa, Y, Ohmoto, H., Ishiguro, H., Yoshino, K., Higashiyama, S. and Itoh, M. (2004) The mechanism of cleavage of EGFR ligands induced by inflammatory cytokines in gastric cancer cells. Gastroenterology,127,559-69.
    71. Xu, Z., Maiti, D., Kisiel, W. and Duh, E.J. (2006) Tissue factor pathway inhibitor-2 is upregulated by vascular endothelial growth factor and suppresses growth factor-induced proliferation of endothelial cells. Arterioscler Thromb Vasc Biol,26,2819-25.
    72. Bjornberg, F. and Lantz, M. (1998) Endothelial cell contact potentiates release of soluble tumor necrosis factor (TNF) receptors from the monocyte-like cell line THP-1. J Interferon Cytokine Res, 18,167-74.
    73. Nong, L.B. and Xiao, Z.L. (2003) [Effect of tumor necrosis factor-alpha and interleukin-lbeta on bovine pulmonary arterial endothelial cell apoptosis]. Zhonghua Jie He He Hu Xi Za Zhi,26, 668-70.
    74. Simiantonaki, N., Jayasinghe, C. and Kirkpatrick, C.J. (2002) Effect of pro-inflammatory stimuli on tumor cell-mediated induction of endothelial cell adhesion molecules in vitro. Exp Mol Pathol,73, 46-53.
    75. Gori, A.M., Fedi, S., Pepe, G., Falciani, M., Rogolino, A., Prisco, D., Gensini, G.F. and Abbate, R. (2002) Tissue factor and tissue factor pathway inhibitor levels in unstable angina patients during short-term low-molecular-weight heparin administration. Br J Haematol,117,693-8.
    76. Rogolino, A., Coccia, M.E., Fedi, S., Gori, A.M., Cellai, A.P., Scarselli, G.F., Prisco, D. and Abbate, R. (2003) Hypercoagulability, high tissue factor and low tissue factor pathway inhibitor levels in severe ovarian hyperstimulation syndrome:possible association with clinical outcome. Blood Coagul Fibrinolysis,14,277-82.
    77. Senger, D.R., Perruzzi, C.A., Streit, M., Koteliansky, V.E., de Fougerolles, A.R. and Detmar, M. (2002) The alpha(1)beta(1) and alpha(2)beta(1) integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. Am J Pathol, 160,195-204.
    78. Saumet, A., Vetter, G., Bouttier, M., Portales-Casamar, E., Wasserman, W.W., Maurin, T., Mari, B., Barbry, P., Vallar, L., Friederich, E., Arar, K., Cassinat, B., Chomienne, C. and Lecellier, C.H. (2009) Transcriptional repression of microRNA genes by PML-RARA increases expression of key cancer proteins in acute promyelocytic leukemia. Blood,113,412-21.
    79. Wu, M., Jolicoeur, N., Li, Z., Zhang, L., Fortin, Y., L'Abbe, D., Yu, Z. and Shen, S.H. (2008) Genetic variations of microRNAs in human cancer and their effects on the expression of miRNAs. Carcinogenesis,29,1710-6.
    80. Wang, X., Tang, S., Le, S.Y., Lu, R., Rader, J.S., Meyers, C. and Zheng, Z.M. (2008) Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS ONE,3, e2557.
    81. Seifert, O., Bayat, A., Geffers, R., Dienus, K., Buer, J., Lofgren, S. and Matussek, A. (2008) Identification of unique gene expression patterns within different lesional sites of keloids. Wound Repair Regen,16,254-65.
    82. Ronchetti, D., Lionetti, M., Mosca, L., Agnelli, L., Andronache, A., Fabris, S., Deliliers, G.L. and Neri, A. (2008) An integrative genomic approach reveals coordinated expression of intronic miR-335, miR-342, and miR-561 with deregulated host genes in multiple myeloma. BMC Med Genomics,1, 37.
    83. Kurenova, E.V., Hunt, D.L., He, D., Fu, A.D., Massoll, N.A., Golubovskaya, V.M., Garces, C.A. and Cance, W.G. (2009) Vascular endothelial growth factor receptor-3 promotes breast cancer cell proliferation, motility and survival in vitro and tumor formation in vivo. Cell Cycle,8,2266-80.
    84. Weiss, G.J., Bemis, L.T., Nakajima, E., Sugita, M., Birks, D.K., Robinson, W.A., Varella-Garcia, M., Bunn, P.A, Jr., Haney, J., Helfrich, B.A.,Kato, H., Hirsch, F.R. and Franklin, W.A. (2008) EGFR regulation by microRNA in lung cancer:correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Ann Oncol,19,1053-9.
    85. Webster, R.J., Giles, K.M., Price, K.J., Zhang, P.M., Mattick, J.S. and Leedman, P.J. (2008) Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J Biol Chem.
    86. Sorrentino, A., Ferracin, M., Castelli, G., Biffoni, M., Tomaselli, G., Baiocchi, M., Fatica, A., Negrini, M., Peschle, C. and Valtieri, M. (2008) Isolation and characterization of CD146+multipotent mesenchymal stromal cells. Exp Hematol,36,1035-46.
    87. Pollard, S.M., Wallbank, R., Tomlinson, S., Grotewold, L. and Smith, A. (2008) Fibroblast growth factor induces a neural stem cell phenotype in foetal forebrain progenitors and during embryonic stem cell differentiation. Mol Cell Neurosci.
    88. Pircher, A., Kahler, C.M., Skvortsov, S., Dlaska, M., Kawaguchi, G., Schmid, T., Gunsilius, E. and Hilbe, W. (2008) Increased numbers of endothelial progenitor cells in peripheral blood and tumor specimens in non-small cell lung cancer:a methodological challenge and an ongoing debate on the clinical relevance. Oncol Rep,19,345-52.
    89. Kveiborg, M., Albrechtsen, R., Couchman, J.R. and Wewer, U.M. (2008) Cellular roles of ADAM12 in health and disease. Int J Biochem Cell Biol.
    90. Hida, K., Hida, Y. and Shindoh, M. (2008) Understanding tumor endothelial cell abnormalities to develop ideal anti-angiogenic therapies. Cancer Sci,99,459-66.
    91. Al-Dissi, A.N., Haines, D.M., Singh, B. and Kidney, B.A. (2007) Immunohistochemical expression of vascular endothelial growth factor and vascular endothelial growth factor receptor associated with tumor cell proliferation in canine cutaneous squamous cell carcinomas and trichoepitheliomas. Vet Pathol,44,823-30.
    92. Jacobs, B., De Roock, W., Piessevaux, H., Van Oirbeek, R., Biesmans, B., De Schutter, J., Fieuws, S., Vandesompele, J., Peeters, M., Van Laethem, J.L., Humblet, Y., Penault-Llorca, F., De Hertogh, G., Laurent-Puig, P., Van Cutsem, E. and Tejpar, S. (2009) Amphiregulin and epiregulin mRNA expression in primary tumors predicts outcome in metastatic colorectal cancer treated with cetuximab. J Clin Oncol,27,5068-74.
