丙型肝炎病毒NS3/NS4A蛋白酶抑制剂的设计与合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丙型肝炎是人类常见的病毒性传染病,我国发病率约3.2%,目前临床上没有特效药,只能使用常规的抗病毒药或干扰素,效果并不理想,副作用大,因此迫切需要开发疗效好、副作用低的特效药。本论文介绍了丙型肝炎病毒(HCV)的生物学特征,及在病毒复制周期中的抗病毒药物作用靶点。在此基础上,阐述了治疗丙型肝炎病毒药物的研究进展概况,其中针对HCV NS3/NS4A酶抑制剂的研究较为活跃,NS3/NS4A蛋白酶为含有锌离子的金属蛋白酶,已有两个化合物进入到临床阶段,但均为肽类化合物,使用上受到一定的限制。
     双苯并咪唑甲烷类化合物为高活性的非肽类HCV NS3/NS4A酶抑制剂。本文使用SYBYL7.0软件,对已知的非肽类抑制剂双苯并咪唑甲烷类化合物进行3DQSAR分析。以这类化合物为先导,运用生物电子等排原理,设计了具有相似骨架的四大类目标化合物:①用苯并噻唑代替其中的一个苯并咪唑;②用吡啶并咪唑代替其中的一个苯并咪唑;③用苯联噻唑代替其中的一个苯并咪唑;④2-苯基咪唑并[1,2-a]吡啶类化合物。通过对所设计的化合物进行合成和抗病毒活性研究,希望能够发现具有新型结构的活性化合物,进一步深入研究NS3/NS4A酶抑制的构效关系。
     本文首次采用了丙二酰胺与邻芳二胺在微波辐射下制备对称性双芳并唑甲烷化合物、用芳并(咪、噻、噁)唑-2-乙酸乙酯与邻芳二胺在微波辐射下制备非对称性双芳并(咪、噻、噁)唑甲烷化合物、用4-取代噻唑-2-乙酸乙酯与邻芳二胺在微波辐射下制备非对称性(4-取代-噻唑-2-基)(1H-芳并咪唑-2-基)甲烷化合物等合成路线,共合成了48个目标化合物,其中41个为新化合物,用~1HNMR,ESI-MS,FT-IR,元素分析对这些化合物进行了全面表征,确定了这些化合物的结构,并对部分化合物进行了~(13)CNMR分析。
     在设计并合成的这48个目标化合物中,包括:①双芳并咪唑甲烷类化合物24个(其中含吡啶并咪唑的双芳咪唑甲烷化合物5个,含对称结构的双芳并咪唑甲烷化合物7个,含非对称结构的双芳并咪唑甲烷化合物12个);②含苯并噻(噁)唑环及苯并咪唑甲烷化合物7个;③(4-取代-噻唑-2-基)(1H-芳并咪唑-2-基)甲烷6个;④咪唑并[1,2-a]吡啶类化合物11个。结构如下:
The treatment of chronic diseases caused by the hepatitis C virus (HCV) is in unmet clinical need, since current therapeutic methods are only partially effective and limited with undesirable side effects. The viral. NS3/NS4A serine protease is the well-investigated target for the development of novel therapeutic agents and set up screening assays for the identification of selective inhibitors. Considerable efforts have been'made to the discovery of several classes of compounds with potential antiviral activity previously and two NS3/NS4A serine protease inhibitors are under preclinic trail.
    Bisbenzimidazolylmethanes have high potation for inhibition of the hepatitis C virus (HCV) NS3/NS4A serine protease. The main active ion is the Zn~(2+) in the protease. Displaying highly potent inhibition against NS3/NS4A serine protease and being nonpeptidic, this class of compounds will be the most hopeful anti-HCV agents. A variety of new potential inhibitors of this type have been designed and synthesized, and the steric and electrostatic properties of the reported compounds are analyzed by both the basic and the computer-aided drug-design theories. The 3DQSAR investigation for the reported compounds was also carried out with SYBYL 7.0 software. Replacement of one benzimidazole fragment with benzothiazole or benzoxazole and optimization of the structure to create the new frame of the compounds were also carried out with the exception to find more potent compounds. The purpose of design and synthesis of these compounds is to investigate the QSAR of this class of compounds with the inhibition of HCV NS3/NS4A protease and eventually to develop more potent inhibitors.
    Total 48 target compounds have been synthesized by the newly-developed synthetic routes, among which 41 are new compounds. The structure of all the compounds were characterized by ~1H NMR spectroscopy, FT-IR spectroscopy, ESI-Mass spectrometry, and elemental analyses, and the results were in agreement with the proposed structures.
    The 48 compounds include 24 diheteroarylmethanes with asymmetric and symmetric structures; 6 (Benzothiazol-2-yl)(heteroaryl-2-yl)methanes; 1
引文
[1] Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science. 1989; 244(4902): 359-62.
    [2] 成军.丙型肝炎病毒致病的分子生物学机制,解放军医学杂志,2003;28(1):23-27
    [3] De Clercq, E.,. Antiviral drags: current state of the art. J. Clin. Virol. 2001, 22(1): 73-89.
    [4] Kolykhalov, A. A., Mihalik, K., Feinstone, S. M., Rice, C. M., Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3_nontranslated region are essential for virus replicationin vivo. J. Virol, 2000; 74(10), 2046-2051.
    [5] De Francesco; Kleymann G.. New antiviral drugs that target herpesvirus helicase primase enzymes. Herpes. 2003; 10(2): 46-52.
    [6] Reigadas S; Ventura M; Andreola mL; Michel J; Gryaznov S; Tarrago-Litvak L; Litvak S; Astier-Gin T. An oligonucleotide complementary to the SL-B1 domain in the 3'-end of the minus-strand RNA of the hepatitis C virus inhibits in vitro initiation of RNA synthesis by the viral polymerase. Virology. 2003; 314(1): 206-20.
    [7] Tang C, Loeliger E, Kinde I, Kyere S, Mayo K, Barklis E, Sun Y, Huang M, Summers M. F. Antiviral inhibition of the HIV-1 capsid protein. J Mol Biol. 2003; 327(5): 1013-20.
    [8] Deres K, Schroder CH, Paessens A, Goidmann S, Hacker HJ, Weber O, Kramer T, Niewohner U, Pleiss U, Stoltefuss J, Graef E, Koletzki D, Masantschek RN, Reimann A, Jaeger R, Gross R, Beckermann B, Schlemmer KH, Haebich D, Rubsamen-Waigmann H. Inhibition of hepatitis B virus replication by drug-induced depletion of nucleocapsids. Science. 2003; 299(5608): 893-6.
    [9] Tan WS. Inhibition of hepatitis B virus assembly with synthetic peptides derived from the viral surface and core antigens. J Gen Appl Microbiol. 2002; 48(2): 103-7.
    [10] Wen YM, Lin X, Ma ZM. Exploiting new potential targets for anti-hepatitis B virus drugs. Curr Drug Targets Infect Disord. 2003; 3(3): 241-6.
