胃食管反流通过NFκB介导的炎症破坏小鼠食管粘膜屏障功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的:食管上皮屏障功能是食管粘膜对抗胃食管反流的重要防御机制。胃食管反流可诱导食管上皮屏障功能的损伤,食管粘膜对特定离子以及大分子通透性的增强以及上皮细胞间隙的增宽。因此,理解反流诱导的食管粘膜屏障功能损伤的机制对寻求胃食管反流病的有效干预措施具有重要的临床意义。Barrett食管是胃食管反流病的继发病变之一,但胃食管反流进展为Barrett食管的分子机制至今还不清楚。本研究的目的1)探讨NFκB介导的炎症在胃食管反流诱导食管粘膜屏障功能损伤中的作用;2)探讨胃食管反流病进展为Barrett食管的分子机制。
     研究方法:建立手术诱导的胃反流,十二指肠反流和胃十二指肠混合反流的小鼠模型.使用mini-Ussing chamber检测各反流食管粘膜跨上皮电阻抗值,利用电镜观察并比较各型反流食管粘膜上皮间隙的改变。应用基因芯片技术检测各型反流食管粘膜上皮内特异的基因表达谱,再利用生物信息学分析策略(例如GSEA和SAM)筛选出表达上调或者下调的转录因子,激活的经典信号传导通路以及具有相似功能的基因簇,同时也筛选出基因组内所有表达上调或者下调的基因。采用Real-time PCR,免疫印迹,ELISA和免疫组化方法检测筛选基因的表达水平。使用特殊组织化学染色来显示各型反流食管粘膜内炎症细胞的分布,并对炎症细胞的数量进行统计比较。分别给予十二指肠反流和混合反流模型小鼠腹腔注射NFκB抑制剂Bay11-7085(20mg/kg/day),观察食管粘膜跨上皮电阻抗以及炎症因子水平的改变。
     研究结果:与正常小鼠食管粘膜上皮比较,十二指肠反流和混合反流食管粘膜的跨上皮电阻抗明显下降,但胃反流粘膜并未有明显改变。电镜观察到十二指肠反流和混合反流食管粘膜上皮细胞间隙明显增宽,而胃反流食管粘膜间隙并未明显改变。GSEA分析表明,在各型反流食管粘膜中有大量炎症相关基因簇和经典信号传导通路被激活,同时在十二指肠反流和混合反流食管粘膜上皮中可见NFκB表达上调。通过将SAM数据与已知NFκB下游基因、紧密连接蛋白基因以及Barrett食管相关基因进行比对,筛选出一系列上调或者下调的NFκB下游基因、紧密连接蛋白基因以及Barrett食管相关基因。Real-time PCR显示在十二指肠反流和混合反流食管粘膜上皮中紧密连接蛋白Cldnl, Cldn4, Cldn10和Cldn23的表达均下调,同时Cldn7的表达上调。免疫印迹和免疫组化显示在十二指肠反流和混合反流食管粘膜中Cldnl和Cldn4蛋白表达水平明显下调并且在食管上皮内的分布发生了明显改变。免疫组化显示NFκB亚基p50和p65, NFκB下游基因MMP3和MMP9以及Cdx2在十二指肠反流和混合反流食管粘膜上皮中的表达均明显上调。十二指肠反流和混合反流食管粘膜中炎症因子水平以及炎症细胞计数均明显增加。NFκB抑制剂Bay11-7085可以明显减弱反流对食管屏障功能的损害并且抑制反流诱导食管粘膜炎症因子水平的上调。
     研究结论:1)胃食管反流通过NFκB介导的炎症损伤小鼠食管上皮屏障功能;2)胃食管反流通过激活Barrett相关基因的表达从而导致Barrett食管的发生。
Background and Aim:The barrier function of esophageal epithelium is a major defense against gastroesophageal reflux. Previous studies have shown that reflux damage is reflected by increased permeability of esophageal mucosa for ions and macromolecules and dilated intercellular space in the esophageal epithelium. In order to develop novel therapies, it is critical to understand how contact with a refluxates attenuates esophageal barrier function. Barrett metaplasia usually occurs as a consequence of gastroesophageal reflux disease, but the exact molecular mechanism of gastroesophageal reflux progressing into Barrett esophagus remains poorly understood. This study aims1) investigating the role of NFκB-mediated inflammation in attenuated esophageal barrier function due to gastroesophageal reflux;2) investigating the molecular mechanism of gastroesophageal reflux progressing into Barrett esophagus.
     Methods:In this study, gastric, duodenal and mixed reflux models were developed in mice through surgical performance. Transepithelial electrical resistance (TEER) was measured by mini-Ussing chamber for different reflux models, while dilated intercellular space (DIS) observed with electrical microscope. Mouse esophageal epithelium is analyzed by gene microarray and statistical strategies (i.e.,Gene Set Enrichment Analysis and Significance Analysis of Microarray), which screened out activated transcription factors, canonical signaling pathways and gene ontology, as well as up-or down-regulated genes in mouse genome. Genes screened were confirmed by gene expression assays (i.e.,Real-time PCR, Western Blotting, immunohistochemical staining and ELISA). Distribution of inflammatory cells in esophageal mucosa of different reflux models was shown by specific histochemical staining, while semi-quantification of inflammatory cells was caculated. Upon mice treated with NFκB inhibitor Bay11-7085(20mg/kg/day, i.p.), TEER and cytokines were measured in esophageal mucosa of duodenal and mixed reflux models.
     Results:A decrease of TEER and DIS was observed in esophageal mucosa of duodenal and mixed reflux models as compared with control, but not in that of gastric reflux model. GSEA showed the activation of inflammation-related gene sets and canonical signaling pathways in esophageal epithelium of different reflux models, and activation of NFκB due to duodenal and mixed reflux. SAM revealed up or down-regulation of NFκB target genes, Barrett-related genes and tight junction genes. Real-time PCR confirmed down-regulation of Cldnl, Cldn4, Cldn10and Cldn23and up-regulation of Cldn7. Immunohistochemical staining showed up-regulation of NFκB p50/p65, NFκB target genes MMP3/MMP9and Cdx2in esophageal epithelium of mixed and duodenal reflux models. An increase of cytokines (i.e. IL1β, IL6and IL8) and cell counts (i.e. neutrophils, eosinophils and mast cells) was observed in esophageal mucosa of duodenal and mixed reflux models as compared with control. Treatment with an NFκB inhibitor, Bay11-7085counteracted the effects of duodenal and mixed reflux on TEER and cytokines.
     Conclusion:Our results suggested1) gastroesophageal reflux attenuates the barrier function of mouse esophageal epithelium through NFκB-mediated inflammation;2) Gastroesophageal reflux induces Barrett's metaplasia in esophageal epithelium through activation of Barrett's genes.
     Nineteen pictures,5tables and85references are included in this manuscript.
引文
[1]A Kandulski and P Malfertheiner. Gastroesophageal reflux disease--from reflux episodes to mucosal inflammation. Nat Rev Gastroenterol Hepatol,2012.9(1):p. 15-22.
    [2]RC Orlando. The integrity of the esophageal mucosa. Balance between offensive and defensive mechanisms. Best Pract Res Clin Gastroenterol,2010.24(6):p. 873-82.
    [3]J Dent, HB El-Serag, MA Wallander, et al. Epidemiology of gastro-oesophageal reflux disease:a systematic review. Gut,2005.54(5):p.710-7.
    [4]N Yoshida. Inflammation and oxidative stress in gastroesophageal reflux disease. J Clin Biochem Nutr,2007.40(1):p.13-23.
    [5]NA Tobey, JL Carson, RA Alkiek, et al. Dilated intercellular spaces:a morphological feature of acid reflux--damaged human esophageal epithelium. Gastroenterology,1996.111(5):p.1200-5.
    [6]R Carlsson, L Fandriks, C Jonsson, et al. Is the esophageal squamous epithelial barrier function impaired in patients with gastroesophageal reflux disease? Scand J Gastroenterol,1999.34(5):p.454-8.
    [7]X Chen, T Oshima, J Shan, et al. Bile salts disrupt human esophageal squamous epithelial barrier function by modulating tight junction proteins. Am J Physiol Gastrointest Liver Physiol,2012.303(2):p. G199-208.
    [8]T Oshima, J Koseki, X Chen, et al. Acid modulates the squamous epithelial barrier function by modulating the localization of claudins in the superficial layers. Lab Invest,2012.92(1):p.22-31.
    [9]NA Tobey, SS Hosseini, CM Argote, et al. Dilated intercellular spaces and shunt permeability in nonerosive acid-damaged esophageal epithelium. Am J Gastroenterol,2004.99(1):p.13-22.
    [10]RC Orlando. Pathophysiology of gastroesophageal reflux disease. J Clin Gastroenterol,2008.42(5):p.584-8.
    [11]RC Orlando. Pathophysiology of Gastroesophageal Reflux Disease:Esophageal Epithelial Resistance. In:The Esophagus Fifth Edition Eds, edited by Castell DO & Richter JE.. Chichester, England:John Wiley & Sons, Ltd,2012.
    [12]RF Souza, X Huo, V Mittal, et al. Gastroesophageal reflux might cause esophagitis through a cytokine-mediated mechanism rather than caustic acid injury. Gastroenterology,2009.137(5):p.1776-84.
    [13]MJ Naya, D Pereboom, J Ortego, et al. Superoxide anions produced by inflammatory cells play an important part in the pathogenesis of acid and pepsin induced oesophagitis in rabbits. Gut,1997.40(2):p.175-81.
    [14]T Yamaguchi, N Yoshida, N Tomatsuri, et al. Cytokine-induced neutrophil accumulation in the pathogenesis of acute reflux esophagitis in rats. Int J Mol Med,2005.16(1):p.71-7.
    [15]B Jovov, CM Van Itallie, NJ Shaheen, et al. Claudin-18:a dominant tight junction protein in Barrett's esophagus and likely contributor to its acid resistance. Am J Physiol Gastrointest Liver Physiol,2007.293(6):p. G1106-13.
    [16]SR Kim, KS Lee, SJ Park, et al. A novel dithiol amide CB3 attenuates allergic airway disease through negative regulation of p38 mitogen-activated protein kinase. Am J Respir Crit Care Med,2011.183(8):p.1015-24.
    [17]G Bonizzi and M Karin. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol,2004.25(6):p.280-8.
    [18]B Rayet and C Gelinas. Aberrant rel/nfkb genes and activity in human cancer. Oncogene,1999.18(49):p.6938-47.
    [19]L Ding, Z Lu, O Foreman, et al. Inflammation and disruption of the mucosal architecture in claudin-7-deficient mice. Gastroenterology,2012.142(2):p. 305-15.
    [20]RC Orlando, JC Bryson and DW Powell. Mechanisms of H+ injury in rabbit esophageal epithelium. Am J Physiol,1984.246(6 Pt 1):p. G718-24.
    [21]CN Carney, RC Orlando, DW Powell, et al. Morphologic alterations in early acid-induced epithelial injury of the rabbit esophagus. Lab Invest,1981.45(2):p. 198-208.
    [22]RC Orlando, DW Powell and CN Carney. Pathophysiology of acute acid injury in rabbit esophageal epithelium. J Clin Invest,1981.68(1):p.286-93.
    [23]NA Tobey and RC Orlando. Mechanisms of acid injury to rabbit esophageal epithelium. Role of basolateral cell membrane acidification. Gastroenterology, 1991.101(5):p.1220-8.
    [24]NA Tobey, SP Reddy, TO Keku, et al. Mechanisms of HCl-induced lowering of intracellular pH in rabbit esophageal epithelial cells. Gastroenterology,1993. 105(4):p.1035-44.