    93. Yonesaka, K., Zejnullahu, K., Lindeman, N., Homes, A.J., Jackman, D.M., Zhao, F., Rogers, A.M., Johnson, B.E. and Janne, P.A. (2008) Autocrine production of amphiregulin predicts sensitivity to both gefitinib and cetuximab in EGFR wild-type cancers. Clin Cancer Res,14,6963-73.
    94. Tokumaru, S., Suzuki, M., Yamada, H., Nagino, M. and Takahashi, T. (2008) let-7 regulates Dicer expression and constitutes a negative feedback loop. Carcinogenesis,29,2073-7.
    95. Willmarth, N.E. and Ethier, S.P. (2008) Amphiregulin as a novel target for breast cancer therapy. J Mammary Gland Biol Neoplasia,13,171-9.
    96. Berasain, C., Castillo, J., Perugorria, M.J., Prieto, J. and Avila, M.A. (2007) Amphiregulin:a new growth factor in hepatocarcinogenesis. Cancer Lett,254,30-41.
    97. Willmarth, N.E. and Ethier, S.P. (2006) Autocrine and juxtacrine effects of amphiregulin on the proliferative, invasive, and migratory properties of normal and neoplastic human mammary epithelial cells. J Biol Chem,281,37728-37.
    98. Castillo, J., Erroba, E., Perugorria, M.J., Santamaria, M., Lee, D.C., Prieto, J., Avila, M.A. and Berasain, C. (2006) Amphiregulin contributes to the transformed phenotype of human hepatocellular carcinoma cells. Cancer Res,66,6129-38.
    99. Qin, L., Tamasi, J., Raggatt, L., Li, X., Feyen, J.H., Lee, D.C., Dicicco-Bloom, E. and Partridge, N.C. (2005) Amphiregulin is a novel growth factor involved in normal bone development and in the cellular response to parathyroid hormone stimulation. J Biol Chem,280,3974-81.
    100. Nilsson, A. and Kanje, M. (2005) Amphiregulin acts as an autocrine survival factor for adult sensory neurons. Neuroreport,16,213-8.
    101. Falk, A. and Frisen, J. (2002) Amphiregulin is a mitogen for adult neural stem cells. J Neurosci Res, 69,757-62.
    102. Ma, L., Gauville, C., Berthois, Y, Millot, G., Johnson, GR. and Calvo, F. (1999) Antisense expression for amphiregulin suppresses tumorigenicity of a transformed human breast epithelial cell line. Oncogene,18,6513-20.
    103. Damstrup, L., Kuwada, S.K., Dempsey, P.J., Brown, C.L., Hawkey, C.J., Poulsen, H.S., Wiley, H.S. and Coffey, R.J., Jr. (1999) Amphiregulin acts as an autocrine growth factor in two human polarizing colon cancer lines that exhibit domain selective EGF receptor mitogenesis. Br J Cancer,80,1012-9.
    104. Shigeishi, H., Higashikawa, K., Hiraoka, M., Fujimoto, S., Mitani, Y, Ohta, K., Takechi, M. and Kamata, N. (2008) Expression of epiregulin, a novel epidermal growth factor ligand associated with prognosis in human oral squamous cell carcinomas. Oncol Rep,19,1557-64.
    105. Shirakata, Y, Kishimoto, J., Tokumaru, S., Yamasaki, K., Hanakawa, Y, Tohyama, M., Sayama, K. and Hashimoto, K. (2007) Epiregulin, a member of the EGF family, is over-expressed in psoriatic epidermis. J Dermatol Sci,45,69-72.
    106. Zhuang, S., Yan, Y, Daubert, R.A. and Schnellmann, R.G. (2007) Epiregulin promotes proliferation and migration of renal proximal tubular cells. Am J Physiol Renal Physiol,293, F219-26.
    107. Weis, S., Cui, J., Barnes, L. and Cheresh, D. (2004) Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol,167, 223-9.
    108. Abram, C.L., Seals, D.F., Pass, I., Salinsky, D., Maurer, L., Roth, T.M. and Courtneidge, S.A. (2003) The adaptor protein fish associates with members of the ADAMs family and localizes to podosomes of Src-transformed cells. J Biol Chem,278,16844-51.
    109. Mori, S., Tanaka, M., Nanba, D., Nishiwaki, E., Ishiguro, H., Higashiyama, S. and Matsuura, N. (2003) PACSIN3 binds ADAM12/meltrin alpha and up-regulates ectodomain shedding of heparin-binding epidermal growth factor-like growth factor. J Biol Chem,278,46029-34.
    110. Suzuki, A., Kadota, N., Hara, T., Nakagami, Y., Izumi, T., Takenawa, T., Sabe, H. and Endo, T. (2000) Meltrin alpha cytoplasmic domain interacts with SH3 domains of Src and Grb2 and is phosphorylated by v-Src. Oncogene,19,5842-50.
    111. Tanaka, M., Nanba, D., Mori, S., Shiba, F., Ishiguro, H., Yoshino, K., Matsuura, N. and Higashiyama, S. (2004) ADAM binding protein Eve-1 is required for ectodomain shedding of epidermal growth factor receptor ligands. J Biol Chem,279,41950-9.
    112. Nair, V. (2008) Retrovirus-induced oncogenesis and safety of retroviral vectors. Curr Opin Mol Ther, 10,431-8.
    113. Rossi, L., Bonmassar, E. and Faraoni, I. (2007) Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro. Pharmacol Res,56,248-53.
    114. Bezzi, M., Hasmim, M., Bieler, G., Dormond, O. and Ruegg, C. (2003) Zoledronate sensitizes endothelial cells to tumor necrosis factor-induced programmed cell death:evidence for the suppression of sustained activation of focal adhesion kinase and protein kinase B/Akt. J Biol Chem, 278,43603-14.
    115. Nakagami, H., Cui, T.X., Iwai, M., Shiuchi, T., Takeda-Matsubara, Y, Wu, L. and Horiuchi, M. (2002) Tumor necrosis factor-alpha inhibits growth factor-mediated cell proliferation through SHP-1 activation in endothelial cells. Arterioscler Thromb Vasc Biol,22,238-42.
    116. Nyalendo, C, Michaud, M., Beaulieu, E., Roghi, C., Murphy, G., Gingras, D. and Beliveau, R. (2007) Src-dependent phosphorylation of membrane type I matrix metalloproteinase on cytoplasmic tyrosine 573:role in endothelial and tumor cell migration. J Biol Chem,282,15690-9.
    117. Zhao, Z., Gruszczynska-Biegala, J., Cheuvront, T., Yi, H., von der Mark, H., von der Mark, K., Kaufman, S.J. and Zolkiewska, A. (2004) Interaction of the disintegrin and cysteine-rich domains of ADAM12 with integrin alpha7betal. Exp Cell Res,298,28-37.