    [11] SudoK, Malsumoto Y, Matsnshima M, et al. The behavior and significance of slow-binding enzyme inhibitors. Antiviral Chemistry & Chemotherapy. 1997, 8(2): 541
    [12] Sudo K, Matsumot Y, Matsushima M, A Rational Approach in Drug Design. Biochemical and Biophysical Research Communication, 1997, 238(3): 643
    [13] Anton Poliakov. Peptide-Based Inhibitors of Hepatitis C Virus NS3 Serine Protease: Kinetic Aspects and Inhibitor Design, Acta Universitatis Upsaiiensis Uppsala 2004[M]
    [14] Kuang W F, Lin YC, Jean F, et al. Hepatitis C virus NS3 RNA helicase activity is modulated by the two domains of NS3 and NS4A. BiochemBio-phys Res Commun, 2004, 317(1): 211
    [15] Kapadia SB, Brideau2Anderson A, Chisari FV. Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc Natl Acad Sci USA, 2003, 100(12): 201422018.
    [16] Di Marco S, Rizzi M, Volpari C, Walsh MA, Narjes F, Colarusso S, De Francesco R, Matassa VG, Sollazzo M. Inhibition of the hepatitis C virus NS3/4A protease. The crystal structures of two protease-inhibitor complexes. J Biol Chem. 2000; 275(10): 7152-7.
    [17] Bartenschlager R, Ahlborn-Laake L, Mous J, Jacobsen H. Kinetic and structural analyses of hepatitis C virus polyprotein processing. J Virol. 1994; 68(8): 5045-55.
    [18] Butkiewicz N, et al. Sequence analysis of the core gene of 14 hepatitis C virus genotypes. J Virol, 2000, 74(24): 4291-4301
    [19] Yao N, Reichert P, Taremi SS, Prosise WW, Weber PC. Molecular views of viral polyprotein processing revealed by the crystal structure of the hepatitis C virus bifunctional protease-helicase. Structure Fold Des. 1999, 7(11): 1353-63.
    [20] love et al. Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell, 1996, 87(2): 343-355
    [21] De Francesco, R., Steinkuhler, C.,. Structure and function of the hepatitis C virus NS3-NS4A serine proteinase. Curr. Top. Microbiol. Immunol. 2000, 242(1): 149-169
    [22] Kim, J. L., Morgenstern, K. A., Lin, C., Fox, T., Dwyer, M. D., Landro, J. A., Chambers, S. P., Markland, W., Lepre, C. A., O'Malley, E. T., Harbeson, S. L., Rice, C. M., Murcko, M. A., Caron, P. R., Thomson, J. A., Crystal structure of the hepatitis C virus NS3 proteasedomain complexed with a synthetic NS4A cofactor peptide. Cell. 1996, 87(2): 343-355.
    [23] Yan, Y., Li, Y., Munshi, S., Sardana, V., Cole, J. L., Sardana, M., Steinkuehler, C., Tomei, L., De Francesco, R., Kuo, L. C., Chen, Z., Complex of NS3 protease and NS4A peptide of BK strainhepatitis C virus: a 2.2 A resolution structure in a hexagonal crystalform. Protein Sci. 1998; 7(3): 837-847.
    [24] Voss T, Meyer R, Sommergruber W. Spectroscopic characterization of rhinoviral protease 2A: Zn is essential for the structural integrity. Protein Sci. 1995; 4(12): 2526-31.
    [25] Ingallinella, P., Fattori, D., Altamura, S., Steinkuhler, C., Koch, U., Cicero, D., Bazzo, R., Cortese, R., Bianchi, E., Pessi, A., Prime site binding inhibitors of a serine protean: NS3/4A of hepatitis C virus. Biochemistry. 2002, 41(24): 5483-5492.
    [26] Failla C, Tomei L, De Francesco R. Both NS3 and NS4A are required for protvolytic processing of hepatitis C virus nonstructural proteins. J Virol. 1994, 68(6): 3753-60.
    [27] Bartenschlager R, Ahlborn-Laake L, Mous J, Jacobsen H. Kinetic and structural analyses of hepatitis C virus polyprotein processing. J Viral. 1994, 68(8): 5045-55.
    [28] Urbani A, Biasiol G, Brunetti M, Volpari C, Di Marco S, Sollazzo M, Orru S, Piaz FD, Casbarra A, Pucci P, Nardi C, Gallinari P, De Francesco R, Steinkuhler C. Multiple determinants influence complex formation of the hepatitis C virus NS3 protease domain with its NS4A cofactor peptide. Biochemistry. 1999, 38(16): 5206-15.
    [29] Tanji Y, Hijikata M, Satoh S, Kaneko T, Shimotohno K. Hepatitis C virus-encoded nonstructural protein NS4A has versatile functions in viral, protein processing. J Virol. 1995; 69(3): 1575-81.
    [30] Archer S J, Camac DM, Wu ZJ, Farrow HA, Domaille P J, Wasserman ZR, Bukhtiyarova M, Rizzo C, Jagannathan S, Mersinger LJ, Kettner CA. Hepatitis C virus NS3 protease requires its NS4A cofactor peptide for optimal binding of a boronic acid inhibitor as shown by NMR. Chem Biol. 2002; 9(1): 79-92..
    [31] Landro JA, Raybuck SA, Luong YP, O'Malley ET, Harbeson SL, Morgenstern KA, Rao G, Livingston DJ. Mechanistic role of an NS4A peptide cofactor with the truncated NS3 protease of hepatitis C virus: elucidation of the NS4A stimulator), effect via kinetic analysis and inhibitor mapping. Biochemistry. 1997; 36(31): 9340-8.
    [32] Reed KE, Rice CM. Overview of hepatitis C virus genome structure, polyprotein processing, and protein properties. Curr Top Microbiol Imomunol, 2000, 242(1): 55
    [33] Serebrov V, Pyle AM. Periodic cycles of RNA unwinding and pausing by hepatitis C virus NS3 helicase. Nature, 2004, 430(6998): 476
    [34] Bianco PR. Hepatitis C NS3 helicase unwinds RNA in leaps and bounds. Lancet, 2004, 364(9443): 1385
    [35] Levin MK, Wang YH, Patel SS. The functional interaction of the hepatitis C virus helicase molecules is responsible for unwinding processivity. J Biol Chem, 2004, 279(25): 26005
    [36] Lucius AL, Vindigni A, Gregorian R, et al. DNA unwinding step-size of E. coli Rec BCD helicase determined from single turnover chemical quenched-flow kinetic studies. J Mol Biol, 2002, 324(3): 409
    [37] Ivashkina, N., Wolk, B., Lohmann, V., Bartenschlager, R., Blum, H. E., Penin, F., Moradpour, D., The hepatitis C virus RNA-dependent RNA polymerase membrane insertion sequence is a transmembrane segment. J. Virol. 2002, 76(55): 13088-13093.
