锌指核酸酶与DNA相互作用的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于金属核酸酶小分子对DNA具有较好的切割性,越来越多的人们开始关注和设计此类核酸酶小分子。人们逐渐的发现虽然其对DNA有着很高的切割能力,但是它们的选择特异性很差,在切割病态DNA的同时对正常的DNA也有很大的威胁。为此人们迫切需要一种选择特异性好的核酸酶,此时锌指蛋白的出现为这个问题的解决带来了曙光。锌指蛋白不仅能够识别不同的DNA碱基序列,而且能够稳定的结合在DNA的大沟中。在锌指蛋白的帮助下,金属核酸酶小分子不仅通过对附近糖环中氢的抽取实现了对DNA的特异性切割,而且还具有识别特定DNA碱基序列的功能。这引起了广大研究者的兴趣。
     在本论文中,主要做了以下三部分工作:
     一.采用分子对接方法研究了锌指蛋白识别结合DNA的主要影响因素。通过改变DNA序列来考察锌指蛋白对DNA结合强弱的影响。通过对两者结合能的监测,发现当第一个锌指结合位点的碱基序列由GCCC改变为第二个锌指所识别的碱基序列CCGC时导致其结合能的降低,而当改变为第三个锌指所识别的CCCC碱基序列时,其结合能也随之降低。但是对比两个突变的碱基序列CCGC和CCCC时,发现后面三个碱基序列是紧相连着的C碱基时,其结合能要高于含G序列的。因此得出第一个锌指在识别的过程中侧重于识别其天然存在的GCCC序列,而后再识别CCGC和CCCC这两个序列。
     二.锌指核酸酶是通过连接域把锌指蛋白和人工设计的金属核酸酶小分子连接起来,锌指核酸酶不仅能够识别特定的DNA,还能促进DNA的解离。然而,由于目前在实验上很多锌指核酸酶的晶体结构很难得到,这样就限制了锌指核酸酶和DNA相互作用的理论研究。在本文中,通过HADDOCK软件来预测锌指蛋白核酸酶Sp1-Cu(BPA)和DNA的结合模式;然后进行了一个25ns的分子动力学模拟。模拟的结果表明Spl的氨基酸残基和DNA碱基通过氢键等作用力稳定的作用在DNA大沟中,Cu(BPA)在模拟的过程中能稳定的作用于DNA小沟内,其方位对抽取邻近糖环上的氢是有利的,使得金属核酸酶小分子Cu(BPA)能够在特定区域促进DNA分子的断裂。这些计算结果说明,DNA识别剂的锌指蛋白的引入,很好地提升含铜核酸酶的DNA切割特异性。
     三.本部分主要研究了两个有机反应机理。第一个反应是芳基叠氮化合物和二丁基三氟甲磺酸酯反应生成N-烷基化苯胺的反应。实验上合成N-烷基化苯胺有很多方法,但是这些方法需要的实验条件都是比较苛刻的,不是在高温下就是使用有毒的或者腐蚀性的烷基化试剂。本文对Nagula教授提出的反应机理用密度泛函的理论进行计算,来验证其的正确性。对所有的反应物,过渡态,中间体和产物结构都在DFT理论中B3LYP/6-31+G(d,p)的水平下进行优化以确保所的结果的正确性,并对所有过渡态进行了IRC的计算,以确保过渡态是连接着预期的反应物和产物。计算结果表明,叠氮化物在二烷基三氟甲磺酸酯的作用下,不仅能够比较好的得到预期产物,而且反应条件温和,在室温下反应能发生。这些计算结果对设计新的反应提供了理论上的支持和帮助。第二个反应是多组分合成多取代的中氮茚。由于中氮茚衍生物在具有生物活性的天然产物中关键的亚基结构,有机荧光材料和药物物质等方面的广泛应用而引起了人们对其的极大重视。多组分反应在有机化学,合成化学和药物化学领域是一种强有力的和高效率的成键工具,三组分反应已经被证明是一种来合成中氮茚衍生物的比较直接的方法。Zhenjun Mao研究组采用吡啶、苯甲酰甲基溴和乙基乙醛酸为反应物,以乙腈为溶剂研究通过简洁和高效的四组分串联方法来合成多取代中氮茚衍生物,反应涉及到吡啶盐的叶立德形成,a,β-不饱和酮以及后面的1,3-偶极环加成反应和芳构化反应。所有的反应物,过渡态,中间体和产物的结构都在M05/6-31+G(d,p)的水平下进行优化。通过对反应的研究不仅可以揭示反应的机理,还可以进一步为新反应的设计提供理论的指导。
Because of the highly cutting of metal nuclease to DNA, more and more people begin to pay attention and design these nuclease moleculars. Although with a very high cutting capacity, it always has a great threat to normal DNA while cutting morbid DNA according to its poor specificity of their choice. To end this, there is an urgent need for a nuclease with good select specificity. Zinc finger proteins can solve this problem and bring the dawn, which not only can be able identify the type of the DNA nucleotide sequence,but also incorporate in the DNA major groove stably. With the help of zinc finger protein, the metal nuclease not only achieves a specificity of DNA cutted by the extractionof hydrogen in the vicinity of sugar ring, but also has the function to identify a specific DNA nucleotide sequence, which aroused the interest of the major researchers.
     In this paper, we mainly do three parts work:
     Firstly, we take the method of molecular docking to study the main factors in the identification and binding of zinc finger to DNA and examine the zinc finger protein DNA binding strength through changing the DNA sequence. By monitoring the binding energy, we found that the decrease in the binding energy when the first zinc finger DNA binding sites from sequences GUA、CYT、CYT and CYT change into the DNA sequence of second zinc finger identifying CYT、CYT、GUA and CYT or another sequence of third zinc finger recognizing CYT、CYT、CYT and CYT. But contrasting the two mutations in the nucleotide sequence of CCGC and CCCC, the former has a lower binding energy than the latter. So we can conclude that the first zinc finger in the process of identifying focuses on the identification of their naturally occurring sequence of GCCC, and then recognizing others, such as CCGC and CCCC.
     Secondly, the zinc finger nuclease is the combination of zinc finger protein and the artificial metallonuclease through a linked field, which can recognize special DNA sequences and result in DNA scission. However, since crystal structure of the zinc finger nuclease has not been obtained in experiments, theoretical studies on interactions of zinc finger nuclease with DNA remain very limited. In this work, firstly, the binding modes of the zinc finger nuclease Spl-Cu(BPA) with B-DNA were predicted using the HadDock program, and then,25ns molecular dynamics simulations were performed. The simulated results reveal that the amino acid residues of Spl interact with the major groove of the DNA nucleotide through a hydrogen bond force, and Cu(BPA) can stay in the minor groove steadily, whose orientation is advantageous for extracting hydrogen from adjacent sugar ring, in order to make the nuclease Cu(BPA) deducing DNA strand scission in some certain regions. The results of these calculations illustrate the introduction of zinc finger protein of DNA detection agent to enhance the copper nuclease DNA cleavage specificity.
