咪唑、喹唑啉酮及2-萘酚衍生物的绿色合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2,4,5-三取代咪唑、2-取代-2,3-二氢-4(1H)-喹唑啉酮及1-氨甲酸酯基-烷基-2-萘酚衍生物具有显著的生物活性和药理活性,是重要的药物合成中间体,在农药和医药领域有着广泛的应用。本文主要分为三部分,采用不同的绿色工艺合成了2,4,5-三取代咪唑、2-取代-2,3-二氢-4(1H)-喹唑啉酮及1-氨甲酸酯基-烷基-2-萘酚衍生物。
     第一部分是在无催化剂、乙醇为溶剂、加热回流条件下,以苯偶酰、芳香醛、醋酸铵为原料,三组分“一锅法”合成了十五种2,4,5-三取代咪唑衍生物。实验得出的较佳反应条件是:原料摩尔比为1:1:6,乙醇10mL。醋酸铵过量起到“反应自身催化”的作用,产品产率65-98%。
     第二部分是在甲基磺酸亚铈催化作用下,以水为溶剂,将2-氨基苯甲酰胺和醛/酮室温研磨后,置于60oC加热反应(苯甲醛除外),可有效环化合成一系列2-取代-2,3-二氢-4(1H)-喹唑啉酮衍生物。实验得出较佳反应条件是:原料摩尔比为1:1,催化剂用量为1mol%(以2-氨基苯甲酰胺的摩尔数计),水1mL。产品的产率为84-94%。催化剂连续使用五次后催化效果仍较好。
     第三部分是在无溶剂,以甲基磺酸铜为催化剂条件下,将2-萘酚、醛、氨基甲酸酯三组分“一锅法”反应,合成了十八种1-氨甲酸酯基-烷基-2-萘酚衍生物。实验得出的较佳反应条件是:原料摩尔比为1:1:1.2,温度为70oC,催化剂用量为2mol%(以2-萘酚的摩尔数计)。产品的产率为65-92%,催化剂连续使用五次后催化效果仍较好。
     所合成的化合物分别用IR、1H-NMR、质谱及元素分析进行表征。
2,4,5-Trisubstituted imidazoles,2-substituted-2,3-dihydro-4(1H)-quinazolinones and1-carbamato-alkyl-2-naphthols derivatives possess distinct pharmaceutical and biologicalactivities. They are important intermediates in medicinal synthesis and they are appliedwidely in the field of agrochemicals and drugs. The thesis consists of three parts including thegreen sysnthesis of2,4,5-trisubstituted imidazoles,2-substituted-2,3-dihydro-4(1H)-quinazolinones and1-carbamato-alkyl-2-naphthols derivatives.
     In the first part, the2,4,5-trisubstituted imidazoles were synthesized by athree-component, one-pot condensation of benzil, aldehydes and ammonium acetate inrefluxing ethanol without adding catalyst. The optimum operation conditions were as follows:the molar ratio of benzil, aldehydes and ammonium acetate is1:1:6and ethanol is10mL.The excess amount of NH4OAc would promote the reaction by the ‘‘catalyzed-by-itself’’. Theyields of products are65-98%.
     In the second part, a series of2-substituted-2,3-dihydro-4(1H)-quinazolinones weresynthesized efficiently through cyclocondensation of2-anthranilamide with aldehydes orketones (except benzaldehyde) in the presence of a recyclable cerous methanesulfonate at60oC after grinding at room temperature under aqueous conditions. The optimum operationconditions were follows: the molar ratio of2-anthranilamide to aldehydes or ketones is1:1,the amount of catalyst is0.01mmol (based on the mole of2-anthranilamide), and water is1mL. The yields of products are84-94%. The catalytic activity of the catalyst is preferableafter five consecutive reactions.
     In the third part, the1-carbamato-alkyl-2-naphthols were synthesized by a one-potthree-component condensation of2-naphthol, aldehydes and carbamate in the presence of arecyclable copper methanesulfonate without solvent. The optimum operation conditions wereas follows: the molar ratio of2-naphthol, aldehydes and carbamate is1:1:1.2, the amount ofcatalyst is0.02mmol (based on the mole of2-naphthol), the temperature at70oC. The yieldsof products are65-92%. The catalytic activity of the catalyst is preferable after fiveconsecutive reactions.