    [38] Pang PS, Jankowsky E, Planet PJ, et al. The hepatitis C viral NS3 pro2 rein is a processive DNA helicase with cofactor enhanced RNA unwinding. EMBO J, 2002, 21(5): 1168.
    [39] Lamarre D, Anderson PC, Bailey M, Beaulieu P, Bolger G, Bormeau P, Bos M, Cameron DR, Cartier M, Cordingley MG, Faucher AM, Goudreau N, Kawai SH, Kukolj G, Lagace L, LaPlante SR, Narjes H, Poupart MA, Rancourt J, Sentjens RE, St George R, Simoneau B, Steinmann G, Thibeault D, Tsantrizos YS, Weldon SM, Yong CL, Llinas-Brunet M. An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature. 2003, 426(6963): 186-189.
    [40] Thibeauit D, Maurice R, Pilote L, Lamarre D, Pause A. In vitro characterization of a purified NS3/4A protease variant of hepatitis C virus. J Biol Chem. 2001 Dec 7; 276(49): 46678-84.
    [41] 姚桢等:丝氨酸蛋白酶抑制剂—抗丙型肝炎病毒新药,国外医学药学分册,2004;31 (3):185
    [42] Edwards, P. D., Bemstein, P. R., Synthetic inhibitors of elastase. Med. Res. Rev., 1994, 14(1): 127-194
    [43] Ede, N. J., Eagle, S. N., Wickham, G., Bray, A. M., Warne, B., Shoemaker, K, Rosenberg, S., Solid phase synthesis of peptide aldehydeprotease inhibitors. Probing the proteolytic sites of hepatitis C viruspolyprotein, J. Pept. Sci, 2000, 6(1): 11-18.
    [44] Priestley, E., De Lucca, I., Ghavimi, B., Erickson-Viitanen, S., Decicco, C., Pl phenethyl peptide boronic acid inhibitors of HCV NS3 protease. Bioorg. Med. Chem. Lett,. 2002, 12(6): 3199-3202.
    [45] Slater, M. J., Andrews, D. M., Baker, G., Bethell, S. S., Carey, S., Chaignot, H., Clarke, B., Coomber, B., Ellis, M., Good, A., Gray, N., Hardy, G., Jones, P., Mills, G., Robinson, E., Design and synthesis of ethyl pyrrolidine-5, 5-trans-lactams as inhibitors of hepatitis C virusNS3/NS4A protease. Bioorg. Med. Chem. Lett., 2002,. 12(6): 3359-3362
    [46] Zhang, R., Durkin, J. P., Windsor, W. T.,. Azapeptides as inhibitors of the hepatitis C virus NS3 serine protease. Bioorg. Med. Chem. Lett., 2002, 12(3): 1005-1008.
    [47] Bennett, J. M., Campbell, A. D., Campbell, A. J., Carr, M. G., Dunsdon, R. M., Greening, J. R., Hurst, D. N., Jennings, N. S., Jones, P. S., Jordan, S., Kay, P. B., O'Brien, M. A., King-Underwood, J., Raynham, T. M., Wilkinson, C. S., Wilkinson, T. C., Wilson, F. X., The identification of alpha-ketoamides as potent inhibitors of hepatitis C virus NS3-4A proteinase. Bioorg. Med. Chem. Lett., 2001, 11(1): 355-357
    [48] Han, W., Hu, Z., Jiang, X., Decicco, C. P., Alpha-ketoamides, alpha-ketoesters and alpha-diketones as HCV NS3 protease inhibitors. Bioorg. Med. Chem. Lett., 2000, 10(3): 711-713.
    [49] Colarusso, S., Gerlach, B., Koch, U., Muraglia, E., Conte, I., Stansfield, I., Matassa, V. G., Narjes, F.,. Evolution, synthesis and SAR of tripeptide alpha-ketoacid inhibitors of the hepatitis C virus NS3/NS4A serine protease. Bioorg. Med. Chem. Lett, 2002, 12(3): 705-7
    [50] Narjes, F., Brunetti, M., Colarusso, S., Gerlach, B., Koch, U., Biasiol, G., Fattori, D., De Francesco, R., Matassa, V. G., Steinkuhler, C., Alpha-ketoacids are potent slow binding inhibitors of the hepatitis C virus NS3 protease. Biochemistry, 2000, 39(6): 1849-1861.
    [51] Nizi, E., Koch, U., Ponzi, S., Matassa, V. G., Gardelli, C., Capped dipeptide alpha-ketoacid inhibitors of the HCV NS3 protease. Bioorg. Med. Chem. Lett., 2002, 12(10): 3325-3328.
    [52] Steinkuhler, C., Koch, U., Narjes, F., Matassa, V. G., Hepatitis C virus protease inhibitors: current progress and future challenges. Curr. Med. Chem,. 2001., 8(3): 919-932.
    [53] Fischmann, T. O., Weber, P. C.,. Peptidic inhibitors of the hepatitis C virus serine protease within non-structural protein 3. Curr. Pharm. Des., 2002, 8(11): 2533-2540.
    [54] Sanderson, P. E., Small, noncovalent serine protease inhibitors. Med. Res. Rev. 1999, 19: 179-197.
    [55] Llinas-Brunet, M., Bailey, M., Fazal, G., Goulet, S., Halmos, T., Laplante, S., Maurice, R., Poirier, M., Poupart, M. A., Thibeault, D., Wemic, D. J., Lamarre, D., Peptideobased inhibitors of the hepatitis C virus serine protease. Bioorg. Med. Chem. Lett, 1998, 8(7): 1713-1718.
    [56] Steinkuhler, C., Biasiol, G., Brunetti, M., Urbani, A., Koch, U., Cortese, R., Pessi, A., De Francesco, R.,. Product inhibition of the hepatitis C virus NS3 protease, Biochemistry, 1998, 37(32): 8899-8905.
    [57] Llinas-Brunet, M., Bailey, M., Deziel, R., FaTal, G., Gorys, V., Goulet, S., Halmos, T., Maurice, R., Poirier, M., Poupart, M. A., Rancourt, J., Thibeault, D., Wemic, D., Lamarre, D.,. Studies on the C-terminal of hexapeptide inhibitors of the hepatitis C virus serine protease. Bioorg. Med. Chem. Lett., 1998, 8(15): 2719-272
    [58] Yao, N., Reichert, P., Taremi, S. S., Prosise, W. W., Weber, P. C., Molecular views of viral polyprotein processing revealed by the crystal structure of the hepatitis C virus bifunctional protease-helicase, Struct. Fold Des., 1999, 7(5): 1353-1363.
    [59] Ingallinella, P., Aitamura, S., Bianchi, E., Taliani, M., Ingenito, R., Cortese, R., De Francesco, R. Potent peptide inhibitors of human hepatitis C virus NS3 protease are obtained by optimizing the cleavage products. Biochemistry, 1998, 37(31): 8906—8914.