    118. Heikkila, H.M., Latti, S., Leskinen, M.J., Hakala, J.K., Kovanen, P.T. and Lindstedt, K.A. (2008) Activated mast cells induce endothelial cell apoptosis by a combined action of chymase and tumor necrosis factor-alpha. Arterioscler Thromb Vasc Biol,28,309-14.
    119. Okamoto, H., Nakamori, S., Mukai, M., Shinkai, K., Ohigashi, H., Ishikawa, O., Furukawa, H., Imaoka, S., Matumoto, Y., Monden, M. and Akedo, H. (1998) Down-regulation of focal adhesion kinase, pp125FAK, in endothelial cell retraction during tumor cell invasion. Clin Exp Metastasis,16, 243-52.
    120. Peng, H.H. and Dong, C. (2009) Systemic Analysis of Tumor Cell-Induced Endothelial Calcium Signaling and Junction Disassembly. Cell Mol Bioeng,2,375-385.
    121. Park, J.S., Kim, K.M., Kim, M.H., Chang, H.J., Baek, M.K., Kim, S.M. and Jung, YD. (2009) Resveratrol inhibits tumor cell adhesion to endothelial cells by blocking ICAM-1 expression. Anticancer Res,29,355-62.
    122. Gordillo, G., Fang, H., Khanna, S., Harper, J., Phillips, G. and Sen, C.K. (2009) Oral administration of blueberry inhibits angiogenic tumor growth and enhances survival of mice with endothelial cell neoplasm. Antioxid Redox Signal,11,47-58.
    123. Langer, C., Radmacher, M.D., Ruppert, A.S., Whitman, S.P., Paschka, P., Mrozek, K., Baldus, C.D., Vukosavljevic, T., Liu, C.G., Ross, M.E., Powell, B.L., de la Chapelle, A., Kolitz, J.E., Larson, R.A., Marcucci, G. and Bloomfield, C.D. (2008) High BAALC expression associates with other molecular prognostic markers, poor outcome, and a distinct gene-expression signature in cytogenetically normal patients younger than 60 years with acute myeloid leukemia:a Cancer and Leukemia Group B (CALGB) study. Blood,111,5371-9.
    124. Waldmann, I., Walde, S. and Kehlenbach, R.H. (2007) Nuclear import of c-Jun is mediated by multiple transport receptors. J Biol Chem,282,27685-92.
    125. Blindt, R., Vogt, F., Lamby, D., Zeiffer, U., Krott, N., Hilger-Eversheim, K., Hanrath, P., vom Dahl, J. and Bosserhoff, A.K. (2002) Characterization of differential gene expression in quiescent and invasive human arterial smooth muscle cells. J Vasc Res,39,340-52.
    126. Dunn, C., Wiltshire, C., MacLaren, A. and Gillespie, D.A. (2002) Molecular mechanism and biological functions of c-Jun N-terminal kinase signalling via the c-Jun transcription factor. Cell Signal,14,585-93.
    127. Mechta-Grigoriou, F., Gerald, D. and Yaniv, M. (2001) The mammalian Jun proteins:redundancy and specificity. Oncogene,20,2378-89.
    128. Okutomi, Y, Shino, Y, Komoda, F., Hirano, T., Ishihara, T., Yamaguchi, T., Saisho, H. and Shirasawa, H. (2003) Survival regulation in pancreatic cancer cells by c-Jun. Int J Oncol,23,
    1127-34.
    129. Szabo, E., Riffe, M.E., Steinberg, S.M., Birrer, M.J. and Linnoila, R.I. (1996) Altered cJUN expression:an early event in human lung carcinogenesis. Cancer Res,56,305-15.
    130. Yamanishi, K., Inazawa, J., Liew, F.M., Nonomura, K., Ariyama, T., Yasuno, H., Abe, T., Doi, H., Hirano, J. and Fukushima, S. (1992) Structure of the gene for human transglutaminase 1. J Biol Chem,267,17858-63.
    131. Oya, M., Mikami, S., Mizuno, R., Marumo, K., Mukai, M. and Murai, M. (2005) C-jun activation in acquired cystic kidney disease and renal cell carcinoma. J Urol,174,726.
    132. Calaf, G.M. and Hei, T.K. (2004) Ionizing radiation induces alterations in cellular proliferation and c-myc, c-jun and c-fos protein expression in breast epithelial cells. Int J Oncol,25,1859-66.
    133. Wagner, M., Weber, C.K., Bressau, F., Greten, F.R., Stagge, V., Ebert, M., Leach, S.D., Adler, G. and Schmid, R.M. (2002) Transgenic overexpression of amphiregulin induces a mitogenic response selectively in pancreatic duct cells. Gastroenterology,122,1898-912.
    134. Zhang, J., Yamada, O., Sakamoto, T., Yoshida, H., Araki, H., Murata, T. and Shimotohno, K. (2005) Inhibition of hepatitis C virus replication by pol Ⅲ-directed overexpression of RNA decoys corresponding to stem-loop structures in the NS5B coding region. Virology,342,276-85.
    135. Trickler, W.J., Mayhan, W.G. and Miller, D.W. (2005) Brain microvessel endothelial cell responses to tumor necrosis factor-alpha involve a nuclear factor kappa B (NF-kappaB) signal transduction pathway. Brain Res,1048,24-31.
    136. Dawelbait, G., Winter, C., Zhang, Y., Pilarsky, C., Grutzmann, R., Heinrich, J.C. and Schroeder, M. (2007) Structural templates predict novel protein interactions and targets from pancreas tumour gene expression data. Bioinformatics,23, i115-24.
    137. Kast, C., Wang, M. and Whiteway, M. (2003) The ERK/MAPK pathway regulates the activity of the human tissue factor pathway inhibitor-2 promoter. J Biol Chem,278,6787-94.
    138. Vallon, M., Rohde, F., Janssen, K.P. and Essler, M. (2009) Tumor endothelial marker 5 expression in endothelial cells during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of cell proliferation. Exp Cell Res.
    139. van Vliet, H.A., Bertina, R.M., Dahm, A.E., Rosendaal, F.R., Rosing, J., Sandset, P.M. and Helmerhorst, F.M. (2008) Different effects of oral contraceptives containing different progestogens on protein S and tissue factor pathway inhibitor.J Thromb Haemost,6,346-51.
    140. Frecha, C., Szecsi, J., Cosset, F.L. and Verhoeyen, E. (2008) Strategies for targeting lentiviral vectors. Curr Gene Ther,8,449-60.
    141. Charrasse, S., Comunale, F., Grumbach, Y, Poulat, F., Blangy, A. and Gauthier-Rouviere, C. (2006) RhoA GTPase regulates M-cadherin activity and myoblast fusion. Mol Biol Cell,17,749-59.
    142. Stracke, M.L., Murata, J., Aznavoorian, S. and Liotta, L.A. (1994) The role of the extracellular matrix in tumor cell metastasis. In Vivo,8,49-58.
    143. Mueller, M.M. and Fusenig, N.E. (2002) Tumor-stroma interactions directing phenotype and progression of epithelial skin tumor cells. Differentiation,70,486-97.