    [25]NA Tobey, EJ Cragoe, Jr. and RC Orlando. HCl-induced cell edema in rabbit esophageal epithelium:a bumetanide-sensitive process. Gastroenterology,1995. 109(2):p.414-21.
    [26]NA Tobey, G Koves and RC Orlando. HCl-induced cell edema in primary cultured rabbit esophageal epithelium. Gastroenterology,1997.112(3):p. 847-54.
    [27]JD Long, E Marten, NA Tobey, et al. Effects of luminal hypertonicity on rabbit esophageal epithelium. Am J Physiol,1997.273(3 Pt 1):p. G647-54.
    [28]JD Long, E Marten, NA Tobey, et al. Luminal hypertonicity and the susceptibility of rabbit esophagus to acid injury. Dis Esophagus,1998.11(2):p. 94-100.
    [29]H Korkaya, S Liu and MS Wicha. Regulation of cancer stem cells by cytokine networks:attacking cancer's inflammatory roots. Clin Cancer Res,2011.17(19): p.6125-9.
    [30]H Isomoto, VA Saenko, Y Kanazawa, et al. Enhanced expression of interleukin-8 and activation of nuclear factor kappa-B in endoscopy-negative gastroesophageal reflux disease. Am J Gastroenterol,2004.99(4):p.589-97.
    [31]JM O'Riordan, MM Abdel-latif, N Ravi, et al. Proinflammatory cytokine and nuclear factor kappa-B expression along the inflammation-metaplasia-dysplasia-adenocarcinoma sequence in the esophagus. Am J Gastroenterol,2005.100(6):p. 1257-64.
    [32]TY Oh, JS Lee, BO Ahn, et al. Oxidative damages are critical in pathogenesis of reflux esophagitis:implication of antioxidants in its treatment Free Radic Biol Med,2001.30(8):p.905-15.
    [33]RC Fitzgerald, BA Onwuegbusi, M Bajaj-Elliott, et al. Diversity in the oesophageal phenotypic response to gastro-oesophageal reflux:immunological determinants. Gut,2002.50(4):p.451-9.
    [34]H Isomoto, Y Nishi and S Kohno. CXC receptor 1 is overexpressed in endoscopy-negative gastroesophageal reflux disease. Scand J Gastroenterol, 2005.40(2):p.231-2.
    [35]Y Kanazawa, H Isomoto, CY Wen, et al. Impact of endoscopically minimal involvement on IL-8 mRNA expression in esophageal mucosa of patients with non-erosive reflux disease. World J Gastroenterol,2003.9(12):p.2801-4.
    [36]SP Duggan, FM Behan, M Kirca, et al. An integrative genomic approach in oesophageal cells identifies TRB3 as a bile acid responsive gene, downregulated in Barrett's oesophagus, which regulates NF-kappaB activation and cytokine levels. Carcinogenesis,2010.31(5):p.936-45.
    [37]A Goldman, HD Chen, HB Roesly, et al. Characterization of squamous esophageal cells resistant to bile acids at acidic pH:implication for Barrett's esophagus pathogenesis. Am J Physiol Gastrointest Liver Physiol,2011.300(2): p. G292-302.
    [38]P Rafiee, VM Nelson, S Manley, et al. Effect of curcumin on acidic pH-induced expression of IL-6 and IL-8 in human esophageal epithelial cells (HET-1A):role of PKC, MAPKs, and NF-kappaB. Am J Physiol Gastrointest Liver Physiol, 2009.296(2):p. G388-98.
    [39]NH Green, Q Huang, BM Corfe, et al. NF-kappaB is activated in oesophageal fibroblasts in response to a paracrine signal generated by acid-exposed primary oesophageal squamous cells, Int J Exp Pathol,2011.92(5):p.345-56.
    [40]R Al-Sadi, D Ye, K Dokladny, et al. Mechanism of IL-lbeta-induced increase in intestinal epithelial tight junction permeability. J Immunol,2008.180(8):p. 5653-61.
    [41]RM Al-Sadi and TY Ma. IL-lbeta causes an increase in intestinal epithelial tight junction permeability. J Immunol,2007.178(7):p.4641-9.
    [42]R Al-Sadi, D Ye, HM Said, et al. IL-1 beta-induced increase in intestinal epithelial tight junction permeability is mediated by MEKK-1 activation of canonical NF-kappaB pathway. Am J Pathol,2010.177(5):p.2310-22.
    [43]T Suzuki, N Yoshinaga and S Tanabe. Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium. J Biol Chem, 2011.286(36):p.31263-71.
    [44]TJ Evans, LD Buttery, A Carpenter, et al. Cytokine-treated human neutrophils contain inducible nitric oxide synthase that produces nitration of ingested bacteria Proc Natl Acad Sci U S A,1996.93(18):p.9553-8.
    [45]Y Naito, T Takagi and T Yoshikawa. Molecular fingerprints of neutrophil-dependent oxidative stress in inflammatory bowel disease. J Gastroenterol,2007.42(10):p.787-98.
    [46]T Katsube, H Tsuji and M Onoda. Nitric oxide attenuates hydrogen peroxide-induced barrier disruption and protein tyrosine phosphorylation in monolayers of intestinal epithelial cell. Biochim Biophys Acta,2007.1773(6):p. 794-803.
    [47]RK Rao, S Basuroy, VU Rao, et al. Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress. Biochem J,2002.368(Pt 2):p.471-81.
    [48]JR McDermott, RE Bartram, PA Knight, et al. Mast cells disrupt epithelial barrier function during enteric nematode infection. Proc Natl Acad Sci U S A, 2003.100(13):p.7761-6.
    [49]J Santos, D Yates, M Guilarte, et al. Stress neuropeptides evoke epithelial responses via mast cell activation in the rat colon. Psychoneuroendocrinology, 2008.33(9):p.1248-56.
    [50]SA Snoek, S Dhawan, SH van Bree, et al. Mast cells trigger epithelial barrier dysfunction, bacterial translocation and postoperative ileus in a mouse model. Neurogastroenterol Motil,2012.24(2):p.172-84, e91.
    [51]J Demaude, C Salvador-Cartier, J Fioramonti, et al. Phenotypic changes in colonocytes following acute stress or activation of mast cells in mice: implications for delayed epithelial barrier dysfunction. Gut,2006.55(5):p. 655-61.
    [52]N Ebihara, T Funaki, A Murakami, et al. Mast cell chymase decreases the barrier function and inhibits the migration of corneal epithelial cells. Curr Eye Res,2005. 30(12):p.1061-9.
    [53]GT Furuta, EE Nieuwenhuis, J Karhausen, et al. Eosinophils alter colonic epithelial barrier function:role for major basic protein. Am J Physiol Gastrointest Liver Physiol,2005.289(5):p. G890-7.
    [54]C Wallon, M Persborn, M Jonsson, et al. Eosinophils express muscarinic receptors and corticotropin-releasing factor to disrupt the mucosal barrier in ulcerative colitis. Gastroenterology,2011.140(5):p.1597-607.
    [55]D Asaoka, H Miwa, S Hirai, et al. Altered localization and expression of tight-junction proteins in a rat model with chronic acid reflux esophagitis. J Gastroenterol,2005.40(8):p.781-90.
    [56]M Oguro, M Koike, T Ueno, et al. Dissociation and dispersion of claudin-3 from the tight junction could be one of the most sensitive indicators of reflux esophagitis in a rat model of the disease. J Gastroenterol,2011.46(5):p.629-38.
    [57]A Lochter, S Galosy, J Muschler, et al. Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol,1997.139(7):p.1861-72.
    [58]CJ Sympson, RS Talhouk, CM Alexander, et al. Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J Cell Biol,1994.125(3):p.681-93.
    [59]J Zhou, S He, N Zhang, et al. Neutrophils compromise retinal pigment epithelial barrier integrity. J Biomed Biotechnol,2010.2010:p.289360.
    [60]B Jovov, J Que, NA Tobey, et al. Role of E-cadherin in the pathogenesis of gastroesophageal reflux disease. Am J Gastroenterol,2011.106(6):p.1039-47.
    [61]P Sharma. Clinical practice. Barrett's esophagus. N Engl J Med,2009.361(26):p. 2548-56.
    [62]M Conio, R Filiberti, S Blanchi, et al. Risk factors for Barrett's esophagus:a case-control study. Int J Cancer,2002.97(2):p.225-9.
    [63]NJ Shaheen, MA Crosby, EM Bozymski, et al. Is there publication bias in the reporting of cancer risk in Barrett's esophagus? Gastroenterology,2000.119(2): p.333-8.
    [64]PH Tseng, YC Lee, HM Chiu, et al. Prevalence and clinical characteristics of Barrett's esophagus in a Chinese general population. J Clin Gastroenterol,2008. 42(10):p.1074-9.
    [65]AT Prach, TA MacDonald, DA Hopwood, et al. Increasing incidence of Barrett's oesophagus:education, enthusiasm, or epidemiology? Lancet,1997.350(9082): p.933.
    [66]EM van Soest, JP Dieleman, PD Siersema, et al. Increasing incidence of Barrett's oesophagus in the general population. Gut,2005.54(8):p.1062-6.
    [67]F Beck and EJ Stringer. The role of Cdx genes in the gut and in axial development. Biochem Soc Trans,2010.38(2):p.353-7.
    [68]FJ Drummond, J Sowden, K Morrison, et al. Colon carbonic anhydrase 1: transactivation of gene expression by the homeodomain protein Cdx2. FEBS Lett, 1998.423(2):p.218-22.
    [69]R Fang, NA Santiago, LC Olds, et al. The homeodomain protein Cdx2 regulates lactase gene promoter activity during enterocyte differentiation. Gastroenterology,2000.118(1):p.115-27.
    [70]E Suh and PG Traber. An intestine-specific homeobox gene regulates proliferation and differentiation. Mol Cell Biol,1996.16(2):p.619-25.
    [71]GM Groisman, M Amar and A Meir. Expression of the intestinal marker Cdx2 in the columnar-lined esophagus with and without intestinal (Barrett's) metaplasia Mod Pathol,2004.17(10):p.1282-8.
    [72]T Liu, X Zhang, CK So, et al. Regulation of Cdx2 expression by promoter methylation, and effects of Cdx2 transfection on morphology and gene expression of human esophageal epithelial cells. Carcinogenesis,2007.28(2):p. 488-96.
    [73]J Kong, MA Crissey, S Funakoshi, et al. Ectopic Cdx2 expression in murine esophagus models an intermediate stage in the emergence of Barrett's esophagus. PLoS One,2011.6(4):p. e18280.
    [74]A Eda, H Osawa, K Satoh, et al. Aberrant expression of CDX2 in Barrett's epithelium and inflammatory esophageal mucosa J Gastroenterol,2003.38(1):p. 14-22.
    [75]LM Moons, DA Bax, EJ Kuipers, et al. The homeodomain protein CDX2 is an early marker of Barrett's oesophagus. J Clin Pathol,2004.57(10):p.1063-8.
    [76]M Marchetti, E Caliot and E Pringault. Chronic acid exposure leads to activation of the cdx2 intestinal homeobox gene in a long-term culture of mouse esophageal keratinocytes. J Cell Sci,2003.116(Pt 8):p.1429-36.
    [77]H Kazumori, S Ishihara, MA Rumi, et al. Bile acids directly augment caudal related homeobox gene Cdx2 expression in oesophageal keratinocytes in Barrett's epithelium Gut,2006.55(1):p.16-25.
    [78]M Saitou, M Furuse, H Sasaki, et al. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell,2000.11(12):p. 4131-42.
    [79]M Perez-Moreno, W Song, HA Pasolli, et al. Loss of p120 catenin and links to mitotic alterations, inflammation, and skin cancer. Proc Natl Acad Sci U S A, 2008.105(40):p.15399-404.