     Thirdly, this section consists of two organic reaction mechanism. The first reaction is that the Aryl azide interact with the Bu2BOTf to generate the N-alkylated aniline. There are many methods to synthesis N-alkylated aniline in experiment. But these methods require that the experimental conditions are more stringent,either at higher temperature or using toxic or corrosive alkylating reagent. In this paper, we use the density functional theory to calculate the reaction mechanism, professor Nagula Shankaraiah proposed, to verify its correctness. All structures of the reactants, transition states, intermediates and products were fully optimized at the B3LYP/6-31+G(d,p) level of theory to ensure we have the corrected results. By the calculating the IRC, we can assure that the transition state is the bridge connecting reactant and expected product. The calculating results show that the azide under the effect of dialkyl triflate, not only be able to better obtain the desired product and the restrictions on the reaction conditions are more flexible, such as reacting at room temperature. The calculated results show that it can provide theoretical support and help on the design of a new reaction. The second reaction is a multi-component synthesis of poly-substituted indolizine. The pyrindine derivative have received great attention as they widely occur as key structural subunits of manybioactive natural products, organic fluorescent materials, and pharmaceutical substances. Multi-component reactions (MCRs) have emerged as powerful and bond-forming efficient tools in organic, combinatorial, and medicinal chemistry. Actually, three-component reactions have been demonstrated as a straightforward approach to the synthesis of indolizines. Mao's seminar began their investigations by treating pyridine and phenacyl bromide with ethyl glyoxalate through concise and efficient four-component tandem approaches to polysubstituted indolizine derivatives involving the formation of pyridinium ylides and α, β-unsaturated ketones with subsequent1,3-dipolar cycloaddition and aromatization reaction. All structures of reactants, transition states, intermediates and products are optimized in the M05/6-31+G (d, p) level. The investigation not only can reveal the reaction mechanism, but also can provide theoretical significance for the design of subsequent reactions.
引文
[1]. Jason Morton, M. Wayne Davis, Erik M. Jorgensen. Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. PNAS, 2006 October 31, Vol.103, No.44,16370-16375.
    [2]. Fyodor D. Urnov, Jeffrey C. Miller, Ya-Li Lee. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature,2005 June 2, Vol 435.
    [3]. Sundar Durai, Mala Mani, Karthikeyan Kandavelou. Zinc finger nucleases:custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Research,2005, Vol.33, No.18.
    [4]. Chaires J B. Drug-DNA interaction[J]. Curr Opin Struct Biol,1998,8:314-320
    [5], Geierstanger B H, Wemmer D E. Complexes of the minor groove of DNA[J]. Annu Rev Biophys Biomol Struct,1995,24:463-493
    [6]. David Davis, David Stokoe Zinc Finger Nucleases as tools to understand and treat human diseases. BMC Medicine 2010,
    [7]. Klug A, Schwabe JW:Protein motifs 5. Zinc fingers. FASEB J 1995,9:597-604.
    [8]. 文玉华,朱如曾,周富信,等.分子动力学模拟的主要技术[J].力学进展,2003,33(1):65-73.
    [9]. Heermann D.W. Computer Simulation Methods in Theoretical Physics [M]. Springer-Verlag Press,1990.
    [10]. ANDERSONHC. Molecular dynamicssimulationsat constant press and/or temperature[J]. J. Chem. Phys,1980,72:384-2391.
    [11]. Haw, J.F. In situ NMR and ab intio studies of zeoletes acidity. Abstr. Pap. J. Am. Chem., 1998,S215,43-51
    [12]. Muller, M., Br, H.J., Kast, S. M., Brickmann, J. Ab initio localisation of adsorption sites in guest/host systems:application to the system thionine in zeolite NaY. Chem. Phys. Lett. 1999,311,485-490
    [13]. Fois, E.,Gamba, A., Tabacchi, G.. Hydrophobic effects:A computer simulation study of the temperature influence in dilute O2 aqueous solutions. J. Chem. Phys.1999,1,531-536
    [14]. Saucer, J.,bleiber, A. H-bridged gas phase clusters of methanol(dimers to hexamers):ab initio calculations of their structure and vibrational spectra. J. Am. Chem.1998,72,1524-1539
    [15]. Jeong, M. S., Frei,H. Acetaldehyde as a oribe for the chemical properties of aluminophosphate molecular sieves. An in situ FT-IR study. J. MOL. Catal A:Chem. 2000,156,245-253
    [16]. Audie J, Scarlata S. A novel empirical free energy function that explains and predicts protein-protein binding affinities[J]. Biophys Chem,2007,129-198
    [17]. Stoddard B L, Koshland Jr, D E. Prediction of the structure of a receptor-protein complex using a binary docking method[j]. Nature,1992,358(27):774
    [18]. Sun Y, E T J A, Skillman A G,et al. CombiDOCK:Structure-based combinatorial docking and library design[J]. J Comput Aided Mol Des,1998,12(6):597-604
    [19]. Maurer M C, T J Y,Lester C C, et al. New general approach for determing the solution structure of a ligand bound weakly to a receptor:Structure of a fibrinogen aa-Like peptide bound to thrombin(S195A) obtained using NOE distance constraints and an ECEPP/3 flexible docking program[J]. Prot Struct Funct Genet,1999,34(1):29-48
    [20]. Oshiro C M, Kuntz I D, Dixon J S. Flexible ligand docking using a genetic algorithm[J]. J Comput Aided Mol Des,1995,9(2):113-130
    [21]. Wang J, Kollman P A, Kuntz I D. Flexible ligand docking:A multistep strategy approach[J]. Prot Struct Funct Genet,1993,36(1):1-19
    [22]. Glick M, Robinson D D, Grant G H,et al. Identification of ligand binding sites on proteins using a multi-scale approach[J]. J Am Chem Soc,2002,124(10):2337-2344
    [23]. Mangoni M, Roccatano D, Di Nola A. Docking of flexible ligand to flexible receptors in solution by molecular dynamic simulation[J].Prot Struct Funct Genet,1999,35(2):153-162
    [24]. Liu Q, Segal DJ, Ghiara JB, Barbas CF:Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proceedings of the National Academy of Scienc es of the United States of America 1997,94:5525-5530.
    [25]. Beerli RR, Dreier B, Barbas CF:Positive and negative regulation of endogenous genes by designed transcription factors. Proceedings of the National Academy of Sciences of the United States of America 2000,97:1495-1500.