    [60] Llinas-Brunet, M., Bailey, M., Fazal, G., Ghiro, E., Gorys, V., Goulet, S., Halmos, T., Maurice, R., Poirier, M., Poupart, M. A., Rancourt, J., Thibeault, D., Wemic, D., Lamarre, D., Highly potent and selective peptide-based inhibitors of the hepatitis C virus serine protease: towards smaller inhibitors. Bioorg. Med. Chem. Lett., 2000, 10(10): 2267-2670.
    [61] Lu, W., Apostol, I., Qasim, M. A., Wame, N., Wynn, R., Zhang, W. L., Anderson, S., Chiang, Y. W., Ogin, E., Rothberg, I., Ryan, K., Laskowski Jr., M., Binding of amino acid side chains to S1 cavities of serine proteinases. J. Mol. Biol., 1997, 266(2): 441-461.
    [62] steinkuhler, C., Biasiol, G., Brunetti, M., Urbani, A., Koch, U., Cortese, R., Pessi, A., De Francesco, R., Product inhibition of the hepatitis C virus NS3 protease. Biochemistry, 1998, 37(31): 8899-8905.
    [63] De Francesco, R., Steinkuhler, C., Structure and function of the hepatitis C virus NS3-NS4A serine proteinase. Curr. Top. MicrobioL Immunol., 2000, 242(1): 149-169
    [64] Koch, U., Biasiol, G., Brunetti, M., Fattori, D., pallaoro, M., Steinkuhler, C., Role of charged residues in the catalytic mechanism of hepatitis C virus NS3 protease: electrostatic precollision guidance and transition-state stabilization. Biochemistry, 2001. 40(2): 631-640.
    [65] Narjes, F., Koehler, K. F., Koch, U., Gerlach, B., Colarusso, S., Steinkuhler, C., Brunetti, M., Altamura, S., De Francesco, R., Matassa, V. G., A designed P(1) cysteine mimetic for covalent and non-covalent inhibitors of HCV NS3 protease. Bioorg. Med. Chem. Lett, 2002,. 12(3): 701-704.
    [66] Llinas-Brunet, M., Bailey, M., Fazal, G., Ghiro, E., Gorys, V., Goulet, S., Halmos, T., Maurice, R., Pokier, M., Poupart, M. A., Rancoutt, J., Thibeault, D. Highly potent and selective peptide-based inhibitors of the hepatitis C virus serine protease: towards smaller inhibitors. Bioorg. Med. Chem. Lett, 2000, 10(6): 2267-2670
    [67] Beaulieu, P. -L., Llinas-Brunet, M., Therapies for hepatitis C infection: targeting the non-structural proteins of HCV. Curr. Med. Chem., 2002., 1(1): 163-176.
    [68] Llinas-Brunet, M., Bailey, M.D., Cameron, D., Faucher, A. M., Ghiro, E., Goudreau, N., Halmos, T., Poupart, M. A., Rancourt, J., Tsantrizos, Y. S., Wernic, D. M., Simoneau, B., 2000b. Hepatitis C inhibitor tri-peptides. Int. Patent Appl. WO 00/09543. Boehringer Ingelheim (Canada) Ltd..
    [69] Fischmann, T. O., Weber, P. C.,. Peptidic inhibitors of the hepatitis C virus serine protease within non-structural protein 3. Curr. Pharm. Des,. 2002, 8(10): 2533-2540.
    [70] Lipinski, C. A., Lombardo, F., Dominy, B. W., Feeney, P. J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001,. 46(1): 3-26.
    [71] Lamarre, D., Bailey, M., Bolger, G., Cameron, D., Cartier, M., Faucher, A. M., Goudreau, N., Kukolj, G., Lagace, L., Pause, A., Rancourt, J. The discovery of BILN 2061—an orally bioavailable small molecule inhibitor of the HCV serine protease and a promising target for antiviral treatment of hepatitis C. Hepatology, 2002, 36(2): 464..
    [72] Narjes, H., Yong, C. L., Steinmann, G.,. Tolerability and pharmacokinetics of BILN 2061, a novel HCV serine protease inhibitor, after oral single doses of 5 to 2400 mg in healthy male subjects. Hepatology, 2002, 36(3): 800.
    [1] Steinkuhler, C., Koch, U., De Francesco, R., Pessi, A., The proteinases encoded by hepatitis C virus as therapeutic target. In: yon der Helm, K., Korant, B.D., Cheronis, J. C. (Eds.), Proteases as Targets for Therapy, Springe-Verlag, Berlin Heidelberg, 2000,. 140(1): 75-94.
    [2] Sperandio, D., Gangloff, A. R., Litvak, J., Goldsmith, R., Hataye, J. M., Wang, V. R., Shelton, E. J., Elrod, K., Janc, J. W., Clark, J. M., Rice, K.,Weinheimer, S., Yeung, K. S., Meanwell, N. A., Hernandez, D., Staab, A. J., Venables, B. L., Spencer, J. R., Highly potent non-peptidic inhibitors of the HCV NS3/NS4A serine protease. Bioorg. Med. Chem. Lett., 2002,.12(12): 3129-3133
    [3] Yeung, K. S., Meanwell, N. A., Qiu, Z., Hernandez, D., Zhang, S., McPhee, F., Weinheimer, S., Clark, J. M., Janc, J. W., Structure-activity relationship studies of a bisbenzimidazole-based, Zn(2+)-dependent inhibitor of HCV NS3 serine protease. Bioorg. Med. Chem. Lett. 2001, 11(11): 2355-2359
    [4] Katz B A, Clark J. M., Finer-Moore J. S, Jenjins T E, Johnson C R., Jenkins Johnson C. R., Rose M. J., Luong C. R, Moore W. R. Stroud R. M., Design of potent selective zinc-mediated serine protease inhibitore, Nature, 1998, 391(2), 608-612.
    [5] SYBYL Moldeling Software, v7.0, Tripos Associates, St. Louis. Mo. USA
    [1] Uchida M, Morita S, Chihiro M and Nakagawa K. Preparation of imidazopyridine derivatives as antiulcer agents, JP 61145182 A2
    [2] Santilli A A, Scotese A C and Strike D P, Preparation of benzylthio-substituted imidazo[4, 5-c] pyridines and analogs for treatment of osteoporosis., EP 434405 A1.
    [3] Matsuishi N, Takeda H, Iiizumi K, Murakami S and Hisamitsu S, Preparation of imidazo[4, 5-b] pyridine derivatives as ulcer inhibitors, JP 63146883 A2.
    [4] Temple C Jr, Rose J D, Comber R N, Rener G A, Synthesis of potential anticancer agents: imidazo[4, 5-c] pyridines and imidazo[4, 5-b] pyridines, J Med Chem, 1987, 30(10): 1746.
    [5] Yu K L, Civiello R L, Combrink K D, Gulgeze H B, Preparation of imidazopyridine derivatives as pharmaceutical intermediates, WO 2001-US-14775.