    144. Cid, M.C., Kleinman, H.K., Grant, D.S., Schnaper, H.W., Fauci, A.S. and Hoffman, GS. (1994) Estradiol enhances leukocyte binding to tumor necrosis factor (TNF)-stimulated endothelial cells via an increase in TNF-induced adhesion molecules E-selectin, intercellular adhesion molecule type 1, and vascular cell adhesion molecule type 1.J Clin Invest,93,17-25.
    145. Sierko, E., Wojtukiewicz, M.Z. and Kisiel, W. (2007) The role of tissue factor pathway inhibitor-2 in cancer biology. Semin Thromb Hemost,33,653-9.
    146. George, J., Gondi, C.S., Dinh, D.H., Gujrati, M. and Rao, J.S. (2007) Restoration of tissue factor pathway inhibitor-2 in a human glioblastoma cell line triggers caspase-mediated pathway and apoptosis. Clin Cancer Res,13,3507-17.
    147. Kondraganti, S., Gondi, C.S., Gujrati, M., McCutcheon, I., Dinh, D.H., Rao, J.S. and Olivero, W.C. (2006) Restoration of tissue factor pathway inhibitor inhibits invasion and tumor growth in vitro and in vivo in a malignant meningioma cell line. Int J Oncol,29,25-32.
    148. Chand, H.S., Foster, D.C. and Kisiel, W. (2005) Structure, function and biology of tissue factor pathway inhibitor-2. Thromb Haemost,94,1122-30.
    149. Chand, H.S., Schmidt, A.E., Bajaj, S.P. and Kisiel, W. (2004) Structure-function analysis of the reactive site in the first Kunitz-type domain of human tissue factor pathway inhibitor-2. J Biol Chem, 279,17500-7.
    150. Kong, D.S., Guo, H.S., Cai, X., Liang, W., Peng, Z.C., Song, H.Y. and Ma, D. (2006) [Cloning, expression and biological characterization of hTFPI-2 gene]. Zhonghua Xue Ye Xue Za Zhi,27, 606-10.
    151. Tanaka, Y., Utsumi, J., Matsui, M., Sudo, T., Nakamura, N., Mutoh, M., Kajita, A., Sone, S., Kigasawa, K., Shibuya, M., Reddy, V.N., Zhang, Q. and Iwata, T. (2004) Purification, molecular cloning, and expression of a novel growth-promoting factor for retinal pigment epithelial cells, REF-1/TFPI-2. Invest Ophthalmol Vis Sci,45,245-52.
    152. Friedl, J., Turner, E. and Alexander, H.R., Jr. (2003) Augmentation of endothelial cell monolayer permeability by hyperthermia but not tumor necrosis factor:evidence for disruption of vascular integrity via VE-cadherin down-regulation. Int J Oncol,23,611-6.
    153. Even-Ram, S. and Yamada, K.M. (2005) Cell migration in 3D matrix. Curr Opin Cell Biol,17, 524-32.
    154. Wang, Y., Liu, Y., Han, R., Zhu, Z., Zhang, Y, Wang, X., Wang, L. and Shen, Z. (2007) Hemostatic variation during perioperative period of orthotopic liver transplantation without venovenous bypass. Thromb Res.
    155. Chung, J., Yoon, S.O., Lipscomb, E.A. and Mercurio, A.M. (2004) The Met receptor and alpha 6 beta 4 integrin can function independently to promote carcinoma invasion. J Biol Chem,279, 32287-93.
    156. Hori, T., Yamashita, Y, Ohira, M., Matsumura, Y., Muguruma, K. and Hirakawa, K. (2001) A novel orthotopic implantation model of human esophageal carcinoma in nude rats:CD44H mediates cancer cell invasion in vitro and in vivo. Int J Cancer,92,489-96.
    157. Dhawan, P., Singh, A.B., Deane, N.G., No, Y, Shiou, S.R., Schmidt, C., Neff, J., Washington, M.K. and Beauchamp, R.D. (2005) Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest,115,1765-76.
    158. Erber, R., Thurnher, A., Katsen, A.D., Groth, G., Kerger, H., Hammes, H.P., Menger, M.D., Ullrich, A. and Vajkoczy, P. (2004) Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. Faseb J,18,338-40.
    159. Li, W., Ding, F., Zhang, L., Liu, Z., Wu, Y, Luo, A., Wu, M., Wang, M., Zhan, Q. and Liu, Z. (2005) Overexpression of stefin A in human esophageal squamous cell carcinoma cells inhibits tumor cell growth, angiogenesis, invasion, and metastasis. Clin Cancer Res,11,8753-62.
    160. Wong, C.M., Ng, Y.L., Lee, J.M., Wong, C.C., Cheung, O.F., Chan, C.Y, Tung, E.K., Ching, Y.P. and Ng, I.O. (2007) Tissue factor pathway inhibitor-2 as a frequently silenced tumor suppressor gene in hepatocellular carcinoma. Hepatology,45,1129-38.
    161. Nobeyama, Y., Okochi-Takada, E., Furuta, J., Miyagi, Y., Kikuchi, K., Yamamoto, A., Nakanishi, Y., Nakagawa, H. and Ushijima, T. (2007) Silencing of tissue factor pathway inhibitor-2 gene in malignant melanomas. Int J Cancer,121,301-7.
    162. Guo,H., Lin, Y, Zhang, H., Liu, J., Zhang, N., Li, Y., Kong, D., Tang, Q. and Ma, D. (2007) Tissue factor pathway inhibitor-2 was repressed by CpG hypermethylation through inhibition of KLF6 binding in highly invasive breast cancer cells. BMC Mol Biol,8,110.
    163. Sato, N., Parker, A.R., Fukushima, N., Miyagi, Y, Iacobuzio-Donahue, C.A., Eshleman, J.R. and Goggins, M. (2005) Epigenetic inactivation of TFPI-2 as a common mechanism associated with growth and invasion of pancreatic ductal adenocarcinoma. Oncogene,24,850-8.
    164. Ahmed, F.E. (2007) Role of miRNA in carcinogenesis and biomarker selection:a methodological view. Expert Rev Mol Diagn,7,569-603.
    165. Dalmay, T. (2008) MicroRNAs and cancer. J Intern Med,263,366-75.
    166. Rybak, A., Fuchs, H., Hadian, K., Smirnova, L., Wulczyn, E.A., Michel, G., Nitsch, R., Krappmann, D. and Wulczyn, F.G. (2009) The let-7 target gene mouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2. Nat Cell Biol,11,1411-20.
    167. Edge, R.E., Falls, T.J., Brown, C.W., Lichty, B.D, Atkins, H. and Bell, J.C. (2008) A let-7 MicroRNA-sensitive vesicular stomatitis virus demonstrates tumor-specific replication. Mol Ther,16, 1437-43.
    168. Esquela-Kerscher, A., Trang, P., Wiggins, J.F., Patrawala, L., Cheng, A., Ford, L., Weidhaas, J.B., Brown, D., Bader, A.G. and Slack, F.J. (2008) The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle,7,759-64.