    [26]. Zhang L, Spratt SK, Liu Q:Synthetic zinc finger transcription factor action at an endo-genous chromoso mal site. Activation of the human erythropoietin gene. The Journal of biological chemistry 2000,275:33850-338
    [27]. Liu PQ, Rebar EJ, Zhang L. Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. The Journal of Biological Chemistry 2001,276:11323-11334.
    [28]. Ren D, Collingwood TN, Rebar EJ. PPARgamma knockdown by engineered transcription factors:exogenous PPARgamma2 but not PPARgammal reactivates adipogenesis. Genes & development 2002,16:27-32.
    [29]. Falke D, Fisher M, Ye D. Design of artificial transcription factors to selectively regulate the pro-apoptotic bax gene. Nucleic Acids Res 2003,31:e10.
    [30]. Jamieson AC, Guan B, Cradick TJ. Controlling gene expression in Drosophila using engineered zinc finger protein transcription factors. Biochemical and Biophysical Research Communications 2006,348:873-879.
    [31]. Reik A, Zhou Y, Collingwood TN. Enhanced protein production by engineered zinc finger proteins. Biotechnol Bioeng 2007,97:1180-1189.
    [32]. Jamieson AC, Miller JC, Pabo CO. Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov 2003,2:361-368.
    [33]. Rebar EJ, Huang Y, Hickey R. Induction of angiogenesis in a mouse model using engineered transcription factors. Nat Med 2002,8:1427-1432.
    [34]. Neidle S. DNA structure and recognition[M]. Oxford, UK:Oxford University Press,1994. 71-96
    [35]. Zhou C Y, Zhao J, Wu Y B, et al. Synthesis, characterization and studies on DNA-binding of a new Cu(II) complex with N1, N8-bis(1-methyl-4-nitropyrrole-2-carbonyl) triethylene-tetramine[J]. J Inorg Biochem,2007,101(1):10-18
    [36]. Dent CL, Lau G, Drake EA. Regulation of endo-genous gene expression using small molecule-controlled engineered zinc-finger protein transcription factors. Gene Ther 2007, 14:362-1369.
    [37]. Snowden AW, Gregory PD, Case CC. Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr Biol 2002,12:2159-2166.
    [38]. Xu GL, Bestor TH:Cytosine methylation targetted to predetermined sequences. Nature Genetics 1997,17:376-378.
    [39]. Nomura W, Barbas CF:In vivo site-specific DNA me thylation with a designed sequence-enabled DNA methylase. J Am Chem Soc 2007,129:8676-8677
    [40]. Zhou C Y, Xi X L, Yang P. Studies on DNA binding to metal complexe of sal2trien[J]. Biochem,2007,72:37-43
    [41]. Li Y, Wu Y, Zhao J, et al. DNA-binding and cleavage studies of binuclear copper(II) comples with 1,1-dimethyl-2,2'-biimidazole ligand[J]. J Inorg Biochem,2007.101(2):283-290
    [42]. Schuh R, Aicher W, Gaul U. A conserved family of nuclear proteins containing structural elements of the finger protein encoded by krn"ppel,a Drosophila segmentation gene 1984. 47:1025-1032
    [43]. Smith J, Bibikova M, Whitby FG. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res 2000, 28:3361-3369.
    [44]. Bibikova M, Carroll D, Segal DJ. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Molecular and Cellular Biology 2001,21:289-297.
    [45]. Bibikova M, Golic M, Golic KG Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 2002,161:1169-1175.
    [46]. Porteus MH, Baltimore D. Chimeric nucleases stimulate gene targeting in human cells Science (New York, NY) 2003,300:763.
    [47]. Lloyd A, Plaisier CL, Carroll D. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 2005.102:2232-2237.
    [48]. Morton J, Davis MW, Jorgensen EM. Induction and repair of zinc finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proceedings of the National Academy of Sciences of the United States of America 2006,103:16370-16375.
    [1]. Poulain P, Saladin A, Hartmann B, Prevost C:Insights on protein-DNA recognition by coarse grain modelling. J Comput Chem 2008,29(15):2582-2592.
    [2]. Contreras-Moreira B, Bra nger PA, Collado-Vides J:TFmodeller:comparative modelling of protein-DNA complexes. Bioinformatics 2007,23(13):1694-1696.
    [3]. Endres RG, Schulthess TC, Wingreen NS:Toward an atomistic model for predicting transcription-factor binding sites. Proteins 2004,57(2):262-268
    [4]. Paillard G, Deremble C, Lavery R:Looking into DNA recognition:zinc finger binding specificity. Nucleic Acids Res 2004,32(22):6673-6682
    [5]. Paillard G, Lavery R:Analyzing protein-DNA recognition mechanisms. Structure 2004, 12(1):113-122.
    [6]. Morozov AV, Havranek JJ, Baker D, Siggia ED:Protein-DNA binding specificity predictions with structural models. Nucleic Acids Res 2005,33(18):5781-5798
    [7]. Havranek JJ, Duarte CM, Baker D:A simple physical model for the prediction and design of protein-DNA interactions. J Mol Biol 2004,344(1):59-70.
    [8]. van Dijk M, Bonvin AM:A protein-DNA docking benchmark. Nucleic Acids Res 2008, 36(14):e88.
    [9]. Dominguez C, Boelens R, Bonvin AM:HADDOCK:a protein-protein docking approach based on bioche mical or biophysical information. J Am Chem Soc 2003,125(7): 731-1737.
    [10]. van Dijk M, van Dijk AD, Hsu V, Boelens R, Bonvin AM:Information-driven protein-DNA docking using HADDOCK:it is a matter of flexibility. Nucleic Acids Res 2006,34(11): 3317-3325.
    [1]. Dervan PB. Design of sequence-specific DNA-binding molecules. Science.1986.232: 464-471
    [2]. Sigman DS, Bruice TW, Mazumder A. Targeted chemical nucleases.Acc. Chem. Res.1993a 26:98-104.
    [3]. Sigman DS, Mazumder A, Perrin DM. Chemical nucleases. Chem. Rev.1993b.93:2295-2316.
    [4]. Pratviel G, Bernadou J, Meunier B. Carbon-hydrogen bonds of DNA sugar units as targets For chemical nucleases and drugs. Angew. Chem. Int. Ed Engl.1995.34:746-769
    [5]. Bashkin JK. Introduction on RNA/DNA cleavage. Chem. Rev.1998.9 937-1262.
    [6]. Cowan JA. Chemical nucleases. Curr. Opin. Chem. Biol.2001.5:634-642.
    [7]. Jiang Q, Xiao N, Shi P. Design of artificial metallonu-cleases with oxidative mechanism. Coord. Chem. Rev.2007.251:1951-1972.
    [8]. West JD, Marnett LJ. Endogenous reactive intermediates as modula-tors of cell signaling and cell death. Chem. Res. Toxicol.2006.19:173-194.