    [6] Khanna, I K and Weier R M, Preparation of 5-(heteroarylalkyl)imidazo[4, 5-c] pyridines as platelet-activating factor (PAF) antagonists, US 4990518 A.
    [7] Nicolai E, Goyard J, Benchetrit T, Teuion J M, Caussade F, Virone A, Delchambre C and Cloarec A, Synthesis and structure-activity relationships of novel benzhnidazole and imidazo[4, 5-b] pyridine acid derivatives as thromboxane A2 receptor antagonists, J Med Chem, 1993, 36(9): 1175.
    [8] Nicolai E, Teulon C, Synthesis and structure-activity relationships of novel benzimidazole and imidazo[4, 5-b] pyridine acid derivatives as thromboxane A2 receptor antagonists, J Heterocycl Chem, 1994, 31(1): 73.
    [9] Becker D P, Flynn D L, Moormann A E, Nosal R and Villamil C I, Azabicyclo imidazopyridines as setotonergic 5-HT3 antagonists, US 5434161 A,
    [10] Becker D P, Flynn D L, Moormann A E, Nosal R and Villamil C I, Preparation of imidazopyridines as 5-HT3 antagonists. WO 9215593 A1
    [11] Bougrin,K.; Bennani, A. K.; Tebounai. S.F.: soufiani M. An easy route to synthesize 1, 5-arylodiazepine-2-ones. Tetrahedron Lett. 1994, 35(45): 8373
    [12] Zakhs, E. R.; Ponyaev, A. I.; Subbotina, M. A.; Eltsov, A. V. Synthesis and photochromic properties of 2-(3-nitro-2-pyridylmethyl) benzaoles. Russian Journal of General Chemistry. 2001, 71 (5): 1076
    [13] Agnieszka Czamy, W. D. Wilson, David W. Boykin Synthesis of Mono-Cationic and Dicationic Analogs of Hoechst 33258[J]. J. Hetero. Chem, 1993, 33(6): 1393-1397
    [14] R. R. Tidwell, J. D. Geratz, O. Dann, G. Volz, D. Zah, H. Loewe. Diarylamidine Derivatives with One or Both of the Aryl Moieties Consisting of an Indole or lndole-like Ring. Inhibitors of Arginine-Specific Esteroprotease[J]. J. Med. Chem, 1978, 21(7): 613-622
    [15] Terri A. Fairly, Richard R. Tidwell, Isaac Donker, Noreen A Naiman, Kwasi A. Ohemeng, Richard J. Lombardy. James A. Bently, Michael Cory. Structure, DNA Minor Groove Binding, and Base pair Specificity of Alkyl-and Aryl-linked Bis(amidinobenzimidazole) and Bis(amidinoindoles)[J]. J. Med. Chem, 1993, 36(7): 1746-1753
    [16] Clark-Lewis J. W., Singh R. P.. Preperation of 3, 4-Diamino-, 3-Amino-4-methylamino, and 4-Amino-3-methylamino-pyridine[J]. J Cheat Soc, 1962, 55(12): 2379-2382
    [17] K. G. Koeigs, G. R. Freter. Prepertion of 4-ethoxy-3-nitropyridine and 3, 4-Diaminopyridine[J]. Ber, 1924, 57: 1187.
    [18] Fox B. A., Threlfall T. L. 2, 3-diaminopyridine, Organic Syntheses, Coll. Vol. 5:346: Vol. 44:. 34
    [19] May J. A., Townsend J. L.. Synthesis ofv-Triazolo[4, 5-c] pyridine Nucleosides and 4-(β-D-Ribofuranosyl) aminol-, 2, 3-thiadiazolo[5, 4-b] pyridine via a Rearrangement[J]. J Org Chern, 1976, 41(8): 1449-1456.
    [20] Vohra M. M., Pradha S. N. Synthesis and Structure-Active Relationships of some aminopyridines, imidazopyridines and triazolopyridines[J]. J Med Chem, 1965, 8: 296-304.
    [21] Rousseau R. J., R.obines R. K.. The synthesis of various Chloromidazo[4, 5-c] pyridines and Related Derivtives[J]. Rec Trav Chim, 1965, 2(1): 196-201.
    [1] Efros, L. S., Syntheses of Benzimidazoles with catalyst of Hydrochloride, Zh. Obshch. Chim. 1953, 23(3): 957
    [2] Hein, D. W.; Alheim, R. J.; Leavitt, J. J, The Use of Polyphosphoric Acid in the Synthesis of 2-Aryl- and 2-Alkyl-substituted Benzimidazoles, Benzoxazoles and Benzothiazoles, J. Am. Chem. Soc. 1957, 79(2): 427
    [3] Pushkina, L. N.; Mazalov, S. A.; Postovakii, I. Y. Syntheses of Benzimidazoles in Polyphosphoric Acid, Zh. Obshch. Khim. 1962, 32(12): 2624
    [4] 路军,葛红光,无溶剂微波照射下2-取代苯并咪唑的合成,有机化学,2002,22(5):782
    [5] Yoshiyuki, T.; Kazuaki, Y.; Preperation of Benzimidazoles with catalyst of p-toluenesulfonic acid. Hokkaido Daigaku Kogakubu Kenkyu Hokoku. 1980, 45(1): 213
    [6] 崔勇,唐秀波,邵长星,孙文华,Syntheses of Benzimidazoles,Quinoxalines and 3,3-Dihydro-1H-1,5-benzodiazepines Starting from o-Phenylenediamine,中国化学,2005,23(2),589
    [7] Ramana, D. A.; Kansaraji, E. Mass spectrometer as a probe in the synthesis of 2-substituted benzimidazoles. Tetrahedron. 1994, 50(12): 2485
    [8] Villemin, D.; Hammad, M.; Martin, B. Clay eatalysic: Condensation of orthoesters with o-substituted aminoaromatics into heterocycles. Synth Commun, 1996, 26(15): 2895
    [9] Loupy, A.; Petit, A.; Hamelin, J.; Texier, B. F.; Jacquault, P.; Mathe, D. Prido[4, 5-b] pyrimidine derivaties: Syntheses via the intermolecular aza-witing reaction/heterocyclization and the cystal structure. Synthesis. 1998, 41 (6): 1213
    [10] Guillermo, P. C.; Imeida, B. A; Jose, G. C.; Jose, G. E; Cecilio, A. T. Synthesis of benzimidazoles in dry medium. Synth. Commum. 2000, 30(10): 2191
    [11] 王陆瑶,韩洁,李晓娟,史真,双(2-苯并咪唑基)烷烃的简便合成方法,化学试剂,2005,27(2):317-319
    [12] Zakhs, E. R.; Ponyaev, A. I.; Subbotina, M. A.; Eltsov, A. V. Synthesis and photochromic properties of 2-(3-nitro-2-pyridylmethyl) benzaoles. Russian Journal of General Chemistry. 2001, 71 (2): 1076
    [13] 章思规,有机化工原料制备手册,化学工业出版社,1999
    [14] I bindberg P. Braabdstrom A, Wallmark B, et al, Omeprazole: The first proton pump inhibitor[J]. Medicinal Research Reviews, 1990, 10(1): 1
    [15] 梁亮,崔英德,罗宗铭,等.抗胃溃疡新药奥美拉唑的合成研究进展[J] .广州化工,1999,27(2):10
    [16] Sheldrick, D. M. (1997). SHELXS97 and SHELXL97. University ofSheldrick, D. M. (1997). SHELXS97 and SHELXL97. University of Gottingen, Germany
    [17] Eryigit, R. & Kendi, E. Structure ofimidazoles. J. Chem. Cryst. 1998, 28 (1), 145-147.