    169. La Rocca, G., Badin, M., Shi, B., Xu, S.Q., Deangelis, T., Sepp-Lorenzinoi, L. and Baserga, R. (2009) Mechanism of growth inhibition by MicroRNA 145:the role of the IGF-I receptor signaling pathway.
    J Cell Physiol,220,485-91.
    170. Poy, M.N., Eliasson, L., Krutzfeldt, J., Kuwajima, S., Ma, X., Macdonald, P.E., Pfeffer, S., Tuschl, T., Rajewsky, N., Rorsman, P. and Stoffel, M. (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature,432,226-30.
    171. Zhao, X.F., Fjose, A., Larsen, N., Helvik, J.V. and Drivenes, O. (2008) Treatment with small interfering RNA affects the microRNA pathway and causes unspecific defects in zebrafish embryos. Febs J,275,2177-84.
    172. Calin, G.A., Pekarsky, Y. and Croce, C.M. (2007) The role of microRNA and other non-coding RNA in the pathogenesis of chronic lymphocytic leukemia. Best Pract Res Clin Haematol,20,425-37.
    173. Ng, E.K., Tsang, W.P., Ng, S.S., Jin, H.C., Yu, J., Li, J.J., Rocken, C., Ebert, M.P., Kwok, T.T. and Sung, J.J. (2009) MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer. Br J Cancer,101,699-706.
    174. Hoffman, A.E., Zheng, T., Yi, C., Leaderer, D., Weidhaas, J., Slack, F., Zhang, Y, Paranjape, T. and Zhu, Y. (2009) microRNA miR-196a-2 and breast cancer:a genetic and epigenetic association study and functional analysis. Cancer Res,69,5970-7.
    175. Xiao, J., Yang, B., Lin, H., Lu, Y, Luo, X. and Wang, Z. (2007) Novel approaches for gene-specific interference via manipulating actions of microRNAs:examination on the pacemaker channel genes HCN2 and HCN4.J Cell Physiol,212,285-92.
    176. Wang, C.J., Zhou, Z.G., Wang, L., Yang, L., Zhou, B., Gu, J., Chen, H.Y and Sun, X.F. (2009) Clinicopathological significance of microRNA-31,-143 and-145 expression in colorectal cancer. Dis Markers,26,27-34.
    177. Busacca, S., Germano, S., De Cecco, L., Rinaldi, M., Comoglio, F., Favero, F., Murer, B., Mutti, L., Pierotti, M. and Gaudino, G. MicroRNA signature of malignant mesothelioma with potential diagnostic and prognostic implications. Am J Respir Cell Mol Biol,42,312-9.
    178. Lee, C.Y., Rennie, P.S. and Jia, W.W. (2009) MicroRNA regulation of oncolytic herpes simplex virus-1 for selective killing of prostate cancer cells. Clin Cancer Res,15,5126-35.
    179. Chen, H.C., Chen, G.H., Chen, Y.H., Liao, W.L., Liu, C.Y., Chang, K.P., Chang, Y.S. and Chen, S.J. (2009) MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br J Cancer, 100,1002-11.
    180. Akao, Y, Nakagawa, Y, Iio, A. and Naoe, T. (2009) Role of microRNA-143 in Fas-mediated apoptosis in human T-cell leukemia Jurkat cells. Leuk Res,33,1530-8.
    181. Papagiannakopoulos, T., Shapiro, A. and Kosik, K.S. (2008) MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res,68,8164-72.
    182. Lehmann, U., Hasemeier, B., Christgen, M., Muller, M., Romermann, D., Langer, F. and Kreipe, H. (2008) Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol,214, 17-24.
    183. Pizzimenti, S., Ferracin, M., Sabbioni, S., Toaldo, C., Pettazzoni, P., Dianzani, M.U., Negrini, M. and Barrera, G. (2009) MicroRNA expression changes during human leukemic HL-60 cell differentiation induced by 4-hydroxynonenal, a product of lipid peroxidation. Free Radic Biol Med, 46,282-8.
    184. Chen, B., Cheng, M., Hong, D.J., Sun, F.Y and Zhu, C.Q. (2006) Okadaic acid induced cyclin Bl expression and mitotic catastrophe in rat cortex. Neurosci Lett,406,178-82.
    185. Berry, L.D. and Gould, K.L. (1996) Novel alleles of cdc13 and cdc2 isolated as suppressors of mitotic catastrophe in Schizosaccharomyces pombe. Mol Gen Genet,251,635-46.
    186. Castedo, M. and Kroemer, G. (2004) [Mitotic catastrophe:a special case of apoptosis].J Soc Biol, 198,97-103.
    187. Park, S.S., Eom, Y.W. and Choi, K.S. (2005) Cdc2 and Cdk2 play critical roles in low dose doxorubicin-induced cell death through mitotic catastrophe but not in high dose doxorubicin-induced apoptosis. Biochem Biophys Res Commun,334,1014-21.
    188. Winters, Z.E., Ongkeko, W.M., Harris, A.L. and Norbury, C.J. (1998) p53 regulates Cdc2 independently of inhibitory phosphorylation to reinforce radiation-induced G2 arrest in human cells. Oncogene,17,673-84.
    189. Huang, T.S., Shu, C.H., Chao, Y, Chen, S.N. and Chen, L.L. (2000) Activation of MAD 2 checkprotein and persistence of cyclin Bl/CDC 2 activity associate with paclitaxel-induced apoptosis in human nasopharyngeal carcinoma cells. Apoptosis,5,235-41.
    190. Niida, H., Tsuge, S., Katsuno, Y, Konishi, A., Takeda, N. and Nakanishi, M. (2005) Depletion of
    Chk1 leads to premature activation of Cdc2-cyclin B and mitotic catastrophe. J Biol Chem,280, 39246-52.
    191. Vogel, C., Hager, C. and Bastians, H. (2007) Mechanisms of mitotic cell death induced by chemotherapy-mediated G2 checkpoint abrogation. Cancer Res,67,339-45.
    192. Chan, Y.W., Chen, Y. and Poon, R.Y. (2008) Generation of an indestructible cyclin B1 by caspase-6-dependent cleavage during mitotic catastrophe. Oncogene.
    193. Xiao, Z., Xue, J., Gu, W.Z., Bui, M., Li, G., Tao, Z.F., Lin, N.H., Sowin, T.J. and Zhang, H. (2008) Cyclin B1 is an efficacy-predicting biomarker for Chkl inhibitors. Biomarkers,13,579-96.
    194. Haviv, I., Polyak, K., Qiu, W., Hu, M. and Campbell, Ⅰ. (2009) Origin of carcinoma associated fibroblasts. Cell Cycle,8,589-95.
    195. Liu, Y., Hu, T., Shen, J., Li, S.F., Lin, J.W., Zheng, X.H., Gao, Q.H. and Zhou, H.M. (2006) Separation, cultivation and biological characteristics of oral carcinoma-associated fibroblasts. Oral Dis,12,375-80.