    [80]T Hershcovici and R Fass. Management of gastroesophageal reflux disease that does not respond well to proton pump inhibitors. Curr Opin Gastroenterol,2010. 26(4):p.367-78.
    [81]NJ Shaheen, BF Overholt, RE Sampliner, et al. Durability of radiofrequency ablation in Barrett's esophagus with dysplasia. Gastroenterology,2011.141(2):p. 460-8.
    [82]NJ Shaheen, P Sharma, BF Overholt, et al. Radiofrequency ablation in Barrett's esophagus with dysplasia N Engl J Med,2009.360(22):p.2277-88.
    [83]RE Pouw, JJ Gondrie, AM Rygiel, et al. Properties of the neosquamous epithelium after radiofrequency ablation of Barrett's esophagus containing neoplasia Am J Gastroenterol,2009.104(6):p.1366-73.
    [84]RD Odze and GY Lauwers. Histopathology of Barrett's esophagus after ablation and endoscopic mucosal resection therapy. Endoscopy,2008.40(12):p.1008-15.
    [85]B Jovov, NJ Shaheen, GS Orlando, et al. Defective Barrier Function in Neosquamous Epithelium. Am J Gastroenterol,2013.
    [1]PD Siersema. Pathogenesis, diagnosis and therapeutic possibilities of esophageal cancer. Curr Opin Gastroenterol,2007.23(4):p.456-61.
    [2]JB O'Connor, GW Falk and JE Richter. The incidence of adenocarcinoma and dysplasia in Barrett's esophagus:report on the Cleveland Clinic Barrett's Esophagus Registry. Am J Gastroenterol,1999.94(8):p.2037-42.
    [3]DJ Drewitz, RE Sampliner and HS Garewal. The incidence of adenocarcinoma in Barrett's esophagus:a prospective study of 170 patients followed 4.8 years. Am J Gastroenterol,1997.92(2):p.212-5.
    [4]P Chandrasoma, K Wickramasinghe, Y Ma, et al. Is intestinal metaplasia a necessary precursor lesion for adenocarcinomas of the distal esophagus, gastroesophageal junction and gastric cardia? Dis Esophagus,2007.20(1):p. 36-41.
    [5]MB Fennerty and G Triadafilopoulos. Barrett's-related esophageal adenocarcinoma:is chemoprevention a potential option? Am J Gastroenterol, 2001.96(8):p.2302-5.
    [6]SJ Spechler. Barrett's esophagus and esophageal adenocarcinoma:pathogenesis, diagnosis, and therapy. Med Clin North Am,2002.86(6):p.1423-45, vii.
    [7]NJ Shaheen, MA Crosby, EM Bozymski, et al. Is there publication bias in the reporting of cancer risk in Barrett's esophagus? Gastroenterology,2000.119(2):p. 333-8.
    [8]RC Fitzgerald. Molecular basis of Barrett's oesophagus and oesophageal adenocarcinoma Gut,2006.55(12):p.1810-20.
    [9]NJ Shaheen. Advances in Barrett's esophagus and esophageal adenocarcinoma Gastroenterology,2005.128(6):p.1554-66.
    [10]JA Jankowski, RF Harrison, I Perry, et al. Barrett's metaplasia Lancet,2000. 356(9247):p.2079-85.
    [11]L Hutchinson, B Stenstrom, D Chen, et al. Human Barrett's adenocarcinoma of the esophagus, associated myofibroblasts, and endothelium can arise from bone marrow-derived cells after allogeneic stem cell transplant. Stem Cells Dev,2010. 20(1):p.11-7.
    [12]G Sarosi, G Brown, K Jaiswal, et al. Bone marrow progenitor cells contribute to esophageal regeneration and metaplasia in a rat model of Barrett's esophagus. Dis Esophagus,2008.21(1):p.43-50.
    [13]Y Li, JM Wo, S Ellis, et al. Morphological transformation in esophageal submucosa by bone marrow cells:esophageal implantation under external esophageal perfusion. Stem Cells Dev,2006.15(5):p.697-705.
    [14]JM Slack and D Tosh. Transdifferentiation and metaplasia--switching cell types. Curr Opin Genet Dev,2001.11(5):p.581-6.
    [15]J Wang, R Qin, Y Ma, et al. Differential gene expression in normal esophagus and Barrett's esophagus. J Gastroenterol,2009.
    [16]X Chen and CS Yang, Barrett's esophagus:Preclinical Models for Investigation, in Esophageal Cancer Principles and Practice, B.A. Jobe, C.R. Thomas, and J.G. Hunter, Editors.2009, Demos Medical:New York. p.61-68.
    [17]MI Koster, S Kim, AA Mills, et al. p63 is the molecular switch for initiation of an epithelial stratification program. Genes Dev,2004.18(2):p.126-31.
    [18]DK Carroll, JS Carroll, CO Leong, et al. p63 regulates an adhesion programme and cell survival in epithelial cells. Nat Cell Biol,2006.8(6):p.551-61.
    [19]MI Koster, S Kim and DR Roop. P63 deficiency:a failure of lineage commitment or stem cell maintenance? J Investig Dermatol Symp Proc,2005. 10(2):p.118-23.
    [20]JN Glickman, A Yang, A Shahsafaei, et al. Expression of p53-related protein p63 in the gastrointestinal tract and in esophageal metaplastic and neoplastic disorders. Hum Pathol,2001.32(11):p.1157-65.
    [21]Y Daniely, G Liao, D Dixon, et al. Critical role of p63 in the development of a normal esophageal and tracheobronchial epithelium. Am J Physiol Cell Physiol, 2004.287(1):p. C171-81.
    [22]A Yang, R Schweitzer, D Sun, et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development Nature,1999.398(6729):p. 714-8.
    [23]H Geddert, S Kiel, HJ Heep, et al. The role of p63 and deltaNp63 (p40) protein expression and gene amplification in esophageal carcinogenesis. Hum Pathol, 2003.34(9):p.850-6.
    [24]S Roman, A Petre, A Thepot, et al. Downregulation of p63 upon exposure to bile salts and acid in normal and cancer esophageal cells in culture. Am J Physiol Gastrointest Liver Physiol,2007.293(1):p. G45-53.
    [25]X Chen, R Qin, B Liu, et al. Multilayered epithelium in a rat model and human Barrett's esophagus:Expression patterns of transcription factors and differentiation markers. BMC Gastroenterol,2008.8:p.1.
    [26]Y Ishii, M Rex, PJ Scotting, et al. Region-specific expression of chicken Sox2 in the developing gut and lung epithelium:regulation by epithelial-mesenchymal interactions. Dev Dyn,1998.213(4):p.464-75.
    [27]Y Kamachi, M Uchikawa and H Kondoh. Pairing SOX off:with partners in the regulation of embryonic development Trends Genet,2000.16(4):p.182-7.
    [28]KA Williamson, AM Hever, J Rainger, et al. Mutations in SOX2 cause anophthalmia-esophageal-genital (AEG) syndrome. Hum Mol Genet,2006. 15(9):p.1413-22.
    [29]AJ Bass, H Watanabe, CH Mermel, et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet,2009. 41(11):p.1238-42.
    [30]T Tsukamoto, K Inada, H Tanaka, et al. Down-regulation of a gastric transcription factor, Sox2, and ectopic expression of intestinal homeobox genes, Cdxl and Cdx2:inverse correlation during progression from gastric/intestinal-mixed to complete intestinal metaplasia J Cancer Res Clin Oncol,2004.130(3): p.135-45.
    [31]T Tsukamoto, T Mizoshita, M Mihara, et al. Sox2 expression in human stomach adenocarcinomas with gastric and gastric-and-intestinal-mixed phenotypes. Histopathology,2005.46(6):p.649-58.
    [32]J Que, T Okubo, JR Goldenring, et al. Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development, 2007.134(13):p.2521-31.
    [33]RI Sherwood, TY Chen and DA Melton. Transcriptional dynamics of endodermal organ formation. Dev Dyn,2009.238(1):p.29-42.
    [34]H Mutoh, M Sashikawa and K Sugano. Sox2 expression is maintained while gastric phenotype is completely lost in Cdx2-induced intestinal metaplastic mucosa Differentiation,2010.81(2):p.92-8.
    [35]L Jonker, R Kist, A Aw, et al. Pax9 is required for filiform papilla development and suppresses skin-specific differentiation of the mammalian tongue epithelium. Mech Dev,2004.121(11):p.1313-22.
    [36]H Peters, A Neubuser, K Kratochwil, et al. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev,1998.12(17):p.2735-47.
    [37]H Peters, G Schuster, A Neubuser, et al. Isolation of the Pax9 cDNA from adult human esophagus. Mamm Genome,1997.8(1):p.62-4.
    [38]JK Gerber, T Richter, E Kremmer, et al. Progressive loss of PAX9 expression correlates with increasing malignancy of dysplastic and cancerous epithelium of the human oesophagus. J Pathol,2002.197(3):p.293-7.
    [39]DG Silberg, GP Swain, ER Suh, et al. Cdxl and cdx2 expression during intestinal development Gastroenterology,2000.119(4):p.961-71.
    [40]A Calon, I Gross, I Davidson, et al. Functional interaction between the homeoprotein CDX1 and the transcriptional machinery containing the TATA-binding protein Nucleic Acids Res,2007.35(1):p.175-85.
    [41]H Kazumori, S Ishihara and Y Kinoshita. Roles of caudal-related homeobox gene Cdxl in oesophageal epithelial cells in Barrett's epithelium development Gut, 2009.58(5):p.620-8.
    [42]RJ Guo, ER Suh and JP Lynch. The role of cdx proteins in intestinal development and cancer. Cancer Biol Ther,2004.3(7):p.593-601.
    [43]H Mutoh, Y Hakamata, K Sato, et al. Conversion of gastric mucosa to intestinal metaplasia in Cdx2-expressing transgenic mice. Biochem Biophys Res Commun, 2002.294(2):p.470-9.
    [44]DG Silberg, J Sullivan, E Kang, et al. Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology,2002.122(3):p. 689-96.
    [45]Y Tamai, R Nakajima, T Ishikawa, et al. Colonic hamartoma development by anomalous duplication in Cdx2 knockout mice. Cancer Res,1999.59(12):p. 2965-70.
    [46]GM Groisman, M Amar and A Meir. Expression of the intestinal marker Cdx2 in the columnar-lined esophagus with and without intestinal (Barrett's) metaplasia Mod Pathol,2004.17(10):p.1282-8.
    [47]A Eda, H Osawa, K Satoh, et al. Aberrant expression of CDX2 in Barrett's epithelium and inflammatory esophageal mucosa J Gastroenterol,2003.38(1):p. 14-22.
    [48]RW Werling, H Yaziji, CE Bacchi, et al. CDX2, a highly sensitive and specific marker of adenocarcinomas of intestinal origin:an immunohistochemical survey of 476 primary and metastatic carcinomas. Am J Surg Pathol,2003.27(3):p. 303-10.
    [49]RW Phillips, HF Frierson, Jr. and CA Moskaluk. Cdx2 as a marker of epithelial intestinal differentiation in the esophagus. Am J Surg Pathol,2003.27(11):p. 1442-7.
    [50]CA Moskaluk, H Zhang, SM Powell, et al. Cdx2 protein expression in normal and malignant human tissues:an immunohistochemical survey using tissue microarrays. Mod Pathol,2003.16(9):p.913-9.
    [51]V Kaimaktchiev, L Terracciano, L Tornillo, et al. The homeobox intestinal differentiation factor CDX2 is selectively expressed in gastrointestinal adenocarcinomas. Mod Pathol,2004.17(11):p.1392-9.
    [52]LM Moons, DA Bax, EJ Kuipers, et al. The homeodomain protein CDX2 is an early marker of Barrett's oesophagus. J Clin Pathol,2004.57(10):p.1063-8.