    [18] Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
    [19] Agh-Atabay, N. M., Dulger, B. & Gucin, F. O. Eur. J. Med. Chem. 2003, 38: 875-881.
    [20] Bitler, C. M., Wood, P. L., Anstine, D. T., Meyer-Franke, A. & Zhao, Q. (2000). World Patent WO 2000 075 117.
    [21] Chen, C., Su, C., Xu, A., Zhang, H., Feng, X. & Kang, B. Acta Cryst. 2002, E58, o916-o917.
    [1] Ben-Hur, E.; Prager, A.; Riklis, E. (Israel At. Energy Comm., Nucl. Res. Cent.-Negev, Beer Sheva, Photochemistry of the bisbenzimidazole dye 33258 Hoechst with bromodeoxyuridine and its biological effects on BrdUrd-substituted Escherichia coli. Photochem. Photobiol., 1978, 27(5): 559-63,.
    [2] Leon, Marta E.; Cote, Celia E.; Weissenbacher, Mercedes C. Junin virus inhibitory drugs. Medicina, 1977, 37(Suppl. 3): 225-31.
    [3] Kim J. S., Gatto B. Yu C., Liu A., Liu L. E, LaVoie E. J. Substituted 2, 5'-bi'-1H-benzimidazoles: Topoisomerase I Inhibition and Cytotoxicity, J. Meg Chem., 1996, 39(4): 992-998
    [4] Dreikom Barry A, Unger Paul, 4-methyl-N-(4-H-1, 2, 4-triazol-4-yl)-2-benzothiazolamine, an Impurity in the synthesis of Tricyclazole, J Chem. Soc, 1959, 26(9): 1735-1737
    [5] Kanoktanaporn, Santhi; MacBride, J. A. Hugh; King, Trevor J, Displacement of hydrazine hydrochlodde from 1,4-dichlorophthalazines by bidentate nucleophiles with formation of 2, 2'-(1,2-arylene)bis-benzimidazoles and-benzothiazoles. X-ray crystal structure of 2,3-bisbenzimidazol-2-ylquinoxaline. J. Chem. Res., Synop., 1980, 12(2): 406.
    [6] Korshak, V. V.; Pavlov, A. I.; Mandrie, Gheorghe; Zugravescu, Ioan, Bis(aminophenylbenzimidazoles)., Rem. RO 63557 M 31 Mar 1978, 3
    [7] Leyden, R N. Loonat, Mohamed S.; Neuse, Eberhard W.; Sher, Brian H.; Watldnson, Walter J. Thermally induced degradation of 2, 3, 5, 6-tetrachloroterephthalylidenebis (o-aminoaniline), J. Org. Chem., 1983, 48(5): 727-31.
    [8] Kang ZJ. Dykstra C. C. Boykin D., The synthesis of dicationic extended bis-benzimidazoles, Molecules, 2004, 9(1): 158-163
    [9] 化学医药原料药制备大全,化学工业出版社[M],1977年第一版:845-849
    [10] Zakhs, E. R.; Pouyaev, A. I.; Subbotina, M. A.; Eltsov, A. V. Synthesis and photochromic properties of 2-(3-nitro-2-pyridylmethyl)benzaoles. Russian Journal of General Chemistry. 2001, 71(4): 1076
    [11] Ralph A. B. Copeland, Allan R. D. The preparation and reactions of 2-benzimidazole carboxylic acid and 2-benzimidazoleacetic acid. J Chem. Soc. 1943, 65(5): 1072-1075
    [1] Pawel U. From spontaneously formed aggregates to Jaggregates of photochromic spiropyran[J]. Synthetic Metals, 2000, 109(1-3): 281-285.
    [2] Isabel C, Steven C, David C. Ship-in-a-Bottle synthesis an d photochromism of spiropyrans encapsulated within zeolite Y supercages[J]. Tetrahedron, 2000, 56 (31): 6951-6956.
    [3] Konorov S. O., Sidorov-Biryukov D. A., Bugar I. Femto-second two-photon-ab sorption-resonant fourwave mixing for time-resolved studies of photoc hromi sm in three dimensions[J]. Chemical Physics Letters, 2003, 378(5-6): 630-637.
    [4] Y Yasuo Abe, H Hiromi Ebara, S Satoshi Okada. Molecular structure and photochromic properties of 1, 3-methyhndoline-3, 3-alkano-2-spiro-2-(6-nitro) benzopyrans [J]. Dyes and Pigments, 2002, 52(1): 23-28.
    [5] Vandewyer P H, Hocfnagels J, Smets G. Photochro-mic spiropyrans[J]. Tetrahedron, 1969, 25 (16): 3251-3252.
    [6] Abbotto A. Bradamante S. Faccbetti A. Pagani G. A. Diheteroarylmethanes, Ⅱ active methylene behaviour of 2-thiazolyl and 2-oxazolyl derivatives. Gazz. Chimica Ital. 1994, 124 (1): 301-308
    [7] Abbotto A. Bradamante S. Facchetti A. Pagani G. A. Metal Chelation Aptitudes of Bis(o-azaheteroaryyl)methanes As Turned by Heterocycle Charge Demands. J. Org. Chem. 2002, 67 (21): 5753-5772
    [8] Zakhs, E. R.; Ponyaev, A. I.; Subbotina, M. A.; Eltsov, A. V. Synthesis and photochromic properties of 2-(3-nitro-2-pyridylmethyl)benzaoles. Russian Journal of General Chemistry. 2001, 71 (5): 1076
    [1] Abbotto A. Bradamante S. Facchetti A. Pagani G. A. Diheteroarylmethanes, Ⅱ active methylene behaviour of 2-thiazolyl and 2-oxazolyl derivatives. Gazz. Chimica Ital. 1994, (124): 301-308
    [2] Abbotto A. Bradamante S. Facchetti A. Pagani G. A. Metal Chelation Aptitudes of Bis(o-azaheteroaryyl)methanes As Turned by Heterocycle Charge Demands. J. Org. Chem. 2002, (67): 5753-5772
    [3] Hawkins j. M., Watson T. J., Asymmetric catalysis in the pharmaceutical industry, Angew. Chem. Int. Ed. 2004, 43: 3224-3228
    [4] Bedoukian P. Z., synthesis of-bromoketone, J. Am. Chem. Soc., 1969, 67: 1430-1431
    [5] Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
    [6] Sheldrick, D. M. (1997). SHELXS97 and SHELXL97. University of Sheldrick, D. M. (1997). SHELXS97 and SHELXL97. University of Gottingen, Germany
    [7] Rodriguez de Barbarin, C., Bemes, S., Sanchez-Viesca, F. & Berros, M. 1H-imidazo[4,5-b] pyridine. Acta Cryst. 2005, C59: o360—o362..