    [9]. Liu C, Wang M, Zhang T, Sun H. DNA hydrolysis promoted by di- and multi- nuclear metal complexes. Coord. Chem. Rev.2004.248:147-168.
    [10]. Niklas N, Heinemann FW, Hampel F. The activa-tion of tertiary carboxamides in metal complexes:An experimental and theoretical study on the methanolysis of acylated bis-picolylamine copper(II) complexes. Inorg. Chem.2004.43:4663-4673.
    [11]. Thyagarajan S, Murthy NN, Sarjeant AAN. Selec-tive DNA strand scission with binuclear copper complexes:Implica-tions for an active Cu2-O2 species. J. Am. Chem. Soc.2006. 128:7003-7008.
    [12]. Zhao YM, Zhu JH, He WJ. Oxidative DNA cleavage promoted by multinuclear copper complexes:Activity dependence on the complex structure. Chem. Eur. J.2006.12:6621-6629.
    [13]. Liu CL, Zhou JY, Li QX. DNA damage by copper(II) complexes:Coordination-structural dependence of reactivities. J. Inorg. Biochem.1999.75:233-240
    [14]. McMillin DR, McNett KM. Photoprocesses of copper complexes that bind to DNA. Chem. Rev.1998.98:1201-1220.
    [15]. Balasubramanian B, Pogozelski WK, Tullius TD. DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone.Proc. Natl. Acad. Sci. USA.1998.95:9738-9743.
    [16]. Pogozelski WK, Tullius TD. Oxidative strand scission of nucleic acids:Routes initiated by hydrogen abstraction from the sugar moiety.Chem. Rev.1998.98:1089-1108.
    [17]. Jin Y, Cowan JA. DNA cleavage by copper-ATCUN complexes. Factors in fluencing cleavage mechanism and linearization of dsDNA.J. Am. Chem. Soc.2005.127:8408-8415.
    [18]. Yamamoto Y, Uehara A, Tomita T. Site-selective and hydrolytic two-strand scission of double-stranded DNA using Ce (IV)/EDT A and pseudo-complementary PNA. Nucleic Acids Res.2004.32:e153.
    [19]. Oyoshi T, Sugiyama H. Mechanism of DNA strand scission induced by (1,10-phen-anthroline) copper complex:Major direct DNA cleavage is not through 1',2'-dehydronucleotide intermediate nor β-elimination of forming Ribonolactone. J. Am. Chem. Soc.2000.122:6313-6314
    [20]. Decker A, Chow MS, Kemsley JN. Direct hydrogen-atom abstraction by activated bleomycin:an experimen-tal and computational study. J. Am. Chem. Soc.2006.128:4719-4733.
    [21]. Durai S, Mani M, Kandavelou K. Zinc finger nucleases:custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res.2005.33:5978-5990.
    [22]. Uma V, Kanthimathi M, Subramanian J. A new dinuclear biph enyl ene b ridged copper(II) complex:DNA cleavage under hydrolytic conditions. Biochim. Biophys. Actal 2006.760: 814-819
    [23]. DeKelver RC, Choi VM, Moehle EA. Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human enome. Genome Res.2010.20:1133-1142.
    [24], Dervan PB, Edelson BS. Recognition of the DNA minor groove by pyrrole-imidazole polyamides. Curr. Opin. Struct. Biol.2003.13:84-299.
    [25]. Dervan PB, Poulin-Kerstien AT, Fechter EJ. Regulation ofgene expression by synthetic DNA-binding ligands. Top. Curr. Chem.2005.253:1-31.
    [26]. Zhu YY, Wang Y, Chen GJ. Molecular dynamics simulations on binding models of Dervan-type polyamide+Cu(Ⅱ) nuclease ligands to DNA.J. Phys. Chem. B 2009.113:839-848.
    [27]. Pavletich NP, Pabo CO. Zinc finger -DNA recognition:crystal structure of a Zif268-DNA complex at 2.1 A. Science 1991.252:809-817.
    [28]. Pabo CO, Nekludova L. Geometric analysis and comparison of protein-DNA interfaces:why is there no simple code for recognition? J. Mol. Biol.2000.301:597-624.
    [29]. Tsui V, Radhakrishnan I, Wright PE, Case DA. NMR and molecular dynamics studies of the hydration of a zinc finger-DNA complex. J. Mol. Biol.2000.302:1101-1117.
    [30]. Lee BM Xu J, Clarkson BK, Martinez -Yamout MA. Induced fit and "lock and key" recognition of 5S RNA by zinc fingers of transcription factor IIIA. J. Mol. Biol.2006.357: 275-291.
    [31]. Demicheli C, Frezard F, Mangrum JB. Interaction of triva-lent antimony with a CCHC zinc finger domain:potential relevance to the mechanism of action of antimonial drugs. Chem. Commun.2008.39:4828-4830.
    [32]. Arambula JF, Ramisetty SR, Baranger AM. A simple ligand that selectively targets CUG trinucleotide repeats and inhibits MBNL protein binding. Proc. Natl. Acad. Sci. USA 2009. 106:16068-16073.
    [33]. Temiz NA, Trapp A, Prokopyev OA. Optimization of minimum set of protein-DNA inter-actions:A quasi exact solution with minimum over-fitting. Bioinformatics 2010b.26:319-325
    [34]. Urnov FD, Rebar EJ, Holmes MC. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet.2010.11:636-646.
    [35]. Elrod-Erickson M, Rould MA, Nekludova L. Zif268 protein-DNA complex refined at 1.6A:a model system for understanding zinc finger -DNA interactions.Structure 1996.4: 1171-1180.
    [36]. Jantz D, Amann BT, Gatto GJ. The design of functional DNA-binding proteins based on zinc finger domains. Chem. Rev.2004.104:789-799.
    [1]. (a) Patai, S. The Chemistry of Amino, Nitroso, Nitro and Related Groups; Wiley:New York,1996. (b) Salvatore, R. N.; Yoon, C. H.; Jung, K. Protecting-Group-Free Synthesis of Amines 2001,57,7785-7811.
    [2]. (a) Byun, E.; Hong, B.; De Castro, Kathlia., A.; One-Pot Reductive Mono-N-alkylation of Aniline and Nitroarene Derivatives Using Aldehydes J. Org. Chem.2007,72,9815-9817. (b) Bhanushali, M. J.; Nandurkar, N. S.; Bhor, M. D.. Direct reductive amination of carbonyl compounds using bis(triphenylphos-phine) copper(Ⅰ) tetrahydroborate. Tetrahedron Lett.2007,48,1273-1276. (c) Morris, D. R.; Morton, L. J.; Eds.Polyamines in Biology and Medicine; Marcel Dekker, Inc.:New York,1981.