    [53]J Park, S Schulz and SA Waldman. Intestine-specific activity of the human guanylyl cyclase C promoter is regulated by Cdx2. Gastroenterology,2000. 119(1):p.89-96.
    [54]F Boudreau, EH Rings, HM van Wering, et al. Hepatocyte nuclear factor-1 alpha, GATA-4, and caudal related homeodomain protein Cdx2 interact functionally to modulate intestinal gene transcription. Implication for the developmental regulation of the sucrase-isomaltase gene. J Biol Chem,2002.277(35):p. 31909-17.
    [55]EM Braunstein, XT Qiao, B Madison, et al. Villin:A marker for development of the epithelial pyloric border. Dev Dyn,2002.224(1):p.90-102.
    [56]P Mesquita, N Jonckheere, R Almeida, et al. Human MUC2 mucin gene is transcriptionally regulated by Cdx homeodomain proteins in gastrointestinal carcinoma cell lines. J Biol Chem,2003.278(51):p.51549-56.
    [57]T Shimada, T Koike, M Yamagata, et al. Regulation of TFF3 expression by homeodomain protein CDX2. Regul Pept,2007.140(1-2):p.81-7.
    [58]T Liu, X Zhang, CK So, et al. Regulation of Cdx2 expression by promoter methylation, and effects of Cdx2 transfection on morphology and gene expression of human esophageal epithelial cells. Carcinogenesis,2007.28(2):p. 488-96.
    [59]H Mutoh, H Sakamoto, H Hayakawa, et al. The intestine-specific homeobox gene Cdx2 induces expression of the basic helix-loop-helix transcription factor Mathl. Differentiation,2006.74(6):p.313-21.
    [60]M Boyd, M Hansen, TG Jensen, et al. Genome-wide analysis of CDX2 binding in intestinal epithelial cells (Caco-2). J Biol Chem,2010.285(33):p.25115-25.
    [61]T Uesaka, N Kageyama and H Watanabe. Identifying target genes regulated downstream of Cdx2 by microarray analysis. J Mol Biol,2004.337(3):p. 647-60.
    [62]J Jensen, EE Pedersen, P Galante, et al. Control of endodermal endocrine development by Hes-1. Nat Genet,2000.24(1):p.36-44.
    [63]Q Yang, NA Bermingham, MJ Finegold, et al. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science,2001. 294(5549):p.2155-8.
    [64]M Marchetti, E Caliot and E Pringault. Chronic acid exposure leads to activation of the cdx2 intestinal homeobox gene in a long-term culture of mouse esophageal keratinocytes. J Cell Sci,2003.116(Pt 8):p.1429-36.
    [65]H Kazumori, S Ishihara, MA Rumi, et al. Bile acids directly augment caudal related homeobox gene Cdx2 expression in oesophageal keratinocytes in Barrett's epithelium. Gut,2006.55(1):p.16-25.
    [66]J Kong, MA Crissey, S Funakoshi, et al. Ectopic Cdx2 Expression in Murine Esophagus Models an Intermediate Stage in the Emergence of Barrett's Esophagus. PLoS ONE,2011.6(4):p. e18280.
    [67]DG Silberg, EE Furth, JK Taylor, et al. CDX1 protein expression in normal, metaplastic, and neoplastic human alimentary tract epithelium. Gastroenterology, 1997.113(2):p.478-86.
    [68]NA Wong, J Wilding, S Bartlett, et al. CDX1 is an important molecular mediator of Barrett's metaplasia Proc Natl Acad Sci U S A,2005.102(21):p.7565-70.
    [69]A Eda, H Osawa, I Yanaka, et al. Expression of homeobox gene CDX2 precedes that of CDX1 during the progression of intestinal metaplasia. J Gastroenterol, 2002.37(2):p.94-100.
    [70]H Mutoh, S Sakurai, K Satoh, et al. Cdx1 induced intestinal metaplasia in the transgenic mouse stomach:comparative study with Cdx2 transgenic mice. Gut, 2004.53(10):p.1416-23.
    [71]WY Yu, JM Slack and D Tosh. Conversion of columnar to stratified squamous epithelium in the developing mouse oesophagus. Dev Biol,2005.284(1):p. 157-70.
    [72]LS Rozek, SM Lipkin, ER Fearon, et al. CDX2 polymorphisms, RNA expression, and risk of colorectal cancer. Cancer Res,2005.65(13):p.5488-92.
    [73]S Sivagnanasundaram, I Islam, I Talbot, et al. The homeobox gene CDX2 in colorectal carcinoma:a genetic analysis. Br J Cancer,2001.84(2):p.218-25.
    [74]T Hinoi, M Loda and ER Fearon. Silencing of CDX2 expression in colon cancer via a dominant repression pathway. J Biol Chem,2003.278(45):p.44608-16.
    [75]NA Wong, MP Britton, GS Choi, et al. Loss of CDX1 expression in colorectal carcinoma:promoter methylation, mutation, and loss of heterozygosity analyses of 37 cell lines. Proc Natl Acad Sci U S A,2004.101(2):p.574-9.
    [76]H Lickert and R Kemler. Functional analysis of cis-regulatory elements controlling initiation and maintenance of early Cdxl gene expression in the mouse. Dev Dyn,2002.225(2):p.216-20.
    [77]EB Rankin, W Xu, DG Silberg, et al. Putative intestine-specific enhancers located in 5'sequence of the CDX1 gene regulate CDX1 expression in the intestine. Am J Physiol Gastrointest Liver Physiol,2004.286(5):p. G872-80.
    [78]X Huo, HY Zhang, XI Zhang, et al. Acid and bile salt-induced CDX2 expression differs in esophageal squamous cells from patients with and without Barrett's esophagus. Gastroenterology,2010.139(1):p.194-203 e1.
    [79]P Rotkrua, Y Akiyama, Y Hashimoto, et al. MiR-9 down-regulates CDX2 expression in gastric cancer cells. Int J Cancer,2011.
    [80]PA Gregory, RH Lewinsky, DA Gardner-Stephen, et al. Regulation of UDP glucuronosyltransferases in the gastrointestinal tract Toxicol Appl Pharmacol, 2004.199(3):p.354-63.
    [81]DT Odom, N Zizlsperger, DB Gordon, et al. Control of pancreas and liver gene expression by HNF transcription factors. Science,2004.303(5662):p.1378-81.
    [82]AJ Watt, WD Garrison and SA Duncan. HNF4:a central regulator of hepatocyte differentiation and function. Hepatology,2003.37(6):p.1249-53.
    [83]A D'Angelo, O Bluteau, MA Garcia-Gonzalez, et al. Hepatocyte nuclear factor 1 alpha and beta control terminal differentiation and cell fate commitment in the gut epithelium. Development,2010.137(9):p.1573-82.
    [84]YD Benoit, F Pare, C Francoeur, et al. Cooperation between HNF-1 alpha, Cdx2, and GATA-4 in initiating an enterocytic differentiation program in a normal human intestinal epithelial progenitor cell line. Am J Physiol Gastrointest Liver Physiol,2010.298(4):p. G504-17.
    [85]G Piessen, N Jonckheere, A Vincent, et al. Regulation of the human mucin MUC4 by taurodeoxycholic and taurochenodeoxycholic bile acids in oesophageal cancer cells is mediated by hepatocyte nuclear factor 1 alpha Biochem J,2007.402(1):p.81-91.
    [86]JK Divine, SP McCaul and TC Simon. HNF-1 alpha and endodermal transcription factors cooperatively activate Fabpl:MODY3 mutations abrogate cooperativity. Am J Physiol Gastrointest Liver Physiol,2003.285(1):p. G62-72.
    [87]JK Divine, LJ Staloch, H Haven, et al. GATA-4, GATA-5, and GATA-6 activate the rat liver fatty acid binding protein gene in concert with HNF-1 alpha Am J Physiol Gastrointest Liver Physiol,2004.287(5):p. G1086-99.
    [88]T Bosse, JJ Fialkovich, CM Piaseckyj, et al. Gata4 and Hnflalpha are partially required for the expression of specific intestinal genes during development. Am J Physiol Gastrointest Liver Physiol,2007.292(5):p. G1302-14.
    [89]T Bosse, HM van Wering, M Gielen, et al. Hepatocyte nuclear factor-1 alpha is required for expression but dispensable for histone acetylation of the lactase-phlorizin hydrolase gene in vivo. Am J Physiol Gastrointest Liver Physiol, 2006.290(5):p. G1016-24.
    [90]L Lin, CT Miller, JI Contreras, et al. The hepatocyte nuclear factor 3 alpha gene, HNF3alpha (FOXA1), on chromosome band 14q13 is amplified and overexpressed in esophageal and lung adenocarcinomas. Cancer Res,2002. 62(18):p.5273-9.
    [91]CA Crisera, PR Connelly, AR Marmureanu, et al. TTF-1 and HNF-3beta in the developing tracheoesophageal fistula:further evidence for the respiratory origin of the distal esophagus'. J Pediatr Surg,1999.34(9):p.1322-6.
    [92]H Wan, KH Kaestner, SL Ang, et al. Foxa2 regulates alveolarization and goblet cell hyperplasia Development,2004.131(4):p.953-64.
    [93]W Zheng, P Rosenstiel, K Huse, et al. Evaluation of AGR2 and AGR3 as candidate genes for inflammatory bowel disease. Genes Immun,2006.7(1):p. 11-8.
    [94]M van der Sluis, A Vincent, J Bouma, et al. Forkhead box transcription factors Foxal and Foxa2 are important regulators of Muc2 mucin expression in intestinal epithelial cells. Biochem Biophys Res Commun,2008.369(4):p. 1108-13.
    [95]DZ Ye and KH Kaestner. Foxa1 and Foxa2 control the differentiation of goblet and enteroendocrine L-and D-cells in mice. Gastroenterology,2009.137(6):p. 2052-62.
    [96]AL Cattin, J Le Beyec, F Barreau, et al. Hepatocyte nuclear factor 4alpha, a key factor for homeostasis, cell architecture, and barrier function of the adult intestinal epithelium. Mol Cell Biol,2009.29(23):p.6294-308.
    [97]WD Garrison, MA Battle, C Yang, et al. Hepatocyte nuclear factor 4alpha is essential for embryonic development of the mouse colon. Gastroenterology,2006. 130(4):p.1207-20.
    [98]JP Babeu, M Darsigny, CR Lussier, et al. Hepatocyte nuclear factor 4alpha contributes to an intestinal epithelial phenotype in vitro and plays a partial role in mouse intestinal epithelium differentiation. Am J Physiol Gastrointest Liver Physiol,2009.297(1):p. G124-34.
    [99]P Hatzis and I Talianidis. Regulatory mechanisms controlling human hepatocyte nuclear factor 4alpha gene expression. Mol Cell Biol,2001.21(21):p.7320-30.
    [100]A Nastos, E Pogge von Strandmann, H Weber, et al. The embryonic expression of the tissue-specific transcription factor HNF1alpha in Xenopus:rapid activation by HNF4 and delayed induction by mesoderm inducers. Nucleic Acids Res,1998.26(24):p.5602-8.
    [101]H Weber, B Holewa, EA Jones, et al. Mesoderm and endoderm differentiation in animal cap explants:identification of the HNF4-binding site as an activin A responsive element in the Xenopus HNF1alpha promoter. Development,1996. 122(6):p.1975-84.
    [102]JD Molkentin. The zinc finger-containing transcription factors GATA-4,-5, and-6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem,2000.275(50):p.38949-52.
    [103]CM Jacobsen, N Narita, M Bielinska, et al. Genetic mosaic analysis reveals that GATA-4 is required for proper differentiation of mouse gastric epithelium. Dev Biol,2002.241(1):p.34-46.