    196. Olumi, A.F., Grossfeld, G.D., Hayward, S.W., Carroll, P.R., Tlsty, T.D. and Cunha, G.R. (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res,59,5002-11.
    197. Zhou, H.M., Liu, Y, Hu, T., Li, S.F., Gao, Q.H. and Li, B.Q.(2004) [Human oral carcinoma-associated fibroblasts:its cultivation, purification and identification]. Zhonghua Kou Qiang Yi Xue Za Zhi,39,122-5.
    198. Zeisberg, E.M., Potenta, S., Xie, L., Zeisberg, M. and Kalluri, R. (2007) Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res,67,10123-8.
    199. Bhowmick, N.A., Neilson, E.G. and Moses, H.L. (2004) Stromal fibroblasts in cancer initiation and progression. Nature,432,332-7.
    200. Hardwick, J.S., Yang, Y, Zhang, C., Shi, B., McFall, R., Koury, E.J., Hill, S.L., Dai, H., Wasserman, R., Phillips, R.L., Weinstein, E.J., Kohl, N.E., Severino, M.E., Lamb, J.R. and Sepp-Lorenzino, L. (2005) Identification of biomarkers for tumor endothelial cell proliferation through gene expression profiling. Mol Cancer Ther,4,413-25.
    201. Gaggioli, C, Hooper, S., Hidalgo-Carcedo, C., Grosse, R., Marshall, J.F., Harrington, K. and Sahai, E. (2007) Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol,9,1392-400.
    202. Wolf, K., Wu, Y.I., Liu, Y., Geiger, J, Tam, E., Overall, C., Stack, M.S. and Friedl, P. (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol,9,893-904.
    203. Pili, R., Chang, J., Partis, R.A., Mueller, R.A., Chrest, F.J. and Passaniti, A. (1995) The alpha-glucosidase I inhibitor castanospermine alters endothelial cell glycosylation, prevents angiogenesis, and inhibits tumor growth. Cancer Res,55,2920-6.
    204. Orimo, A. and Weinberg, R.A. (2006) Stromal fibroblasts in cancer:a novel tumor-promoting cell type. Cell Cycle,5,1597-601.
    205. Hamano, Y., Sugimoto, H., Soubasakos, M.A., Kieran, M., Olsen, B.R., Lawler, J., Sudhakar, A. and Kalluri, R. (2004) Thrombospondin-1 associated with tumor microenvironment contributes to low-dose cyclophosphamide-mediated endothelial cell apoptosis and tumor growth suppression. Cancer Res,64,1570-4.
    206. Muller, T., Bain, G., Wang, X. and Papkoff, J. (2002) Regulation of epithelial cell migration and tumor formation by beta-catenin signaling. Exp Cell Res,280,119-33.
    207. Lochter, A., Galosy, S., Muschler, J., Freedman, N., Werb, Z. and Bissell, M.J. (1997) Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol,139,1861-72.
    208. Thiery, J.P. (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer,2, 442-54.
    209. Lyons, J.G., Lobo, E., Martorana, A.M. and Myerscough, M.R. (2007) Clonal diversity in carcinomas:its implications for tumour progression and the contribution made to it by epithelial-mesenchymal transitions. Clin Exp Metastasis.
    210. Radisky, D.C., Levy, D.D., Littlepage, L.E., Liu, H., Nelson, C.M., Fata, J.E., Leake, D., Godden, E.L., Albertson, D.G., Nieto, M.A., Werb, Z. and Bissell, M.J. (2005) Raclb and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature,436,123-7.
    211. Kaplan, R.N., Riba, R.D., Zacharoulis, S., Bramley, A.H., Vincent, L., Costa, C., MacDonald, D.D., Jin, D.K., Shido, K., Kerns, S.A., Zhu, Z., Hicklin, D., Wu, Y., Port, J.L., Altorki, N., Port, E.R., Ruggero, D., Shmelkov, S.V, Jensen, K.K., Rafii, S. and Lyden, D. (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature,438,820-7.
    212. Grum-Schwensen, B., Klingelhofer, J., Berg, C.H., El-Naaman, C., Grigorian, M., Lukanidin, E. and Ambartsumian, N. (2005) Suppression of tumor development and metastasis formation in mice lacking the S100A4(mtsl) gene. Cancer Res,65,3772-80.
    213. Park, J.E., Lenter, M.C., Zimmermann, R.N., Garin-Chesa, P., Old, L.J. and Rettig, W.J. (1999) Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J Biol Chem,274,36505-12.
    214. Friedman, A., Weiss, S., Levy, N. and Meidan, R. (2000) Role of tumor necrosis factor alpha and its type I receptor in luteal regression:induction of programmed cell death in bovine corpus luteum-derived endothelial cells. Biol Reprod,63,1905-12.
    215. Hakim, S.T., Alsayari, M., McLean, D.C., Saleem, S., Addanki, K.C., Aggarwal, M., Mahalingam, K. and Bagasra, O. (2008) A large number of the human microRNAs target lentiviruses, retroviruses, and endogenous retroviruses. Biochem Biophys Res Commun,369,357-62.
    216. Geminder, H., Sagi-Assif, O., Goldberg, L., Meshel, T., Rechavi, G., Witz, I.P. and Ben-Baruch, A. (2001) A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol,167,4747-57.
    217. Smadja, D.M., Bieche, I., Uzan, G., Bompais, H., Muller, L., Boisson-Vidal, C., Vidaud, M., Aiach, M. and Gaussem, P. (2005) PAR-1 activation on human late endothelial progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. Arterioscler Thromb Vasc Biol, 25,2321-7.
    218. Porcile, C., Bajetto, A., Barbero, S., Pirani, P. and Schettini, G. (2004) CXCR4 activation induces epidermal growth factor receptor transactivation in an ovarian cancer cell line. Ann N YAcad Sci, 1030,162-9.
    219. Sun, Y.X., Wang, J., Shelburne, C.E., Lopatin, D.E., Chinnaiyan, A.M., Rubin, M.A., Pienta, K.J. and Taichman, R.S. (2003) Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem,89,462-73.
    220. Orimo, A., Gupta, P.B., Sgroi, D.C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., Carey, V.J., Richardson, A.L. and Weinberg, R.A. (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell,121,335-48.
    221. Nakamura, E.S., Koizumi, K., Kobayashi, M., Saitoh, Y., Arita, Y, Nakayama, T., Sakurai, H., Yoshie, O. and Saiki, I. (2006) RANKL-induced CCL22/macrophage-derived chemokine produced from osteoclasts potentially promotes the bone metastasis of lung cancer expressing its receptor CCR4. Clin Exp Metastasis,23,9-18.
    222. Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M.E., McClanahan, T., Murphy, E., Yuan, W., Wagner, S.N., Barrera, J.L., Mohar, A., Verastegui, E. and Zlotnik, A. (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature,410,50-6.