    [8] Rodier, N., Ceolin, R., Agafonov, V., Toscani, S., Dugue, J., Nicolai, E. Teulon, J. M.. 4-phenyl-thiazole. Acta Cryst. 1995, C49: 2034-2037.
    [1] Gueiffier, A.; Lhassani, M.; Elhakmaoui, A.; Snoeck, R.; Andrei, G.; Chavignon, O.; Teulade, J.-C.; Kerbal, A.; Essassi, E. M.; Debouzy, J.-C.; Witvrouw, M.; Blache, Y.; Balzarini, J.; De Clercq, E.; Chapat, J.-P. Synthesis of Acycio-C-nucleosides in the Imidazo[1,2-a] pyridine and Pyrimidine Series as Antiviral Agents. J. Med. Chem. 1996, 39 (11): 2856.
    [2] Gueiffier, A.; Mavel, S.; Lhassani, M.; Elhakmaoui, A.; Snoeck, R.; Andrei, G.; Chavignon, O.; Teulade, J.-C.; Witvrouw, M.; Balzarini, J.; De Clercq, E.; Chapat, J.-P. Synthesis of Imidazo[1,2-a] pyridines as Antiviral Agents, J. Meal. Chem. 1998, 41 (21): 5108.
    [3] Elhakmaoui, A.; Gueiffier, A.; Milhavet, J.-C.; Blache, Y.; Chapat, J.-P.; Chavignon, O.; Teulade, J.-C.; Snoeck, R.; Andrei, G.; De Clercq, E. Imidazo[1,2-a] pyridines as Antiiviral Agents. Bioorg. Med. Chem. Lett.. 1994, 4 (7): 1937.
    [4] Townsend, L. B.; Drach, J. C. Preparation of Imidazo[1,2-a] pyridines C-nuecleoside as antiviral agants, WO 27 205, 1997
    [5] Mavel, S.; Renou, J. L.; Galtier, C.; Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq, E.; Gueiffier, A. Synthesise of Imidazo[1,2-a] pyridines as antiviral agants, Arzneim.-Forsch. 2001, 51 (1): 304
    [6] Teulade, J.-C.; Grassy, G.; Girard, J.-P.; Chapat, J.-P.; Buochberg, M. M. S. Imidazo[1,2-a] pyridines as Antibiotic Agents, Fur. J. Med. Chem. 1978, 13: 271.
    [7] Abignente, E. Imidazo[1,2-a] pyridines and analogues with anti-inflammatory activity, Chim. Ther. 1991, 18 (1): 193
    [8] Abignente, E.; Arena, F.; Luraschi, E.; Saturnino, C.; Rossi, F.; Lampa, E.; Cazzola, M.; Brandinelli, E.; Marrazzo, R.; Marmo, E. Heterocyclic anti-inflammatory agent "Imidazo[1, 2-a] pyridines. Rend. Atti. Accad. Sci. Med. Chir. 1985, 139 (2): 313
    [9] Almirante, L.; Polo, L.; Mugnaini, A.; Provinciali, E.; Rugarli, P.; Biancotti, A.; Gamba, A.; Murmann, W. Derivatives of Imidazole. Ⅰ. Synthesis and Reactions of Imidazo[1,2-] pyridines with Analgesic, Antiinflammatory, Antipyretic, and Anticonvulsant Activity, J. Med. Chem. 1965, 8 (2): 305.
    [10] Bartholini, G. imidazo[1,2-a] pyrimidines as hypnoselective and anxioselective activities. L. E. R. S. Monogr. Ser. 1993, 8 (1): 1
    [11] Fuchs, K.; Romig, M.; Mendla, K.; Briem, H.; Fechteler, K. Imidazo[1,2-] pyridines as β-amyloid formation inhibitors. WO14 313, 2002.
    [12] Abe, Y. Kayakiri, H.; Satoh, S.; Inoue, T.; Sawada, Y.; Imai, K.; Inamura, N.; Asano, M.; Hatori, C.; Katayama, A.; Oku, T.; Tanaka, H. A Novel Class of Orally Active Non-Peptide Bradykininβ_2 Receptor Antagonists. 1. Construction of the Basic Framework, J. Med. Chem. 1998, 41 (3): 564.
    [13] Langer, S. Z.; Arbilla, S.; Benavides, J.; Scatton, B. Adv. Biochem. Psychopharmacol. 1990, 46, 61.(8) Tully, W. R.; Gardner, C. R.; Gillespie, R. J.; Westwood, R. 2-(Oxadiazolyl)-and 2-(thiazolyl)imidazo[1, 2-a] pyrimidines as agonists and inverse agonists at benzodiazepine receptors, J. Med. Chem. 1991, 34 (9): 2060.
    [14] Sanderson, P. E., Small, noncovalent serine protease inhibitors. Med. Res. Rev. 1999. 19 (1): 179-197.
    [15] Rival, Y.; Grassy, G.; Michel, G. Imidazo [1, 2-a] pyridines antifungal agents, Chem. Pharm. Bull. 1992, 40 (5): 1170.
    [16] Rival, Y.; Grassy, G.; Taudou, A.; Ecalle, R. Imidazo [1, 2-a] pyridines as calcium channel blockers. Fur. J. Med. Chem. 1991, 26 (1): 13.
    [17] Sanfilippo, P. J.; Urbanski, M.; Press, J. B.; Dubinsky, B.; Moore, J. B., Jr. Synthesis of (aryloxy)alkylamines. 2. Novel imidazo-fused heterocycles with calcium channel blocking and local anesthetic activity, J. Med. Chem. 1988, 31 (11): 2221.