    [104]Y Zhang, N Rath, S Hannenhalli, et al. GATA and Nkx factors synergistically regulate tissue-specific gene expression and development in vivo. Development, 2007.134(1):p.189-98.
    [105]ED Al-azzeh, P Fegert, N Blin, et al. Transcription factor GATA-6 activates expression of gastroprotective trefoil genes TFF1 and TFF2. Biochim Biophys Acta,2000.1490(3):p.324-32.
    [106]HM van Wering, T Bosse, A Musters, et al. Complex regulation of the lactase-phlorizin hydrolase promoter by GATA-4. Am J Physiol Gastrointest Liver Physiol,2004.287(4):p. G899-909.
    [107]P Bossard and KS Zaret. GATA transcription factors as potentiators of gut endoderm differentiation. Development,1998.125(24):p.4909-17.
    [108]X Gao, T Sedgwick, YB Shi, et al. Distinct functions are implicated for the GATA-4,-5, and-6 transcription factors in the regulation of intestine epithelial cell differentiation. Mol Cell Biol,1998.18(5):p.2901-11.
    [109]K Sumi, T Tanaka, A Uchida, et al. Cooperative interaction between hepatocyte nuclear factor 4 alpha and GATA transcription factors regulates ATP-binding cassette sterol transporters ABCG5 and ABCG8. Mol Cell Biol,2007.27(12):p. 4248-60.
    [110]BA Afouda, A Ciau-Uitz and R Patient. GATA4,5 and 6 mediate TGF{beta} maintenance of endodermal gene expression in Xenopus embryos. Development,2005.132(4):p.763-74.
    [111]EE Morrisey, Z Tang, K Sigrist, et al. GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev,1998. 12(22):p.3579-90.
    [112]NS Belaguli, M Zhang, M Rigi, et al. Cooperation between GATA4 and TGF-beta signaling regulates intestinal epithelial gene expression. Am J Physiol Gastrointest Liver Physiol,2007.292(6):p. G1520-33.
    [113]G Nemer and M Nemer. Transcriptional activation of BMP-4 and regulation of mammalian organogenesis by GATA-4 and-6. Dev Biol,2003.254(1):p. 131-48.
    [114]H Haveri, M Westerholm-Ormio, K Lindfors, et al. Transcription factors GATA-4 and GATA-6 in normal and neoplastic human gastrointestinal mucosa BMC Gastroenterol,2008.8:p.9.
    [115]CT Miller, JR Moy, L Lin, et al. Gene amplification in esophageal adenocarcinomas and Barrett's with high-grade dysplasia Clin Cancer Res, 2003.9(13):p.4819-25.
    [116]M Guo, MG House, Y Akiyama, et al. Hypermethylation of the GATA gene family in esophageal cancer. Int J Cancer,2006.119(9):p.2078-83.
    [117]H Alvarez, J Opalinska, L Zhou, et al. Widespread Hypomethylation Occurs Early and Synergizes with Gene Amplification during Esophageal Carcinogenesis. PLoS Genet,2011.7(3):p. e1001356.
    [118]KK Krishnadath. Novel findings in the pathogenesis of esophageal columnar metaplasia or Barrett's esophagus. Curr Opin Gastroenterol,2007.23(4):p. 440-5.
    [119]F Milano, JW van Baal, NS Buttar, et al. Bone morphogenetic protein 4 expressed in esophagitis induces a columnar phenotype in esophageal squamous cells. Gastroenterology,2007.132(7):p.2412-21.
    [120]ET Domyan, E Ferretti, K Throckmorton, et al. Signaling through BMP receptors promotes respiratory identity in the foregut via repression of Sox2. Development,2011.138(5):p.971-81.
    [121]P Rodriguez, S Da Silva, L Oxburgh, et al. BMP signaling in the development of the mouse esophagus and forestomach Development,2010.137(24):p. 4171-6.
    [122]BA Auclair, YD Benoit, N Rivard, et al. Bone morphogenetic protein signaling is essential for terminal differentiation of the intestinal secretory cell lineage. Gastroenterology,2007.133(3):p.887-96.
    [123]J Que, M Choi, JW Ziel, et al. Morphogenesis of the trachea and esophagus: current players and new roles for noggin and Bmps. Differentiation,2006.74(7): p.422-37.
    [124]LE Batts, DB Polk, RN Dubois, et al. Bmp signaling is required for intestinal growth and morphogenesis. Dev Dyn,2006.235(6):p.1563-70.
    [125]BA Onwuegbusi, A Aitchison, SF Chin, et al. Impaired transforming growth factor beta signalling in Barrett's carcinogenesis due to frequent SMAD4 inactivation. Gut,2006.55(6):p.764-74.
    [126]BA Onwuegbusi, JR Rees, P Lao-Sirieix, et al. Selective loss of TGFbeta Smad-dependent signalling prevents cell cycle arrest and promotes invasion in oesophageal adenocarcinoma cell lines. PLoS ONE,2007.2(1):p. e177.
    [127]A Calon, I Gross, B Lhermitte, et al. Different effects of the Cdxl and Cdx2 homeobox genes in a murine model of intestinal inflammation. Gut,2007.
    [128]A Gregorieff, D Pinto, H Begthel, et al. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology,2005.129(2):p.626-38.
    [129]JH van Es, P Jay, A Gregorieff, et al. Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol,2005.7(4):p.381-6.
    [130]A Gregorieff and H Clevers. Wnt signaling in the intestinal epithelium:from endoderm to cancer. Genes Dev,2005.19(8):p.877-90.
    [131]G Clement, DM Jablons and J Benhattar. Targeting the Wnt signaling pathway to treat Barrett's esophagus. Expert Opin Ther Targets,2007.11(3):p.375-89.
    [132]G Clement, R Braunschweig, N Pasquier, et al. Alterations of the Wnt signaling pathway during the neoplastic progression of Barrett's esophagus. Oncogene, 2006.25(21):p.3084-92.
    [133]CA Eads, RV Lord, SK Kurumboor, et al. Fields of aberrant CpG island hypermethylation in Barrett's esophagus and associated adenocarcinoma Cancer Res,2000.60(18):p.5021-6.
    [134]T Bailey, L Biddlestone, N Shepherd, et al. Altered cadherin and catenin complexes in the Barrett's esophagus-dysplasia-adenocarcinoma sequence: correlation with disease progression and dedifferentiation. Am J Pathol,1998. 152(1):p.135-44.
    [135]H Lickert, C Domon, G Huls, et al. Wnt/(beta)-catenin signaling regulates the expression of the homeobox gene Cdxl in embryonic intestine. Development, 2000.127(17):p.3805-13.
    [136]N Pilon, K Oh, JR Sylvestre, et al. Wnt signaling is a key mediator of Cdxl expression in vivo. Development,2007.134(12):p.2315-23.
    [137]N Murata-Kamiya, Y Kurashima, Y Teishikata, et al. Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene,2007.26(32): p.4617-26.
    [138]M Saegusa, M Hashimura, T Kuwata, et al. A functional role of Cdx2 in {beta}-catenin signaling during transdifferentiation in endometrial carcinomas. Carcinogenesis,2007.28(9):p.1885-92.
    [139]A Okubo, O Miyoshi, K Baba, et al. A novel GATA4 mutation completely segregated with atrial septal defect in a large Japanese family. J Med Genet, 2004.41(7):p. e97.
    [140]P Bastide, C Darido, J Pannequin, et al. Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium. J Cell Biol, 2007.178(4):p.635-48.
    [141]P Blache, M van de Wetering, I Duluc, et al. SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J Cell Biol,2004.166(1):p.37-47.
    [142]L Topol, W Chen, H Song, et al. Sox9 inhibits Wnt signaling by promoting beta-catenin phosphorylation in the nucleus. J Biol Chem,2009.284(5):p. 3323-33.
    [143]Y Mori-Akiyama, M van den Born, JH van Es, et al. SOX9 is required for the differentiation of paneth cells in the intestinal epithelium. Gastroenterology, 2007.133(2):p.539-46.
    [144]E Sumi, N Iehara, H Akiyama, et al. SRY-related HMG box 9 regulates the expression of Col4a2 through transactivating its enhancer element in mesangial cells. Am J Pathol,2007.170(6):p.1854-64.
    [145]S Murakami, V Lefebvre and B de Crombrugghe. Potent inhibition of the master chondrogenic factor Sox9 gene by interleukin-1 and tumor necrosis factor-alpha J Biol Chem,2000.275(5):p.3687-92.
    [146]NL Manuylov, Y Fujiwara, Adameyko, II, et al. The regulation of Sox9 gene expression by the GATA4/FOG2 transcriptional complex in dominant XX sex reversal mouse models. Dev Biol,2007.307(2):p.356-67.
    [147]DH Wang, NJ Clemons, T Miyashita, et al. Aberrant epithelial-mesenchymal Hedgehog signaling characterizes Barrett's metaplasia Gastroenterology,2010. 138(5):p.1810-22.
    [148]G Chen, TR Korfhagen, Y Xu, et al. SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production J Clin Invest,2009.119(10):p.2914-24.
    [149]KS Park, TR Korfhagen, MD Bruno, et al. SPDEF regulates goblet cell hyperplasia in the airway epithelium. J Clin Invest,2007.117(4):p.978-88.
    [150]A Gregorieff, DE Stange, P Kujala, et al. The ets-domain transcription factor Spdef promotes maturation of goblet and paneth cells in the intestinal epithelium. Gastroenterology,2009.137(4):p.1333-45 e1-3.
    [151]JM O'Riordan, MM Abdel-latif, N Ravi, et al. Proinflammatory cytokine and nuclear factor kappa-B expression along the inflammation-metaplasia-dysplasia-adenocarcinoma sequence in the esophagus. Am J Gastroenterol, 2005.100(6):p.1257-64.
    [152]J Si, X Fu, J Behar, et al. NADPH oxidase NOX5-S mediates acid-induced cyclooxygenase-2 expression via activation of NF-kappaB in Barrett's esophageal adenocarcinoma cells. J Biol Chem,2007.282(22):p.16244-55.
    [153]PC Konturek, A Nikiforuk, J Kania, et al. Activation of NFkappaB represents the central event in the neoplastic progression associated with Barrett's esophagus:a possible link to the inflammation and overexpression of COX-2, PPARgamma and growth factors. Dig Dis Sci,2004.49(7-8):p.1075-83.
    [154]GJ Jenkins, K Harries, SH Doak, et al. The bile acid deoxycholic acid (DCA) at neutral pH activates NF-kappaB and induces IL-8 expression in oesophageal cells in vitro. Carcinogenesis,2004.25(3):p.317-23.
    [155]PR Debruyne, M Witek, L Gong, et al. Bile acids induce ectopic expression of intestinal guanylyl cyclase C Through nuclear factor-kappaB and Cdx2 in human esophageal cells. Gastroenterology,2006.130(4):p.1191-206.
    [156]H Ikeda, M Sasaki, A Ishikawa, et al. Interaction of Toll-like receptors with bacterial components induces expression of CDX2 and MUC2 in rat biliary epithelium in vivo and in culture. Lab Invest,2007.87(6):p.559-71.
    [157]KN Wallace and M Pack. Unique and conserved aspects of gut development in zebrafish. Dev Biol,2003.255(1):p.12-29.
    [158]Y Litingtung, L Lei, H Westphal, et al. Sonic hedgehog is essential to foregut development Nat Genet,1998.20(1):p.58-61.
    [159]Y Yamanaka, A Shiotani, Y Fujimura, et al. Expression of Sonic hedgehog (SHH) and CDX2 in the columnar epithelium of the lower oesophagus. Dig Liver Dis,2011.43(1):p.54-9.
    [160]JH van Es, ME van Gijn, O Riccio, et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature,2005.435(7044):p.959-63.