    [3]. D A Chiappetta; C Alvarez-Lorenzo;A Rey-Rico et al. N-alkylation of polo-xamines modulates micellar assembly and encapsulation and release of the antiretroviral efavirenz. Eur. J. Pharm. Biopharm.,2010,76:24-37
    [4]. M Stodulski; J Mlynarski. Synthesis of N-alkyl-N-methyl amino acids. Scope and limitations of base-induced N-alkylation of Cbz-amino acids Tetrahedron: Asymmetry,2008,19:970-975.
    [5]. Olsen, C. A.; Franzyk, H.; Jaroszewski,; N-Alkylation and Indirect Formation of Amino Functionalities in Solid-Phase Synthesis. Synthesis 2005,2631-2653
    [6]. (a)Sasaki, Y., Murphy, W. A., Heiman, M. L. Solid-phase synthesis and bio-logical properties of psi [CH2NH] pseudopeptide analogues of a highly potent somatostatin octapeptide. J. Med. Chem.1987,30,1162-1166. (b) Sasaki, Y.; Coy, D. H. Solid phase synthesis of peptides containing the CH2NH peptide bond isostere Peptides 1987,8,119-121. (c) Meyer, J. P.; Davis, P.; Lee, K. B.; Synthesis Using a Fmoc-Based Strategy and Biological Activities of Some Reduced Peptide Bond Pseudopeptide Analogs of Dynorphin A. Med. Chem. 1995,38,3462 -3468. (d) Gazal, S.; Gellerman, G.; Gilon, C. Novel Gly building units for backbone cyclization:synthesis and incorporation into model peptides.Peptides 2003,24,1847-1852.
    [7]. (a) Dankwardt, S. M.; Smith, D. B.; Porco, J. A. Solid Phase Synthesis of N-Alkyl Sulfonamides. Synlett 1997,854-856. (b) Kan, T.; Kobayashi, H.; Fukuyama, T. Highly Versatile Synthesis of Polyamines by Ns-strategy on a Novel Trityl Chloride Resin. Synlett 2002,1338-1340.
    [8]. (a) Zuckermann, R. N.; Kerr, J. M.; Kent, S. B. H. Efficient method for the preparation of peptoids [oligo(N-substituted glycines)] by submonomer solid-phase synthesis. J. Am. Chem. Soc.1992,114,10646-10647. (b) Barn, D. R.; Morphy, J. R.; Rees, D. C. Synthesis of an array of amides by aluminium chloride assisted cleavage of resin-bound esters. Tetrahedron Lett.1996,37, 3213-3216. (c) Byk, G.; Frederic, M.; Scherman, D. One pot synthesis of un-symmetrically functionalized polyamines by a solid phase strategy starting from their symmetrical polyamine-counterparts. Tetrahedron Lett.1997,38, 3219-3222.
    [9]. (a) Virgilio, A. A.; Sch€urer, S. C.; Ellman, J. A. Expedient solid-phase synthesis of putative β-turn mimetics incorporating the i+1, i+2, and i+3 sidechains. Tetrahedron Lett.1996,37,6961-6964. (b) Souers, A. J.; Virgilio, A. A.; Sch€urer, S. S. Novel inhibitors of α4β integrin receptor interactions through library synthesis and screening. Bioorg. Med. Chem. Lett. 1998,8,2297-2302. (c) Souers, A. J.; Virgilio,A. A.; Rosenquist, A. Identification of a Potent Heterocyclic Ligand To Somatostatin Receptor Subtype 5 by the Synthesis and Screening of β-Turn Mimetic Libraries. J. A. J. Am. Chem. Soc.1999,121,1817-1825.
    [10]. Sajjadi, Z.; Lubell, W. D. Amino acid-azetidine chimeras:synthesis of enantio-pure 3-substituted azetidine-2-carboxylic acids. J. Pept. Res.2005,65,298-310.
    [11]. (a) Gerard Rosse, Feriel Ouertani. Schroder, H. Efficient Solid-Phase Synthesis of β-Aminosubstituted Piperidinols. J. Comb. Chem.1999,1,397-401. (b)Bryan, W. M.; Huffman, W. F.; Bhatnagar, P. K. Combinatorial chemistry. Preparation of phenoxypropanolamines. Tetrahedron Lett.2000,41,6997-7000. (c)Wong, J. C.; Sternson, S. M.; Louca, J. B. Modular Synthesis and Preliminary Biological Evaluation of Stereochemically Diverse 1,3-Dioxanes. Chem. Biol.2004,11,1279-1291. (d) Tremblay, M. R.; Wentworth, P.; Lee, G E. Parallel Solid-Phase Synthesis and Structural Characterization of a Library of Highly Substituted Chiral 1,3-Oxazolidines. J. Comb. Chem.2000,2,698-709.
    [12]. Lee, O.-Y.; Law, K.-L.; Ho, C.-Y.. Highly chemoselective reductive amination of carbonyl compounds promoted by InC13/Et3SiH/MeOH system. J. Org. Chem.2008,73,8829-8837.
    [13]. Ono, Y. Dimethyl carbonate for environmentally benign reactions. Pure Appl. Chem.1996,68,367-375.
    [14]. Anastas, P. T.; Warner, J. C. Green Chemistry:Theory and Practice; Oxford University Press:Oxford,1998.
    [15]. (a) Scriven, E. F. V.; Turnbull, R. Azides:their preparation and synthetic uses Chem. Rev.1988,88,297-368. (b) Brase, S.; Gil, C.; Knepper, K.; Organische Azide-explodierende Vielfalt bei einer einzigartigen Substanzklasse. Angew. Chem.2005,117,5320 -5374. Organic Azides:An Exploding Diversity of a Unique Class of Compounds. Angew. Chem., Int. Ed.2005,44,5188-5240. (c) The Chemistry of the Azido Group;Patai, S., Ed.; Wiley:New York,1971. (d) Azides and Nitrenes:Reactivity and Utility; Scriven, E. F. V., Ed.; Academic Press:New York,1984. (e) Larock, R. C. Comprehensive Organic Transformat-ions:A Guide to Functional Group Preparations; VCH, Weinheim,1989; p409.
    [16]. (a) Liu, Q.; Tor, Y. Simple Conversion of Aromatic Amines into Azides. Org. Lett.2003,5,2571-2572. (b) Rodrigues, J. A. R.; Abramovitch, R. A.; de Souse, J. D. F.; Diastereoselective Synthesis of Cularine Alkaloids via Enium Ions and an Easy Entry to Isoquinolines by Aza-Wittig Electrocyclic Ring Closure. J. Org. Chem.2004,69,2920-2928.