    223. Balkwill, F. and Mantovani, A. (2001) Inflammation and cancer:back to Virchow? Lancet,357, 539-45.
    224. Coussens, L.M. and Werb, Z. (2002) Inflammation and cancer. Nature,420,860-7.
    225. Murdoch, C. and Lewis, C.E. (2005) Macrophage migration and gene expression in response to tumor hypoxia. Int J Cancer,117,701-8.
    226. Bingle, L., Brown, N.J. and Lewis, C.E. (2002) The role of tumour-associated macrophages in tumour progression:implications for new anticancer therapies. J Pathol,196,254-65.
    227. Yuan, A., Yu, C.J., Kuo, S.H., Chen, W.J., Lin, F.Y, Luh, K.T., Yang, P.C. and Lee, Y.C. (2001) Vascular endothelial growth factor 189 mRNA isoform expression specifically correlates with tumor angiogenesis, patient survival, and postoperative relapse in non-small-cell lung cancer. J Clin Oncol, 19-43-2-41.
    228. Morita, S., Shirakata, Y, Shiraishi, A., Kadota, Y, Hashimoto, K., Higashiyama, S. and Ohashi, Y. (2007) Human corneal epithelial cell proliferation by epiregulin and its cross-induction by other EGF family members. Mol Vis,13,2119-28.
    229. Gawenda, J., Traub, F., Luck, H.J., Kreipe, H. and von Wasielewski, R. (2007) Legumain expression as a prognostic factor in breast cancer patients. Breast Cancer Res Treat,102,1-6.
    230. Vigneswaran, N., Wu, J., Nagaraj, N., James, R., Zeeuwen, P. and Zacharias, W. (2006) Silencing of cystatin M in metastatic oral cancer cell line MDA-686Ln by siRNA increases cysteine proteinases and legumain activities, cell proliferation and in vitro invasion. Life Sci,78,898-907.
    231. Sundaram, M., Qi, Y., Shriver, Z., Liu, D., Zhao, G., Venkataraman, G., Langer, R. and Sasisekharan, R. (2003) Rational design of low-molecular weight heparins with improved in vivo activity. Proc Natl Acad Sci USA,100,651-6.
    232. Lewen, S., Zhou, H., Hu, H.D., Cheng, T., Markowitz, D., Reisfeld, R.A., Xiang, R. and Luo, Y. (2008) A Legumain-based minigene vaccine targets the tumor stroma and suppresses breast cancer growth and angiogenesis. Cancer Immunol Immunother,57,507-15.
    233. Hernandez, L., Smirnova, T., Kedrin, D., Wyckoff, J., Zhu, L., Stanley, E.R., Cox, D., Muller, W.J., Pollard, J.W., Van Rooijen, N. and Segall, J.E. (2009) The EGF/CSF-1 paracrine invasion loop can be triggered by heregulin betal and CXCL12. Cancer Res,69,3221-7.
    234. Barker, E.V., Cervigne, N.K., Reis, P.P., Goswami, R.S., Xu, W., Weinreb, I., Irish, J.C. and Kamel-Reid, S. (2009) microRNA evaluation of unknown primary lesions in the head and neck. Mol Cancer,8,127.
    235. Hagemann, T., Robinson, S.C., Schulz, M., Trumper, L., Balkwill, F.R. and Binder, C. (2004) Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis,25,1543-9.
    236. Hagemann, T., Wilson, J., Kulbe, H., Li, N.F., Leinster, D.A., Charles, K., Klemm, F., Pukrop, T., Binder, C. and Balkwill, F.R. (2005) Macrophages induce invasiveness of epithelial cancer cells via NF-kappa B and JNK. J Immunol,175,1197-205.
    237. Pukrop, T., Klemm, F., Hagemann, T., Gradl, D., Schulz, M., Siemes, S., Trumper, L. and Binder, C. (2006) Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proc Natl Acad Sci USA,103,5454-9.
    238. Paulus, P., Stanley, E.R., Schafer, R., Abraham, D. and Aharinejad, S. (2006) Colony-stimulating factor-1 antibody reverses chemoresistance in human MCF-7 breast cancer xenografts. Cancer Res, 66,4349-56.
    239. Lin, E.Y., Gouon-Evans, V., Nguyen, A.V. and Pollard, J.W. (2002) The macrophage growth factor CSF-1 in mammary gland development and tumor progression. J Mammary Gland Biol Neoplasia,7, 147-62.
    240. Li, B., Sharpe, E.E., Maupin, A.B., Teleron, A.A., Pyle, A.L., Carmeliet, P. and Young, P.P. (2006) VEGF and PIGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. Faseb J,20,1495-7.
    241. Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S. and Marshak, D.R. (1999) Multilineage potential of adult human mesenchymal stem cells. Science,284,143-7.
    242. Garcia-Barros, M., Paris, F., Cordon-Cardo, C, Lyden, D., Rafii, S., Haimovitz-Friedman, A., Fuks, Z. and Kolesnick, R. (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science,300,1155-9.
    243. Schernthaner, G.H., Plank, C., Minar, E., Bieglmayer, C., Koppensteiner, R. and Schernthaner, G. (2006) No effect of homocysteine-lowering therapy on vascular inflammation and haemostasis in peripheral arterial occlusive disease. Eur J Clin Invest,36,333-9.
    244. Han, L., Witmer, P.D., Casey, E., Valle, D. and Sukumar, S. (2007) DNA methylation regulates MicroRNA expression. Cancer Biol Ther,6,1284-8.
    245. De Palma, M., Venneri, M.A., Galli, R., Sergi Sergi, L., Politi, L.S., Sampaolesi, M. and Naldini, L. (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell,8,211-26.
    246. Voswinckel, R., Ziegelhoeffer, T., Heil, M., Kostin, S., Breier, G., Mehling, T., Haberberger, R., Clauss, M., Gaumann, A., Schaper, W. and Seeger, W. (2003) Circulating vascular progenitor cells do not contribute to compensatory lung growth. Circ Res,93,372-9.
    247. Ziegelhoeffer, T., Fernandez, B., Kostin, S., Heil, M., Voswinckel, R., Helisch, A. and Schaper, W. (2004) Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res, 94,230-8.
    248. Gao, Y.F., Yu, L., Wei, W., Li, J.B., Luo, Q.L. and Shen, J.L. (2008) Inhibition of hepatitis B virus gene expression and replication by artificial microRNA. World J Gastroenterol,14,4684-9.
    249. Scappaticci, F.A. and Nolan, G.P. (2003) Induction of anti-tumor immunity in mice using a
    syngeneic endothelial cell vaccine. Anticancer Res,23,1165-72.
    250. Grunewald, M., Avraham, I., Dor, Y., Bachar-Lustig, E., Itin, A., Jung, S., Chimenti, S., Landsman, L., Abramovitch, R. and Keshet, E. (2006) VEGF-induced adult neovascularization:recruitment, retention, and role of accessory cells. Cell,124,175-89.