    [161]GT Wong, D Manfra, FM Poulet, et al. Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem,2004. 279(13):p.12876-82.
    [162]J Milano, J McKay, C Dagenais, et al. Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci,2004.82(1):p.341-58.
    [163]A Kazanjian, T Noah, D Brown, et al. Atonal homolog 1 is required for growth and differentiation effects of notch/gamma-secretase inhibitors on normal and cancerous intestinal epithelial cells. Gastroenterology,2010.139(3):p.918-28, 928 e1-6.
    [164]BZ Stanger, R Datar, LC Murtaugh, et al. Direct regulation of intestinal fate by Notch. Proc Natl Acad Sci U S A,2005.102(35):p.12443-8.
    [165]S Ohashi, M Natsuizaka, Y Yashiro-Ohtani, et al. NOTCH1 and NOTCH3 coordinate esophageal squamous differentiation through a CSL-dependent transcriptional network. Gastroenterology,2010.139(6):p.2113-23.
    [166]BC Nguyen, K Lefort, A Mandinova, et al. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev,2006.20(8):p. 1028-42.
    [167]DJ Morrow, NE Avissar, L Toia, et al. Pathogenesis of Barrett's esophagus:bile acids inhibit the Notch signaling pathway with induction of CDX2 gene expression in human esophageal cells. Surgery,2009.146(4):p.714-21; discussion 721-2.
    [168]V Menke, JH van Es, W de Lau, et al. Conversion of metaplastic Barrett's epithelium into post-mitotic goblet cells by gamma-secretase inhibition. Dis Model Mech,2010.3(1-2):p.104-10.
    [169]P Lao-Sirieix and RC Fitzgerald. Role of the micro-environment in Barrett's carcinogenesis. Biochem Soc Trans,2010.38(2):p.327-30.
    [170]RF Harrison, I Perry and JA Jankowski. Barrett's mucosa:remodelling by the microenvironment J Pathol,2000.192(1):p.1-3.
    [171]BJ Colleypriest, SG Ward and D Tosh. How does inflammation cause Barrett's metaplasia? Curr Opin Pharmacol,2009.9(6):p.721-6.
    [172]DB Stairs, J Kong and JP Lynch. Cdx genes, inflammation, and the pathogenesis of intestinal metaplasia. Prog Mol Biol Transl Sci,2010.96:p. 231-70.
    [173]LM Moons, JG Kusters, JH van Delft, et al. A pro-inflammatory genotype predisposes to Barrett's esophagus. Carcinogenesis,2008.29(5):p.926-31.
    [174]RC Fitzgerald, S Abdalla, BA Onwuegbusi, et al. Inflammatory gradient in Barrett's oesophagus:implications for disease complications. Gut,2002.51(3): p.316-22.
    [175]RF Souza, X Huo, V Mittal, et al. Gastroesophageal reflux might cause esophagitis through a cytokine-mediated mechanism rather than caustic acid injury. Gastroenterology,2009.137(5):p.1776-84.
    [176]Quante M, Abrams JA, Marrache F, Wang TC (2010). Barrett's esophagus correlates with increased putative gastrointestinal stem cell markers DCLK1 and CCK2R in a ILlb mouse model and in humans. In DDW.
    [177]JP Seery and FM Watt. Asymmetric stem-cell divisions define the architecture of human oesophageal epithelium. Curr Biol,2000.10(22):p.1447-50.
    [178]J Takito and Q Al-Awqati. Conversion of ES cells to columnar epithelia by hensin and to squamous epithelia by laminin. J Cell Biol,2004.166(7):p. 1093-102.
    [179]F Benahmed, I Gross, D Guenot, et al. The microenvironment controls CDX2 homeobox gene expression in colorectal cancer cells. Am J Pathol,2007.170(2): p.733-44.
    [180]O Lorentz, I Duluc, AD Arcangelis, et al. Key role of the Cdx2 homeobox gene in extracellular matrix-mediated intestinal cell differentiation. J Cell Biol,1997. 139(6):p.1553-65.
    [181]M Fassan, S Volinia, J Palatini, et al. MicroRNA expression profiling in human Barrett's carcinogenesis. Int J Cancer,2010.
    [182]GH Nguyen, AJ Schetter, DB Chou, et al. Inflammatory and microRNA gene expression as prognostic classifier of Barrett's-associated esophageal adenocarcinoma Clin Cancer Res,2010.16(23):p.5824-34.
    [183]BP Wijnhoven, DJ Hussey, DI Watson, et al. MicroRNA profiling of Barrett's oesophagus and oesophageal adenocarcinoma Br J Surg,2010.97(6):p. 853-61.
    [184]H Yang, J Gu, KK Wang, et al. MicroRNA expression signatures in Barrett's esophagus and esophageal adenocarcinoma Clin Cancer Res,2009.15(18):p. 5744-52.
    [185]DM Maru, RR Singh, C Hannah, et al. MicroRNA-196a is a potential marker of progression during Barrett's metaplasia-dysplasia-invasive adenocarcinoma sequence in esophagus. Am J Pathol,2009.174(5):p.1940-8.
    [186]WA Dijckmeester, BP Wijnhoven, DI Watson, et al. MicroRNA-143 and -205 expression in neosquamous esophageal epithelium following Argon plasma ablation of Barrett's esophagus. J Gastrointest Surg,2009.13(5):p.846-53.
    [187]A Bansal, IH Lee, X Hong, et al. Feasibility of MicroRNAs as Biomarkers for Barrett's Esophagus Progression:A Pilot Cross-Sectional, Phase 2 Biomarker Study. Am J Gastroenterol,2011.
    [188]CM Smith, DI Watson, MZ Michael, et al. MicroRNAs, development of Barrett's esophagus, and progression to esophageal adenocarcinoma World J Gastroenterol,2010.16(5):p.531-7.
    [189]T Kan and SJ Meltzer. MicroRNAs in Barrett's esophagus and esophageal adenocarcinoma Curr Opin Pharmacol,2009.9(6):p.727-32.
    [190]L Boominathan. The tumor suppressors p53, p63, and p73 are regulators of microRNA processing complex. PLoS ONE,2010.5(5):p. e10615.
    [191]G Blandino and UM Moll. p63 regulation by microRNAs. Cell Cycle,2009. 8(10):p.1466-7.
    [192]LJ Gudas and JA Wagner. Retinoids regulate stem cell differentiation. J Cell Physiol,2011.226(2):p.322-30.
    [193]P Prinos, S Joseph, K Oh, et al. Multiple pathways governing Cdx1 expression during murine development Dev Biol,2001.239(2):p.257-69.
    [194]M Houle, JR Sylvestre and D Lohnes. Retinoic acid regulates a subset of Cdxl function in vivo. Development,2003.130(26):p.6555-67.
    [195]A Qian, Y Cai, TR Magee, et al. Identification of retinoic acid-responsive elements on the HNF1 alpha and HNF4alpha genes. Biochem Biophys Res Commun,2000.276(3):p.837-42.
    [196]RJ Arceci, AA King, MC Simon, et al. Mouse GATA-4:a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart Mol Cell Biol,1993.13(4):p.2235-46.
    [197]O Afonja, BM Raaka, A Huang, et al. RAR agonists stimulate SOX9 gene expression in breast cancer cell lines:evidence for a role in retinoid-mediated growth inhibition. Oncogene,2002.21(51):p.7850-60.
    [198]CL Chang, E Hong, P Lao-Sirieix, et al. A novel role for the retinoic acid-catabolizing enzyme CYP26A1 in Barrett's associated adenocarcinoma Oncogene,2008.27(21):p.2951-60.
    [199]K Hormi-Carver, LA Feagins, SJ Spechler, et al. All trans-retinoic acid induces apoptosis via p38 and caspase pathways in metaplastic Barrett's cells. Am J Physiol Gastrointest Liver Physiol,2007.292(1):p. G18-27.
    [200]RV Lord, PI Tsai, KD Danenberg, et al. Retinoic acid receptor-alpha messenger RNA expression is increased and retinoic acid receptor-gamma expression is decreased in Barrett's intestinal metaplasia, dysplasia, adenocarcinoma sequence. Surgery,2001.129(3):p.267-76.
    [201]J Brabender, RV Lord, R Metzger, et al. Role of retinoid X receptor mRNA expression in Barrett's esophagus. J Gastrointest Surg,2004.8(4):p.413-22.
    [202]CL Chang, P Lao-Sirieix, V Save, et al. Retinoic acid-induced glandular differentiation of the oesophagus. Gut,2007.56(7):p.906-17.
    [203]G Cooke, A Blanco-Fernandez and JP Seery. The effect of retinoic acid and deoxycholic acid on the differentiation of primary human esophageal keratinocytes. Dig Dis Sci,2008.53(11):p.2851-7.
    [204]T Hiramatsu, M Osaki, Y Ito, et al. Expression of RUNX3 protein in human esophageal mucosa and squamous cell carcinoma Pathobiology,2005.72(6):p. 316-24.
    [205]K Schulmann, A Sterian, A Berki, et al. Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett's-associated neoplastic progression and predicts progression risk. Oncogene,2005.24(25):p.4138-48.
    [206]E Smith, NJ De Young, SJ Pavey, et al. Similarity of aberrant DNA methylation in Barrett's esophagus and esophageal adenocarcinoma Mol Cancer,2008.7:p. 75.
    [207]Z Jin, Y Cheng, W Gu, et al. A multicenter, double-blinded validation study of methylation biomarkers for progression prediction in Barrett's esophagus. Cancer Res,2009.69(10):p.4112-5.
    [208]H Fukamachi. Runx3 controls growth and differentiation of gastric epithelial cells in mammals. Dev Growth Differ,2006.48(1):p.1-13.
    [209]K Ito, Q Liu, M Salto-Tellez, et al. RUNX3, a novel tumor suppressor, is frequently inactivated in gastric cancer by protein mislocalization. Cancer Res, 2005.65(17):p.7743-50.
    [210]WH Guo, LQ Weng, K Ito, et al. Inhibition of growth of mouse gastric cancer cells by Runx3, a novel tumor suppressor. Oncogene,2002.21(54):p.8351-5.
    [211]H Fukamachi, A Mimata, I Tanaka, et al. In vitro differentiation of Runx3-/-p53-/- gastric epithelial cells into intestinal type cells. Cancer Sci,2008.99(4): p.671-6.
    [212]H Fukamachi, K Ito and Y Ito. Runx3-/- gastric epithelial cells differentiate into intestinal type cells. Biochem Biophys Res Commun,2004.321(1):p.58-64.
    [213]A Torquati, L O'Rear, L Longobardi, et al. RUNX3 inhibits cell proliferation and induces apoptosis by reinstating transforming growth factor beta responsiveness in esophageal adenocarcinoma cells. Surgery,2004.136(2):p. 310-6.
    [214]K Ito, AC Lim, M Salto-Tellez, et al. RUNX3 attenuates beta-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell,2008.14(3):p.226-37.
    [215]JP Katz, N Perreault, BG Goldstein, et al. The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development,2002.129(11):p.2619-28.
    [216]M Flandez, S Guilmeau, P Blache, et al. KLF4 regulation in intestinal epithelial cell maturation. Exp Cell Res,2008.314(20):p.3712-23.
    [217]AM Ghaleb, G Aggarwal, AB Bialkowska, et al. Notch inhibits expression of the Kruppel-like factor 4 tumor suppressor in the intestinal epithelium. Mol Cancer Res,2008.6(12):p.1920-7.
    [218]H Zheng, DM Pritchard, X Yang, et al. KLF4 gene expression is inhibited by the notch signaling pathway that controls goblet cell differentiation in mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol,2009.296(3):p. G490-8.