    [17]. (a) Abramovitch, RA; Kyba, E. P. "The Chemistry of the Azido Group"; Patai, S., Ed.; Wiley:New York,1971, p256. (b) Patai, S.; Rappoport, Z., Eds. The Chemistry of Halides, Pseudo-Halides and Azides,Supplement D; Wiley:New York,1983. (c) Chemistry of Halides, Pseudo-Halides and Azides, Part 1; atai, S., Ed.;Wiley:New York,1995. (d) Chemistry of Halides, Pseudo-Halides and Azides, Part 2; Patai, S., Ed.; Wiley:New York,1995.
    [18]. (a) Demmer, O.; Dijkgraaf, I.; Schottelius, M.; Introduction of Functional Groups into Peptides via N-Alkylation.Org. Lett.2008,10,2015-2018. (b) Sajiki, H.; Ikawa, T.;Hirota, K. Reductive and Catalytic Monoalkylation of Primary Amines Using Nitriles as an Alkylating Reagent. Org. Lett.2004,6, 4977-4980.
    [19]. (a)Kolb, H. C.; Finn, M. G.:Sharpless, K. B. Click Chemistry:Diverse Chemical Function from a Few Good Reactions. Angew. Chem., Int. Ed.2001, 40,2004-2021. (b) Moses, J. E.; Moorhouse, A. D. The growing applications of click chemistry. Chem. Soc.Rev.2007,36,1249-1262. (c)Kamal, A. Shankaraiah, N.; Reddy, Ch. R. Synthesis of bis-1,2,3-triazolo-bridged un-symmetrical pyrrolobenz-odiazepine trimers via'click'chemistry and their DNA-binding studies. Tetrahedron 2010,66,5498 -5506. (d) Kamal, A. Prabhakar, S.;Shankaraiah, N. Synthesis of C8-C8/C2-C8-linked triazolo pyrrolobenzodiazepine dimers by employing'click'chemistry and their DNA-binding affinity. Tetrahedron Lett.2008,49,3620-3624. (e) Kamal, A.; Shankaraiah, N.; Devaiah, V.Synthesis of 1,2,3-triazole-linked pyrrolo-benzodiazepine conjugates employing'click'chemistry:DNA-binding affinity and anticancer activity. Bioorg. Med. Chem. Lett.2008,18,1468-1473
    [20]. (a)Salunkhe, A. M.; Ramachandran, P. V.; Brown, H. C. Chemoselective reduction of organyl azides with dichloroborane-dimethyl sulfide. Tetrahedron 2002,58,10059-10064. (b) Brown, H. C.; Salunkhe,A. M.; Singaram, B. Chiral synthesis via organoboranes.28. Reaction of.alpha.-chiral organyldichloroboranes with organyl azides providing a synthesis of secondary amines with exceptionally high enantiomeric purities. J. Org. Chem.1991,56, 1170-1175. (c) Brown,H. C.; Midland, M. M.; Levy, A. B. Organoboranes for synthesis:Reaction of organoboranes with representative organic azides. A general stereo-specific synthesis of secondary amines and N-substituted aziridines. Tetrahedron 1987,43,4079 -4088.(d) Brown, H. C.; Midland, M. M.; Levy, A. B. Facile reaction of alkyl-and aryldichloroboranes with organic azides. General stereo-specific synthesis of secondary amines. J. Am. Chem. Soc.1973,95,2394-2396. (e)Brown, H. C.; Midland, M. M.; Levy, A. B. Facile reaction of dialkylchloro- boranes with organic azides. Remarkable enhancement of reactivity relative to trialkylboranes. J. Am.Chem. Soc.1972, 94,2114-2115. (f) Suzuki, A.; Sono, S.; Itoh, M.; Brown, H. C.;Midland, M. M. Reaction of representative organic azides with triethylborane. New route to secondary amines. J. Am. Chem. Soc.1971,93,4329 -4330.(g) Carboni, B.; Vaultier, M.; Carrier, R. Stereoselective synthesis of erythro- and thero-1,2-diols from diketo sulfides via cis-3,4-di-hydroxythiolanes. Tetrahedron 1987,43,1799-1810.
    [21]. Shankaraiah, N.; Markandeya, N.; Srinivasulu, V. J..A one-pot azido reductive tandem mono-N-alkylation employing dialkylboron triflates:online ESI-MS mechanistic investigation. Org. Chem.2011, Sep 2; 76(17):7017-26
    [22]. Kamal, A.; Markandeya, N.; Shankaraiah, N.; Chemoselective Aromatic Azido Reduction with Concomitant Aliphatic Azide Employing Al/Gd Triflates/Nal and ESI-MS Mechanistic Studies.Chem. Eur. J.2009,15,7215-7224.
    [23]. (a) Evans, D. A.; Connell, B. T.; Coleman, P. J.. Total Synthesis of the Anti-fungal Macrolide Antibiotic (+)-Roxaticin J. Am.Chem. Soc.2003,125,10893-10898. (b) Evans, D. A.; Coleman, P. J.; "Chiral C2-Symmetric Cu(Ⅱ) Com-plexes as Catalysts for Enantioselective Intramolecular Diels-Alder Reactions. J. Org. Chem.1997,62,788-789. (c) Das, S.; Li, L.-S.; Sinha, S. C. Stereo-selective aldol-type cycliza- tion reaction mediated by dibutylboron triflate/ diisopropylethylamine.Org. Lett.2004,6,123-126.
    [24]. (a) Hernandez-Torres, J. M.; Achkar, J.; Wei, A. Temperature-controlled regio-selectivity in the reductive cleavage of p-methoxybenzylidene acetals.J. Org. Chem.2004,69,7206 -7211. (b) Lu, J.; Chan., T.-H. A mild reagent for the regioselective reductive ring opening of benzylidene acetals in carbohydrates. Tetrahedron Lett.1998,39,355-358.
    [25]. Shankaraiah, N.; Markandeya, N.; A One-Pot Azido Reductive Tandem Mono-N-Alk ylation Employing Dialkylboron Triflates:Online ESI-MS Mechanistic InvestigationOrg. Chem.2011, Sep 2; 76(17):7017-26
    [26]. M. Oncak, Y. Cao, M.K. Beyer, Gas-phase reactivities of charged platinum dimers with ammonia:A combined experimental/theoretical study Chem. Phys. Lett.450(2008) 268.
    [27]. M.S. Pereira, M.A.C. Nascimento, Theoretical study of the dehydrogenation reaction of ethane catalyzed by zeolites containing non-framework gallium species:The 3-step mechanism X the 1-step concerted mechanism Chem. Phys. Lett.406 (2005) 446.
    [28]. D.D. Sung, I.S. Koo, K. Yang, DFT studies on the structure and stability of zwitterionic tetrahedral intermediate in the aminolysis of esters Chem. Phys. Lett.426 (2006) 280.
    [29]. S. Raoult, M.T. Rayez, J.C. Rayez, Gas phase oxidation of benzene:Kinetics, thermochemistry and mechanism of initial steps Phys. Chem. Chem. Phys.6 (2004)2245.