    251. Marcus, K., Johnson, M., Adam, R.M., O'Reilly, M.S., Donovan, M., Atala, A., Freeman, M.R. and Soker, S. (2005) Tumor cell-associated neuropilin-1 and vascular endothelial growth factor expression as determinants of tumor growth in neuroblastoma. Neuropathology,25,178-87.
    252. Imai, K., Nakata, K., Kawai, K., Hamano, T., Mei, N., Kasai, H. and Okamoto, T. (2005) Induction of OGG1 gene expression by HIV-1 Tat. J Biol Chem,280,26701-13.
    253. Ushigome, H., Sano, H., Okamoto, M., Kadotani, Y., Nakamura, K., Akioka, K., Yoshimura, R., Ohmori, Y. and Yoshimura, N. (2002) The role of tissue factor in renal ischemic reperfusion injury of the rat. J Surg Res,102,102-9.
    254. Hall, J., Hashibe, M., Boffetta, P., Gaborieau, V., Moullan, N., Chabrier, A., Zaridze, D., Shangina, O., Szeszenia-Dabrowska, N., Mates, D., Janout, V., Fabianova, E., Holcatova, I., Hung, R.J., McKay, J., Canzian, F. and Brennan, P. (2007) The association of sequence variants in DNA repair and cell cycle genes with cancers of the upper aerodigestive tract. Carcinogenesis,28,665-71.
    255. Karnoub, A.E., Dash, A.B., Vo, A.P., Sullivan, A., Brooks, M.W., Bell, G.W., Richardson, A.L. Polyak, K., Tubo, R. and Weinberg, R.A. (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature,449,557-63.
    256. Niu, J.X., Zhang, W.J., Ye, L.Y., Wu, L.Q., Yang, Z.H., Zhu, G.J. and Lou, J.N. (2008) [Tumor cell-tumor endothelial cell adhesion mediated by alphavbeta3 and alphavbeta5 molecules]. Zhonghua Zhong Liu Za Zhi,30,165-9.
    257. Kaifi, J.T., Yekebas, E.F., Schurr, P., Obonyo, D., Wachowiak, R., Busch, P., Heinecke, A., Pantel, K. and Izbicki, J.R. (2005) Tumor-cell homing to lymph nodes and bone marrow and CXCR4 expression in esophageal cancer. J Natl Cancer Inst,97,1840-7.
    258. Moore, S.C., Kijewski, M.F., Muller, S.P., Rybicki, F. and Zimmerman, R.E. (2001) Evaluation of scatter compensation methods by their effects on parameter estimation from SPECT projections. Med Phys,28,278-87.
    259. Sipkins, D.A., Wei, X., Wu, J.W., Runnels, J.M., Cote, D., Means, T.K., Luster, A.D., Scadden, D.T. and Lin, C.P. (2005) In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature,435,969-73.
    260. Hiratsuka, S., Nakamura, K., Iwai, S., Murakami, M., Itoh, T., Kijima, H., Shipley, J.M., Senior, R.M. and Shibuya, M. (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell,2,289-300.
    261. Hiratsuka, S., Watanabe, A., Aburatani, H. and Maru, Y. (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol,8, 1369-75.
    262. Wels, J., Kaplan, R.N., Rafii, S. and Lyden, D. (2008) Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev,22,559-74.
    263. Feng, D, Li, Q., Zhang, K., Jiang, X., Leng, S., Deng, H., Feng, J., Sun, T., Wu, L. and Zhou, C. (2008) Comparison of anticoagulant effects on vein grafts between human TFPI gene transfection and aspirin oral administration. J Huazhong Univ Sci Technolog Med Sci,28,147-51.
    264. Debatin, K.M., Wei, J. and Beltinger, C. (2008) Endothelial progenitor cells for cancer gene therapy. Gene Ther.
    265. Wei, J., Blum, S., Unger, M., Jarmy, G., Lamparter, M., Geishauser, A., Vlastos, G.A., Chan, G., Fischer, K.D., Rattat, D., Debatin, K.M., Hatzopoulos, A.K. and Beltinger, C. (2004) Embryonic endothelial progenitor cells armed with a suicide gene target hypoxic lung metastases after intravenous delivery. Cancer Cell,5,477-88.
    266. Owen, J.L., Lopez, D.M., Grosso, J.F., Guthrie, K.M., Herbert, L.M., Torroella-Kouri, M. and Iragavarapu-Charyulu, V. (2005) The expression of CCL2 by T lymphocytes of mammary tumor bearers:role of tumor-derived factors. Cell Immunol,235,122-35.
    267. Brueckl, W.M., Schoeberl, A., Wirtz, R.M., Murray, S., Hahn, E.G and Wiest, G.H. (2008) Increased vascular-endothelial growth factor (VEGF) tumor expression and response to epidermal growth factor receptor (EGF-R) inhibitor erlotinib in non-small cell lung cancer (NSCLC). J Thorac Oncol, 3,314-6.
    268. Xin, H., Kanehira, M., Mizuguchi, H., Hayakawa, T., Kikuchi, T., Nukiwa, T. and Saijo, Y. (2007) Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem cells. Stem Cells,25, 1618-26.
    269. Yen, Y.T., Chen, H.C., Lin, Y.D., Shieh, C.C. and Wu-Hsieh, B.A. (2008) Enhancement by tumor necrosis factor alpha of dengue virus-induced endothelial cell production of reactive nitrogen and oxygen species is key to hemorrhage development. J Virol,82,12312-24.
    270. Kanehira, M., Xin, H., Hoshino, K., Maemondo, M., Mizuguchi, H., Hayakawa, T., Matsumoto, K., Nakamura, T., Nukiwa, T. and Saijo, Y. (2007) Targeted delivery of NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells. Cancer Gene Ther,14,894-903.
    271. Murdoch, C., Giannoudis, A. and Lewis, C.E. (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood,104,2224-34.
    272. Stormes, K.A., Lemken, C.A., Lepre, J.V., Marinucci, M.N. and Kurt, R.A. (2005) Inhibition of metastasis by inhibition of tumor-derived CCL5. Breast Cancer Res Treat,89,209-12.
    273. Noh, Y.H., Matsuda, K., Hong, Y.K., Kunstfeld, R., Riccardi, L., Koch, M., Oura, H., Dadras, S.S., Streit, M. and Detmar, M. (2003) An N-terminal 80 kDa recombinant fragment of human thrombospondin-2 inhibits vascular endothelial growth factor induced endothelial cell migration in vitro and tumor growth and angiogenesis in vivo. J Invest Dermatol,121,1536-43.
    274. Masaki, M., Kurisaki, T., Shirakawa, K. and Sehara-Fujisawa, A. (2005) Role of meltrin{alpha} (ADAM12) in obesity induced by high-fat diet. Endocrinology,146,1752-63.
    275. Kubo, H., Fujiwara, T., Jussila, L., Hashi, H., Ogawa, M., Shimizu, K., Awane, M., Sakai, Y., Takabayashi, A., Alitalo, K., Yamaoka, Y. and Nishikawa, S.I. (2000) Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood,96,546-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700