    [18] Smail M A., Brun R, Wenzler T, Tanious F A., Wilson W. D, Bo D W. Novel Dicationic Imidazo[1, 2-a] pyridines and 5, 6, 7, 8-Tetrahydro-imidazo [1, 2-a] pyridines as Antiprotozoal Agents, J, Med. Chem. 2004, 47 (12): 3658-3664
    [19] Katritzky A R., Xu YJ, Tu H, Regiospecific Synthesis of 3-Substituted Imidazo[1, 2-a] pyridines, Imidazo[1, 2-a] pyrimidines, and Imidazo[1, 2-c] pyrimidine, J. Org. Chem. 2003, 68 (23): 4935-4937
    [20] Ja'nos Gerencse'r, Ga'bor Panka, Tama's Nagy, Orsolya Egyed, Gyorgy Dorma'n, La'szlo Urge, Ferenc Darvas, Procedure for the Parallel Preparation of 3-Imidazo[1, 2-a] pyridin-3-yl-propionic Acid Derivatives Involving Meldrum's Acid, J. Comb. Chem. 2005, 7 (2): 530-538
    [21] Chen Y, Lam Y, Lai YH, Solid-Phase Synthesis of Imidazo[1, 2-a] pyridine Using Sodium Benzenesulfinate as a Traceless Linker. Org. Lett. 2002, 4 (23): 3935-3937
    [22] Tomoda, H.; Hirano, T.; Saito, S.; Mutai, T.; Araki, K. A facile way to Synthesis of Imidazo[1,2-a] pyridines. Bull. Chem. Soc. Jpn. 1999, 72 (5): 1327.
    [23] Rydzkowski, R.; Blondeau, D.; Sliwa, H. Synthesis of new heterocyelie phenols: 8-Hydroxy-imidazo[1,2-a] pyridine. Tetrahedron Lett. 1985, 26 (12): 2571.
    [24] Lober, S.; Hu bner, H.; Gmeiner, P. Perapesration of Imidazo[1, 2-a] pyridines. Bioorg. Med. Chem. Lett. 1999, 9 (1): 97.
    [25] Hand, E. S.; Paudler, W. W. Teleamination of the imidazo[1, 2-a] pyridine system. J. Org. Chem. 1978, 43 (14): 2900.
    [26] Hubert, A. J.; Rei mLinger, H. A facile synthesis of subsisted imidazol[1, 2a] pyridines. Chem. Ber. 1970, 103 (18): 3811.
    [27] Galons, H.; Bergerat, I.; Combet Farnoux, C.; Miocque, M. Synthesis of Imidazo[1, 2-a] pyridine from 1-2-Alkynyl)-2-aminomethylimidazoles. Synthesis. 1982: 1103.
    [28] Knolker, H.-J.; Boese, R.; Hitzemann, R. Synthesis of Imidazo[1, 2-a] pyridines. Chem. Ber. 1990, 123, 327. 12: 701-704.
    [29] Groziak, M. P.; Wilson, S. R.; Clauson, G. L.; Leonard, N. J. Fluorescent heterocyclic systems: syntheses, structures, and physicochemieal properties of dipyrido-substituted 1, 3, 4, 6-tetraazapentalenes, J. Am. Chem. Soc. 1986, 108 (40): 8002.
    [30] Groebke, K.; Weber, L.; Mehlin, F. A facile synthesis of 2, 3 disubstited imidazol[1, 2a]-pyridines vis palladium-catalyzed heteroarinulation with interral aliknal. Synlett 1998: 661.
    [31] Spitzer, W. A.; Victor, F.; Pollock, G. D.; Hayes, J. S. Imidazo[1, 2-a] pyrimidines and imidazo[1, 2-a] pyrazines: the role of nitrogen position in inotropic activity, J. Med. Chem. 1988, 31 (6): 1590.
    [32] Mandalr, G. S.; Light, M.; Russell, A.; Hursthouse, M.; Bradley, M. Re-evaluation of the outcome of a multiple component reaction-2-and 3-amino-imidazo[1, 2-a] pyridines. Tetrahedron Lett. 2002, 43 (18): 4267.
    [33] Astik, R. R.; Thaker, K. A. Studies on heteroeyclic compounds part Ⅰ synthesis of 3-amino-2-substitued Imidazo[1, 2-a] pyridines. J. Ind. Chem. Soe. 1981, LVⅢ: 1013.
    [34] Knott, E. B. Heterocycyl-rhodanine and-2-thiohydantions. J. Chem. Soc. 1956: 1644.
    [35] Bristow, N. W.; Charlton, P. T.; Peak, D. A.; Short, W. F. Meso-ionic compounds derived from pyridine[1': 2'-1: 2] gyloxaline. J. Chem. Soc. 1954: 616.
    [36] Saint-Ruf, G.; Loukakou, B.; N'Zouzi, C. Mutagenic Heterocyclic Nitrogen compounds related to protein pyrolysates 1. Derivatives of dipyrido[1,2-a: 3',2'-d] imidazole. J. Heterocycl. Chem. 1981, 18 (6): 1565.
    [37] Bochis, R. J.; Olen, L. E,; Fisher, M. H.; Reamer, R. A.; Wilks, G.; Taylor, J. E.; Olson, G. Isomeric phenylthioimidazo[1, 2-a] pyridines as anthelmintics, J. Med, Chem. 1981, 24 (6): 1483.
    [38] Chezal, J. M.; Moreau, E.; Delmas, G.; Gueiffier, A.; Blache, Y.; Grassy, G.; Lartigue, C.; Chavignon, O.; Teulade, J. C. Heterocyclization of Functionalized Vinylic Derivatives of Imidazo[1, 2-a] pyridines, J. Org. Chem. 2001, 66 (31): 6576.
    [39] Adams R., Noller C. r., p-bromoacetophenone, Org. Synth. Coll. Vol. 1: 109
    [40] Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
    [1] Lohmann, V., Korner, F., Koch, J., Herian, U., Theilmann, L., Bartenschlager, R.,. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 1999, 285: 110-113.
    [2] Mercer, D. F., Schiller, D. E., Elliott, J. F., Douglas, D. N., Hao, C., Rinfret, A., Addison, W. R., Fischer, K. F., Churchill, T. A., Lakey, J. R., Tyrrell, D. L., Kneteman, N. M.,. Hepatitis C virus replication in mice with chimeric human livers. Nat, Med. 2001, 7: 927-933.
    [3] Ilan, E., Eren, R., Lubin, I., Nussbaum, O., Zauberman, A., Dagan, S., The Trimera mouse: a system for generating human monoclonal antibodies and modeling human diseases. Curr. Opin. Mol. Ther. 2002, 4: 102-109.
    [4] Ilan, E., Arazi, J., Nussbaum, O., Zauberman, A., Eren, R., Lubin, I., Neville, L., Ben-Moshe, O., Kischitzky, A., Litchi, A., Margalit, I., Gopher, J., Mounir, S., Cai, W., Daudi, N., Eid, A., Jurim, O., Czerniak, A., Galun, E., Dagan, S.,. The hepatitis C vinis (HCV)-Trimera mouse: a model for evaluation of agents against HCV. J. Infect. Dis. 2002, 185 (1): 153-161.
    [5] Sperandio D, Gangloff A R., Litvak J. Goldsmith R, Hataye J M., Wang V R., Shelton E J., Elrod K, Janc J W., Clark J M., Rice K, Weinheimer S, Yeung KS, Meanwell N A., Hernandez D, Staab A J., Venables B L., Spencer J R. Highly Potent Non-peptidic Inhibitors of the HCV NS3/NS4A Serine Protease. Bioorganic & Medicinal Chemistry Letters, 2002, 12 (13): 3129-3133

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700