    [30]. Q.H. Li, K.C. Wu, R.J. Sa, Solvent effect on quadratic hyperpolarizability of 4-(dimethylamino-4' -stilbazole) tungsten pentacarbonyl:A revisit of mechanism for second-order response. Chem. Phys. Lett.471 (2009) 229.
    [31]. D.G. Fedorov, K. Kitaura. Second order M(?)ller-Plesset perturbation theory based upon the fragment molecular orbital method. Chem. Phys. Lett.389 (2004) 129.
    [32]. J. Andres, J.A. Santaballa, D.R. Ramos. Density functional study of the Hoffmann elimination of (N-C1),N-methylethanolamine in gas phase and in aqueous solution Chem. Phys. Lett.429 (2006) 425.
    [33]. L. Sun, M.S. Tang, H.M. Wang. A theoretical investigation of the enantio-selective reduction of prochiral ketones promoted by chiral diamines Tetrahedron Asymmetr.19 (2008) 779.
    [34]. D.H. Wei et al.. A DFT study of the enantioselective reduction of prochiral ketones promoted by pinene-derived amino alcohols. Tetrahedron Asymmetry. 20(2009)1020.
    [35]. J. Zhao, M.S. Tang, D.H. Wei, Gas-phase pyrolysis mechanisms of 3-anilino-1-propanol:Density functional theory study. Int. J. Quant. Chem.109 (2009) 1036.
    [36]. D.H. Wei, M.S. Tang, H.M. Wang, S. Li, J. Zhao, C.F. Zhao, Acta Chim. Sin.66 (2008)321.
    [37]. A.D. Becke. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Phys. Chem.98 (1993) 5648.
    [38]. P.C. Hariharan, J.A. Pople. Influence of polarization functions on MO hydrogenation energies Theor. Chim. Acta 28 (1973) 213.
    [39]. M.M. Francl, W.J. Pietro, W.J. Hehre, A Polarization Basis Set for Second Row. J. Chem. Phys.77 (1982) 3654.
    [40]. C. Cappelli, S. Corni, B. Mennucci, Vibrational Circular Dichroism within the polarizable continuum model:a theoretical evidence of conformation effects and hydrogen bonding for (S)-(-)-3- butyn-2-ol in CC14 solution. J. Phys. Chem. A 106 (2002) 12331.
    [41]. B. Mennucci et al., Polarizable Continuum Model (PCM) Calculations of Solvent Effects on Optical Rotations of Chiral Molecules J. Phys. Chem. A 106 (2002)6102.
    [42]. J. Tomasi, R. Cammi, B. Mennucci. Molecular properties in solution described with a continuum solvation model Phys. Chem. Chem. Phys.4 (2002) 5697
    [43]. Y.Y. Zhu, Z. Chen, Z. Guo, Y. Wang, G.J. Chen, J. Mol. Model.15 (2009) 469.
    [44]. Y.Y. Zhu, Y. Wang, G.J. Chen, C.G. Zhan, Theor. Chem. Acc.122 (2009) 167.
    [45]. E.P.F. Lee, J.M. Dyke, W.K. Chow. DFT and ab initio calculations on two reactions between hydrogen atoms and the fire suppressants 2-H heptafluoro-propane and CF3Br. J. Comput. Chem.28(2007) 1582.
    [46]. Y.Z. Tang, Y.R. Pan, J.Y. Sun. Ab initio/DFT theory and multichannel RRKM study on the mechanisms and kinetics for the CH3S+COreaction. Chem. Phys. 344(2008)221.
    [1]. (a) Michael, J. P. Indolizidine and quinolizidine alkaloids. Nat. Prod. Rep.1995, 5,535e552; (b) Gundersen, L. L.; Charnock, C.; Negussie, A. H.; Rise, F.;Synthesis of indolizine derivatives with selective antibacterial activity against Mycobacterium tuberculosis. Eur. J. Pharm. Sci.2007,30,26e35; (c) Chandrashekhar.N.; Karvekar, M. D.; Das, A. K. Asian J. Chem.2008,20, 6183e6188; (d) Weide, T.; Arve, L.; Prinz, H.3-Substituted indolizine-1-carbonitrile derivatives as phosphatase inhibitors. Bioorg. Med. Chem. Lett.2006,16,59e 63; (e) Gupta, S. P.; Mathur, A. N.; Nagappa, A. N.A quantitative structure-activity relationship study on a novel class of calcium-entry blockers:1-[{4-(aminoalkoxy)phenyl} sulphonyl] indolizines. Eur. J. Med. Chem.2003,38,867 e 873;(f) Gubin, J.; de Vogelaer, H.; Inion, H.; Novel heterocyclic analogs of the new potent class of calcium entry blockers: l-[[4-(aminoalkoxy)-phenyl] sulfonyljindolizines.J. Med. Chem.1993,36, 1425e1433.
    [2]. Gubin, J.; Lucchetti, J.; Mahaux, J.A novel class of calcium-entry blockers:the 1-[[4-(aminoalkoxy)phenyl]sulfonyl]indolizines. J. Med. Chem.1992,35, 981e988.
    [3]. (a) Uchida, T.; Matsumoto, K. Synthesis 1976,209e239; (b) Boekelheide, V.; Windgassen, R. J., Jr. Syntheses of Pyrrocolines Unsubstituted in the Five-membered Ring. J. Am. Chem. Soc.1959,81,1456 el459; (c) Bora, U.; Saikia, A.; Boruah, R. C. A Novel Microwave-Mediated One-Pot Synthesis of Indolizines via a Three-Component Reaction. Org. Lett.2003,5,435e438; (d) Katritzky, A. R.; Qiu, G.; Yang, B.; He, H.-Y. Novel Syntheses of Indolizines and Pyrrolo[2,1-a]isoquinolines via Benzotriazole Methodology. J. Org. Chem. 1999,64,7618 e 7621; (e) Poissonnet, G.; heret-Bettiol, M.-H.; Dodd, R. H. Preparation and 1,3-Dipolar Cycloaddition Reactions of β-Carboline Azomethine Ylides:A Direct Entry into C-1-and/or C-2-Functionalized Indolizino[8,7-b]indole Derivatives. J. Org. Chem.1996,61,2273e2282; (f) Sasaki, T.; Kanematsu, K.; Kakehi, A.; Ito, G. Rearrange-ment of abietic-type resinacids via stable carbocations. Tetrahedron 1972,28,4947e4958; (g) Nugent, R. A.;Murphy, M. The synthesis of indolizines:the reaction of.alpha.-halo pyridinium salts with.beta.-dicarbonyl species. J. Org. Chem. 1987,52,2206 e2208.