    [219]D Hu and Y Wan. Regulation of Kruppel-like factor 4 by the anaphase promoting complex pathway is involved in TGF-beta signaling. J Biol Chem, 2011.286(9):p.6890-901.
    [220]MP Tetreault, Y Yang, J Travis, et al. Esophageal squamous cell dysplasia and delayed differentiation with deletion of kruppel-like factor 4 in murine esophagus. Gastroenterology,2010.139(1):p.171-81 e9.
    [221]BG Goldstein, HH Chao, Y Yang, et al. Overexpression of Kruppel-like factor 5 in esophageal epithelia in vivo leads to increased proliferation in basal but not suprabasal cells. Am J Physiol Gastrointest Liver Physiol,2007.292(6):p. G1784-92.
    [222]H Kazumori, S Ishihara, Y Takahashi, et al. Roles of Kruppel-like factor 4 in oesophageal epithelial cells in Barrett's epithelium development Gut,2011. 60(5):p.608-17.
    [1]O Anand, S Wani and P Sharma. Gastroesophageal reflux disease and Barrett's esophagus. Endoscopy,2008.40(2):p.126-30.
    [2]P Knipschild. Symptoms in gastro-oesophageal reflux. Lancet,1990.335(8695): p.971.
    [3]GR Locke,3rd, NJ Talley, SL Fett, et al. Prevalence and clinical spectrum of gastroesophageal reflux:a population-based study in Olmsted County, Minnesota. Gastroenterology,1997.112(5):p.1448-56.
    [4]DA Lieberman, M Oehlke and M Helfand. Risk factors for Barrett's esophagus in community-based practice. GORGE consortium. Gastroenterology Outcomes Research Group in Endoscopy. Am J Gastroenterol,1997.92(8):p.1293-7.
    [5]J Lagergren, R Bergstrom, A Lindgren, et al. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N Engl J Med,1999. 340(11):p.825-31.
    [6]P Sharma, K McQuaid, J Dent, et al. A critical review of the diagnosis and management of Barrett's esophagus:the AGA Chicago Workshop. Gastroenterology,2004.127(1):p.310-30.
    [7]AJ Cameron, AR Zinsmeister, DJ Ballard, et al. Prevalence of columnar-lined (Barrett's) esophagus. Comparison of population-based clinical and autopsy findings. Gastroenterology,1990.99(4):p.918-22.
    [8]J Ronkainen, P Aro, T Storskrubb, et al. Prevalence of Barrett's esophagus in the general population:an endoscopic study. Gastroenterology,2005.129(6):p. 1825-31.
    [9]NJ Shaheen, MA Crosby, EM Bozymski, et al. Is there publication bias in the reporting of cancer risk in Barrett's esophagus? Gastroenterology,2000.119(2):p. 333-8.
    [10]WJ Blot and JK McLaughlin. The changing epidemiology of esophageal cancer. Semin Oncol,1999.26(5 Suppl 15):p.2-8.
    [11]NJ Shaheen. Advances in Barrett's esophagus and esophageal adenocarcinoma. Gastroenterology,2005.128(6):p.1554-66.
    [12]SJ Spechler, P Sharma, RF Souza, et al. American Gastroenterological Association technical review on the management of Barrett's esophagus. Gastroenterology,2011.140(3):p. e18-52; quiz e13.
    [13]X Chen and CS Yang. Esophageal adenocarcinoma:a review and perspectives on the mechanism of carcinogenesis and chemoprevention. Carcinogenesis,2001. 22(8):p.1119-29.
    [14]Y Koak and M Winslet. Changing role of in vivo models in columnar-lined lower esophagus. Dis Esophagus,2002.15(4):p.271-7.
    [15]M Pera. Experimental Barrett's esophagus and the origin of intestinal metaplasia. Chest Surg Clin N Am,2002.12(1):p.25-37.
    [16]JA Jankowski, RF Harrison, I Perry, et al. Barrett's metaplasia. Lancet,2000. 356(9247):p.2079-85.
    [17]KM Pozharisski. Tumours of the oesophagus. IARC Sci Publ,1973(5):p. 87-100.
    [18]X Xu, J LoCicero,3rd, E Macri, et al. Barrett's esophagus and associated adenocarcinoma in a mouse surgical model. J Surg Res,2000.88(2):p.120-4.
    [19]J Hao, B Liu, CS Yang, et al. Gastroesophageal reflux leads to esophageal cancer in a surgical model with mice. BMC Gastroenterol,2009.9:p.59.
    [20]JD Long and RC Orlando. Esophageal submucosal glands:structure and function. Am J Gastroenterol,1999.94(10):p.2818-24.
    [21]B Hu, C Zhang, K Baawo, et al. Zebrafish K5 promoter driven GFP expression as a transgenic system for oral research. Oral Oncol,2010.46(1):p.31-7.
    [22]X Chen, G Yang, WY Ding, et al. An esophagogastroduodenal anastomosis model for esophageal adenocarcinogenesis in rats and enhancement by iron overload. Carcinogenesis,1999.20(9):p.1801-8.
    [23]Y Su, X Chen, M Klein, et al. Phenotype of columnar-lined esophagus in rats with esophagogastroduodenal anastomosis:similarity to human Barrett's esophagus. Lab Invest,2004.84(6):p.753-65.
    [24]X Chen, R Qin, B Liu, et al. Multilayered epithelium in a rat model and human Barrett's esophagus:similar expression patterns of transcription factors and differentiation markers. BMC Gastroenterol,2008.8:p.1.
    [25]X Chen, S Wang, N Wu, et al. Overexpression of 5-lipoxygenase in rat and human esophageal adenocarcinoma and inhibitory effects of zileuton and celecoxib on carcinogenesis. Clin Cancer Res,2004.10(19):p.6703-9.
    [26]X Chen, N Li, S Wang, et al. Leukotriene A4 hydrolase in rat and human esophageal adenocarcinomas and inhibitory effects of bestatin. J Natl Cancer Inst, 2003.95(14):p.1053-61.
    [27]X Chen, N Li, S Wang, et al. Aberrant arachidonic acid metabolism in esophageal adenocarcinogenesis, and the effects of sulindac, nordihydroguaiaretic acid, and alpha-difluoromethylornithine on tumorigenesis in a rat surgical model. Carcinogenesis,2002.23(12):p.2095-102.
    [28]X Chen, Y Ding, CG Liu, et al. Overexpression of glucose-regulated protein 94 (Grp94) in esophageal adenocarcinomas of a rat surgical model and humans. Carcinogenesis,2002.23(1):p.123-30.
    [29]J Hao, B Zhang, B Liu, et al. Effect of alpha-tocopherol, N-acetylcysteine and omeprazole on esophageal adenocarcinoma formation in a rat surgical model. Int J Cancer,2009.124(6):p.1270-5.
    [30]SR Goldstein, GY Yang, X Chen, et al. Studies of iron deposits, inducible nitric oxide synthase and nitrotyrosine in a rat model for esophageal adenocarcinoma. Carcinogenesis,1998.19(8):p.1445-9.
    [31]X Chen, YW Ding, G Yang, et al. Oxidative damage in an esophageal adenocarcinoma model with rats. Carcinogenesis,2000.21(2):p.257-63.
    [32]K Miwa, H Sahara, M Segawa, et al. Reflux of duodenal or gastro-duodenal contents induces esophageal carcinoma in rats. Int J Cancer,1996.67(2):p. 269-74.
    [33]M Pera, VF Trastek, HA Carpenter, et al. Influence of pancreatic and biliary reflux on the development of esophageal carcinoma. Ann Thorac Surg,1993. 55(6):p.1386-92; discussion 1392-3.
    [34]GW Clark, TC Smyrk, SS Mirvish, et al. Effect of gastroduodenal juice and dietary fat on the development of Barrett's esophagus and esophageal neoplasia: an experimental rat model. Ann Surg Oncol,1994.1(3):p.252-61.
    [35]FX Liu, WH Wang, J Wang, et al. Effect of Helicobacter pylori infection on Barrett's esophagus and esophageal adenocarcinoma formation in a rat model of chronic gastroesophageal reflux. Helicobacter,2011.16(1):p.66-77.
    [36]M Fein, KH Fuchs, TR DeMeester, et al. Evaluation of the intestinal microflora in the rat model for esophageal adenocarcinoma. Dis Esophagus,2000.13(1):p. 39-43.
    [37]KH Moore, P Barry, J Burn, et al. Adenocarcinoma of the rat esophagus in the presence of a proton pump inhibitor:a pilot study. Dis Esophagus,2001.14(1):p. 17-22.
    [38]H Endo, K Iijima, K Asanuma, et al. Exogenous luminal nitric oxide exposure accelerates columnar transformation of rat esophagus. Int J Cancer,2010.127(9): p.2009-19.
    [39]T Miyashita, T Ohta, T Fujimura, et al. Duodenal juice stimulates oesophageal stem cells to induce Barrett's oesophagus and oesophageal adenocarcinoma in rats. Oncol Rep,2006.15(6):p.1469-75.
    [40]G Sarosi, G Brown, K Jaiswal, et al. Bone marrow progenitor cells contribute to esophageal regeneration and metaplasia in a rat model of Barrett's esophagus. Dis Esophagus,2008.21(1):p.43-50.
    [41]AM Hanby, M Pera, I Filipe, et al. Duodenal content reflux esophagitis in the rat: an animal model for the ulcer-associated cell lineage (UACL)? Am J Pathol, 1997.151(6):p.1819-24.
    [42]H Kumagai, K Mukaisho, H Sugihara, et al. Cell kinetic study on histogenesis of Barrett's esophagus using rat reflux model. Scand J Gastroenterol,2003.38(7):p. 687-92.
    [43]G Ingravallo, L Dall'Olmo, D Segat, et al. CDX2 hox gene product in a rat model of esophageal cancer. J Exp Clin Cancer Res,2009.28:p.108.
    [44]JD Bae, KH Jung, WS Ahn, et al. Expression of inducible nitric oxide synthase is increased in rat Barrett's esophagus induced by duodenal contents reflux. J Korean Med Sci,2005.20(1):p.56-60.
    [45]M Pera, PL Fernandez, A Palacin, et al. Expression of cyclin D1 and p53 and its correlation with proliferative activity in the spectrum of esophageal carcinomas induced after duodenal content reflux and 2,6-dimethylnitrosomorpholine administration in rats. Carcinogenesis,2001.22(2):p.271-7.
    [46]J Majka, K Rembiasz, M Migaczewski, et al. Cyclooxygenase-2 (COX-2) is the key event in pathophysiology of Barrett's esophagus. Lesson from experimental animal model and human subjects. J Physiol Pharmacol,2010.61(4):p.409-18.
    [47]TJ Jang, SK Min, JD Bae, et al. Expression of cyclooxygenase 2, microsomal prostaglandin E synthase 1, and EP receptors is increased in rat oesophageal squamous cell dysplasia and Barrett's metaplasia induced by duodenal contents reflux. Gut,2004.53(1):p.27-33.
    [48]DS Oh, SR DeMeester, CM Dunst, et al. Validation of a rodent model of Barrett's esophagus using quantitative gene expression profiling. Surg Endosc,2009. 23(6):p.1346-52.
    [49]P Bonde, D Gao, L Chen, et al. Duodenal reflux leads to down regulation of DNA mismatch repair pathway in an animal model of esophageal cancer. Ann Thorac Surg,2007.83(2):p.433-40; discussion 440.
    [50]Y Naito, M Kuroda, K Uchiyama, et al. Inflammatory response of esophageal epithelium in combined-type esophagitis in rats:a transcriptome analysis. Int J Mol Med,2006.18(5):p.821-8.
    [51]H Kumagai, K Mukaisho, H Sugihara, et al. Thioproline inhibits development of esophageal adenocarcinoma induced by gastroduodenal reflux in rats. Carcinogenesis,2004.25(5):p.723-7.