    [4]. (a) Liu, Y.; Song, Z.; Yan, B. General and Direct Synthesis of 3-Aminoindolizines and Their Analogues via Pd/Cu-Catalyzed Sequential Cross-Coupling/Cycloisomerization Reactions. Org. Lett.2007,9,409e 412; (b) Kel'in, A. V.; Sromek, A. W.; Gevorgyan, V. A Novel Cu-Assisted Cycloisomerization of Alkynyl Imines:Efficient Synthesis of Pyrroles and Pyrrole-Containing Heterocycles. J. Am. Chem. Soc.2001,123,2074e2075; (c) Kim, J. T.; Gevorgyan, V. Double Cycloisomerization as a Novel and Expeditious Route to Tricyclic Heteroaromatic Compounds:Short and Highly Diastereoselective Synthesis of (±)-Tetrapone-rine T6. Org. Lett. 2002,4,4697e4699; (d) Kim, J. T.; Butt, J.; Gevorgyan, V. Highly Diastereoselective Approach toward (±)-Tetraponerine T6 and Analogues via the Double Cycloisomerization-Reduction of Bis-alkynylpyrimidines. J. Org. Chem.2004,69,5638e5645; (e) Kim, J. T.; Gevorgyan, V. Selective Partial Reduction of Various Heteroaromatic Compounds with Bridgehead Nitrogen via Birch Reduction Protocol. J. Org. Chem.2005,70,2054 e2059.
    [5]. (a) Zhu, J.; Bienayme, H. Multicomponent Reactions. Wiley-VCH:Weinheim, Germany,2005; (b) Domling. Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry. Chem. Rev.2006,106,17e 89;(c)Tejedor, D.; Garcia-Tellado, F. Chemo-differentiating ABB multicomponent reactions. Privileged building blocks. Chem. Soc. Rev.2007, 36,484e 491; (d) Ramon, D. J.; Miguel, Y. Asymmetric Multicomponent Reactions (AMCRs):The New Frontier. Angew. Chem., Int. Ed.2005,44,1602 e1634; (e) Jiang, B.; Rajale, T.; Wever, W. Multicomponent Reactions for the Synthesis of Heterocycles. Chem. Asian J.2010,5,2318 e2335; (f) Bello, D.; Ramon, R.; Lavilla, R. Mechanis-tic Variations of the Povarov Multicomponent Reaction and Related Processes. Curr. Org. Chem.2010, 14,332e 356; (g) Bienayme, H.; Hulme, C.; Oddon, G.; Schmitt, P. Maximizing Synthetic Efficiency:Multi-Component Transformations Lead the Way. Chem. dEur. J.2000,6,3321 e3329; (h) Tietze, L. F.; Modi, A. Multicomponent domino reactions for the synthesis of biologically active natural products and drugs. Med. Res. Rev.2000,20,304e 322; (i) Bremner, S.; Organ, M. G. Multicomponent Reactions to Form Heterocycles by Microwave-Assisted Continuous Flow Organic Synthesis. J. Comb. Chem.2007,9,14 e16; (j) Biggs-Houck, J. E.; Younai, A.; Shaw, J. T. Recent advances in multi-component reactions for diversity-oriented synthesis. Curr. Opin. Chem. Biol. 2010,14,371e382.
    [6]. (a) Trost, B. M. The atom economy--a search for synthetic efficiency. Science 1991,254,1471e1477; (b) Trost, B. M. Atom Economy-A Challenge for Organic Synthesis:Homogeneous Catalysis Leads the Way. Angew. Chem., Int. Ed. Engl.1995,34,259e281; (c)Wasilke, J. C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C. Concurrent Tandem Catalysis. Chem. Rev.2005,105,1001e1020; (d) Tietze, L. F. Domino Reactions in Organic Synthesis. Chem. Rev.1996,96, 115e136; (e) Wangelin, A. J.; Neumann, H.; Gordes, D.; Klaus, S.; Strcubing, D.; Beller, M. Multicomponent coupling reactions for organic synthesis: Chemoselective reactions with amide-aldehyde mixtures. Chem. dEur. J.2003, 9,4286e4288.
    [7]. (a) Orru, R. V. A.; de Greef, M. Recent advances in solution-phase multicomponent Methodology for the synthesis of heterocyclic compounds. Synthesis 2003,1471e1499; (b) Terrett, N. K. Combinatorial Chemistry; Oxford University Press:New York, NY,1998.
    [8]. (a) Bedjeguelal, K.; Bienayme, H.; Poigny, S.; Schmitt, P.; Tam, E. Expeditious Access to Diversely Substituted Indolizines Using a New Multi-component Condensation. QSAR Comb. Sci.2006,25,504e508; (b) Bedjeguelal, K. Bienayme, H.; Dumouin, A.; Poigny, S.; Schmitt, P.; Tam, E. Discovery of protein-protein binding disruptors using multi- component condensations small molecules. Bioorg. Med. Chem. Lett.2006,16,3998e4001; (c) Ter-eshchenko, A. D.; Sysoiev, D. A.; Tverdokhlebov, A. V.; Tolmachev, A A. A New Synthetic Approach to Pyrrolo[3,4-a]indolizines. Synthesis 2006, 349e353; (d) Recnik, S.;Svete, J.; Stanovnik, B. Ring Contractions of 4-Oxoquinolizine-3-diazonium Tetrafluoroborates, by an Aza Wolff Rearrangement, to Alkyl Indolizine-3-carboxylates. Eur. J. Org. Chem.2001, 19,3705e3709.
    [9]. (a) Lin, X. F. Hot topic:Multicomponent Reactions. Curr. Org. Chem.2010,14, 331; (b) Cui, S. L.; Lin, X. F.; Wang, Y. G. Novel and Efficient Synthesis of Iminocoumarins via Copper-Catalyzed Multicomponent Reaction. Org. Lett. 2006,8,4517e4520; (c) Hong, D.; Chen, Z.; Lin, X. F.; Wang, Y. G. Synthesis of Substituted Indoles from 2-Azidoacrylates and orthoSilyl Aryltriflates. Org.Lett.2010,12,4608e4611; (d) Hong, D.; Lin, X. F.; Zhu, Y. Copper-Catalyzed Tandem Nucleophilic Ring-Opening/Intramolecular Oxidative Amidation of N-Tosylaziridines and Hydrazones under Aerobic Conditions. Org. Lett.2009,11,5678e5681; (e) Wang, Y. G.; Cui, S. L.; Lin, X. F. A Highly Selective Cascade Approach to Diverse Aromatic Ring Systems from Simple Aromatic Aldehydes and Propiolates. Org. Lett.2006,8,1241 e1244; (f) Lin, X. F.; Mao, Z. J.; Dai, X. X.; Lu, P.; Wang, Y. G. A straightforward one-pot multicomponent synthesis of polysubstitutedpyrroles. Chem. Commun.2011, 6620e6622

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700