    [52]T Miyashita, FA Shah, GP Marti, et al. Rabeprazole impedes the development of reflux-induced esophageal cancer in a surgical rat model. Dig Dis Sci,2011. 56(5):p.1309-14.
    [53]E Piazuelo, C Cebrian, A Escartin, et al. Superoxide dismutase prevents development of adenocarcinoma in a rat model of Barrett's esophagus. World J Gastroenterol,2005.11(47):p.7436-43.
    [54]K Oyama, T Fujimura, I Ninomiya, et al. A COX-2 inhibitor prevents the esophageal inflammation-metaplasia-adenocarcinoma sequence in rats. Carcinogenesis,2005.26(3):p.565-70.
    [55]SW Kim, TJ Jang, KH Jung, et al. Sulindac prevents esophageal adenocarcinomas induced by gastroduodenal reflux in rats. Yonsei Med J,2007. 48(6):p.1020-7.
    [56]CE Woodall, Y Li, QH Liu, et al. Chemoprevention of metaplasia initiation and carcinogenic progression to esophageal adenocarcinoma by resveratrol supplementation. Anticancer Drugs,2009.20(6):p.437-43.
    [57]GJ Wetscher, G Perdikis, DH Kretchmar, et al. Esophagitis in Sprague-Dawley rats is mediated by free radicals. Dig Dis Sci,1995.40(6):p.1297-305.
    [58]M Tugay, F Yildiz, T Utkan, et al. Esophagitis impairs esophageal smooth muscle reactivity in the rat model:an in vitro study. Dig Dis Sci,2003.48(11):p. 2147-52.
    [59]N Omura, H Kashiwagi, G Chen, et al. Establishment of surgically induced chronic acid reflux esophagitis in rats. Scand J Gastroenterol,1999.34(10):p. 948-53.
    [60]M Pawlik, R Pajdo, S Kwiecien, et al. Nitric oxide (NO)-releasing aspirin exhibits a potent esophagoprotection in experimental model of acute reflux esophagitis. Role of nitric oxide and proinflammatory cytokines. J Physiol Pharmacol,2011.62(1):p.75-86.
    [61]K Nagahama, M Yamato, H Nishio, et al. Essential role of pepsin in pathogenesis of acid reflux esophagitis in rats. Dig Dis Sci,2006.51(2):p.303-9.
    [62]H Miwa, T Oshima, J Sakurai, et al. Experimental oesophagitis in the rat is associated with decreased voluntary movement. Neurogastroenterol Motil,2009. 21(3):p.296-303.
    [63]Y Saegusa, H Takeda, S Muto, et al. Decreased motility of the lower esophageal sphincter in a rat model of gastroesophageal reflux disease may be mediated by reductions of serotonin and acetylcholine signaling. Biol Pharm Bull,2011.34(5): p.704-11.
    [64]Y Kuroiwa, T Okamura, Y Ishii, et al. Enhancement of esophageal carcinogenesis in acid reflux model rats treated with ascorbic acid and sodium nitrite in combination with or without initiation. Cancer Sci,2008.99(1):p.7-13.
    [65]SK Ku, BI Seo, JH Park, et al. Effect of Lonicerae Flos extracts on reflux esophagitis with antioxidant activity. World J Gastroenterol,2009.15(38):p. 4799-805.
    [66]K Nagahama, M Yamato, S Kato, et al. Protective effect of lafutidine, a novel H2-receptor antagonist, on reflux esophagitis in rats through capsaicin-sensitive afferent neurons. J Pharmacol Sci,2003.93(1):p.55-61.
    [67]Y Van Nieuwenhove and G Willems. Gastroesophageal reflux triggers proliferative activity of the submucosal glands in the canine esophagus. Dis Esophagus,1998.11(2):p.89-93.
    [68]KD Lillemoe, LF Johnson and JW Harmon. Alkaline esophagitis:a comparison of the ability of components of gastroduodenal contents to injure the rabbit esophagus. Gastroenterology,1983.85(3):p.621-8.
    [69]EJ Schweitzer, JW Harmon, BL Bass, et al. Bile acid efflux precedes mucosal barrier disruption in the rabbit esophagus. Am J Physiol,1984.247(5 Pt 1):p. G480-5.
    [70]EJ Schweitzer, BL Bass, S Batzri, et al. Bile acid accumulation by rabbit esophageal mucosa. Dig Dis Sci,1986.31(10):p.1105-13.
    [71]LF Johnson and JW Harmon. Experimental esophagitis in a rabbit model. Clinical relevance. J Clin Gastroenterol,1986.8 Suppl 1:p.26-44.
    [72]A Lanas, Y Royo, J Ortego, et al. Experimental esophagitis induced by acid and pepsin in rabbits mimicking human reflux esophagitis. Gastroenterology,1999. 116(1):p.97-107.
    [73]F Soteras, A Lanas, I Fiteni, et al. Nitric oxide and superoxide anion in low-grade esophagitis induced by acid and pepsin in rabbits. Dig Dis Sci,2000.45(9):p. 1802-9.
    [74]A Lanas, F Soteras, P Jimenez, et al. Superoxide anion and nitric oxide in high-grade esophagitis induced by acid and pepsin in rabbits. Dig Dis Sci,2001. 46(12):p.2733-43.
    [75]Y Li, JM Wo, S Ellis, et al. A novel external esophageal perfusion model for reflux esophageal injury. Dig Dis Sci,2006.51(3):p.527-32.
    [76]C Poplawski, D Sosnowski, A Szaflarska-Poplawska, et al. Role of bile acids, prostaglandins and COX inhibitors in chronic esophagitis in a mouse model. World J Gastroenterol,2006.12(11):p.1739-42.
    [77]H Watanabe, K Kinoshita, M Katayama, et al. Acquisition of a gastric or duodenal phenotype on heterotropic transplantation of esophagus and bladder tissues in F344 rats. J Exp Clin Cancer Res,2003.22(4):p.619-22.
    [78]H Watanabe, Y Kominami, R Gon, et al. Trans-differentiation of a duodenal phenotype on duodenal transplantation of different normal tissues in F344 rats. Hiroshima J Med Sci,2011.60(1):p.1-6.
    [79]H Chen, Y Fang, W Tevebaugh, et al. Molecular mechanisms of Barrett's esophagus. Dig Dis Sci,2011:p. in press.
    [80]J Kong, MA Crissey, S Funakoshi, et al. Ectopic Cdx2 expression in murine esophagus models an intermediate stage in the emergence of Barrett's esophagus. PLoS One,2011.6(4):p. e18280.
    [81]X Wang, H Ouyang, Y Yamamoto, et al. Residual embryonic cells as precursors of a Barrett's-like metaplasia. Cell,2011.145(7):p.1023-35.
    [82]Quante M, Marrache F and W TC. Overexpression of Interleukin-1β Haploinsufficiency of p16, and Application of Deoxycholate Induce Esophageal Metaplasia in Mice. DDW,2009.
    [83]FH Ellis, Jr., X Xu, MH Kulke, et al. Malignant transformation of the esophageal mucosa is enhanced in p27 knockout mice. J Thorac Cardiovasc Surg,2001. 122(4):p.809-14.
    [84]M Lechpammer, X Xu, FH Ellis, et al. Flavopiridol reduces malignant transformation of the esophageal mucosa in p27 knockout mice. Oncogene,2005. 24(10):p.1683-8.
    [85]M Fein, JH Peters, N Baril, et al. Loss of function of Trp53, but not Ape, leads to the development of esophageal adenocarcinoma in mice with jejunoesophageal reflux. J Surg Res,1999.83(1):p.48-55.
    [86]P Gillen, P Keeling, PJ Byrne, et al. Experimental columnar metaplasia in the canine oesophagus. Br J Surg,1988.75(2):p.113-5.
    [87]H Li, TN Walsh, G O'Dowd, et al. Mechanisms of columnar metaplasia and squamous regeneration in experimental Barrett's esophagus. Surgery,1994. 115(2):p.176-81.
    [88]Y Kawaura, Y Tatsuzawa, T Wakabayashi, et al. Immunohistochemical study of p53, c-erbB-2, and PCNA in barrett's esophagus with dysplasia and adenocarcinoma arising from experimental acid or alkaline reflux model. J Gastroenterol,2001.36(9):p.595-600.
    [89]CG Bremner, VP Lynch and FH Ellis, Jr. Barrett's esophagus:congenital or acquired? An experimental study of esophageal mucosal regeneration in the dog. Surgery,1970.68(1):p.209-16.
    [90]S von Delius, H Feussner, J Henke, et al. Submucosal endoscopy:a novel approach to en bloc endoscopic mucosal resection (with videos). Gastrointest Endosc,2007.66(4):p.753-6.
    [91]A Parra-Blanco, MR Arnau, D Nicolas-Perez, et al. Endoscopic submucosal dissection training with pig models in a Western country. World J Gastroenterol, 2010.16(23):p.2895-900.
    [92]S Eventov-Friedman, H Katchman, E Shezen, et al. Embryonic pig liver, pancreas, and lung as a source for transplantation:optimal organogenesis without teratoma depends on distinct time windows. Proc Natl Acad Sci U S A,2005. 102(8):p.2928-33.
    [93]S Abdulnour-Nakhoul, NL Nakhoul, SA Wheeler, et al. HCO3-secretion in the esophageal submucosal glands. Am J Physiol Gastrointest Liver Physiol,2005. 288(4):p. G736-44.
    [94]S Abdulnour-Nakhoul, NL Nakhoul, SA Wheeler, et al. Characterization of esophageal submucosal glands in pig tissue and cultures. Dig Dis Sci,2007. 52(11):p.3054-65.
    [95]KN Christie, C Thomson and D Hopwood. A comparison of membrane enzymes of human and pig oesophagus; the pig oesophagus is a good model for studies of the gullet in man. Histochem J,1995.27(3):p.231-9.
    [96]S Tsai, B Mir, AC Martin, et al. Detection of transcriptional difference of porcine imprinted genes using different microarray platforms. BMC Genomics,2006.7: p.328.
    [97]JT Cole, JL Gookin, JM Gayle, et al. Endoscopy via a gastric cannula to monitor the development of ulcers in the pars esophagea in pigs after consumption of a finely ground feed combined with a period of withholding of feed. Am J Vet Res, 2002.63(8):p.1076-82.
    [98]Y Vicente, C da Rocha, B Perez-Mies, et al. Effect of reflux and esophagitis on esophageal volume and acid clearance in piglets. J Pediatr Gastroenterol Nutr, 2004.38(3):p.328-37.
    [99]TP Huttl, TK Huttl, RA Lang, et al. Laparoscopic partial myectomy:an experimental reflux model. Surg Endosc,2006.20(4):p.665-72.
    [100]G Clemente, R Manni, FM Vecchio, et al. Effect of different fractions of alkaline reflux on the gastric stump and the esophagus:an experimental research on pigs. J Surg Res,1990.48(2):p.121-6.
    [101]CS Rogers, DA Stoltz, DK Meyerholz, et al. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science,2008.321(5897): p.1837-41.
    [102]A Hofmann, B Kessler, S Ewerling, et al. Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep,2003.4(11):p.1054-60.
    [103]M Nowak-Imialek, WA Kues, B Petersen, et al. Oct4-enhanced green fluorescent protein transgenic pigs:a new large animal model for reprogramming studies. Stem Cells Dev,2011.20(9):p.1563-75.
    [104]AC McCalla-Martin, X Chen, KE Linder, et al. Varying phenotypes in swine versus murine transgenic models constitutively expressing the same human Sonic hedgehog transcriptional activator, K5-HGLI2 Delta N. Transgenic Res, 2010.19(5):p.869-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700