     The structures of products were characterized by IR,1H-NMR, MS and elemental analysis.
引文
[1]伍晓春.咪唑类化合物的合成与应用研究.精细与专用化学品,2010,18,51-55.
    [2]赵爱婷,李财花,曾和平.芳基取代咪唑衍生物的合成及其紫外、荧光性质研究.化学研究与应用,2010,22,874-879.
    [3]刘旭峰,钟增培,许京丽.三芳基咪唑类化合物的合成及其双光子吸收性能研究.分析测试学报,2006,25,6-10.
    [4]朱彦荣,陈明凯,王进贤.微波促进无溶剂无催化剂条件下2,4,5-三芳基取代咪唑衍生物的合成.化学研究与应用,2008,20,216-220.
    [5]朱彦荣,白林,马明广.2-芳基-4,5-二苯基咪唑衍生物的无溶剂合成.设备工艺,2009,8,51-53.
    [6]周建峰,陆惠锋,顾惠丹.微波辐射下一步合成2-芳基-4,5-二苯基咪唑衍生物.应用化学,2005,22,918-919.
    [7]宛瑜,陈秀梅,张普.超声辐射下2,4,5三芳基咪唑的合成研究.徐州师范大学学报,2008,26,54-56.
    [8]王进贤,宋宪伟. PEG-400催化下2,4,5-三取代咪唑衍生物的合成.西北师范大学学报,2010,46,78-81.
    [9] Xu Y., Wan L.F., Salehi H. et al. Microwave-Assisted One-Pot Synthesis of Trisubstituted Imidazoles onSolid Support. Heterocycles,2004,63,1613–1618.
    [10] Xia M., Lu Y.D. A Novel Neutral Ionic Liquid-Catalyzed Solvent-Free Synthesis of2,4,5-Trisubsti-tuted Imidazoles Under Microwave Irradiation. J. Mol. Catal. A: Chem.2007,265,205–208.
    [11] Kidwai M., Mothsra P., Bansal V. et al. One-Pot Synthesis of Highly Substituted Imidazoles UsingMolecular Iodine: A Versatile Catalyst. J. Mol.Catal. A: Chem.2007,265,177–182.
    [12] Das B., Srinivas Y., Holla H. et al. Hypervalent Iodine-mediated Efficient Synthesis of Imidazoles.Chem.Lett.2007,36,1270-1271.
    [13] Khosropour A.R. Ultrasound-Promoted Greener Synthesis of2,4,5-Trisubstituted ImidazolesCatalyzed by Zr(acac)4Under Ambient Conditions. Ultrason. Sonochem.2008,15,659–664.
    [14] Sharma S.D., Hazarika P., Konwar D. An Efficient and One-Pot Synthesis of2,4,5-Trisubstituted and1,2,4,5-Tetrasubstituted Imidazoles Catalyzed by InCl3·3H2O. Tetrahedron Lett.2008,49,2216-2220.
    [15] Chary M.V., Keerthysri N.C., Vupallapati S.V.N. et al. Tetrabutylammonium Bromide (TBAB) inIsopropanol: An Efficient, Novel, Neutral and Recyclable Catalytic System for the Synthesis of2,4,5-Trisubstituted Imidazoles. Catal. Commun.2008,9,2013–2017.
    [16] Shen M.G., Cai C., Yi W.B. Ytterbium Perfluorooctanesulfonate as an Efficient and RecoverableCatalyst for the Synthesis of Trisubstituted Imidazoles. J. Fluorine Chem.2008,129,541–544.
    [17]许碧晖,夏盛,荣良策.无溶剂条件下有效合成2,3-二氢-4(1H)-喹唑啉酮衍生物.徐州师范大学学报,2011,29,62-65.
    [18]王树良,盛洁,屠树江.水介质中Yb(OTf)3催化下喹唑啉酮衍生物的绿色合成.有机化学,2011,31,1522-1526.
    [19]张海燕,盛洁,王香善.离子液体中Yb(OTf)3催化下喹唑啉酮衍生物的绿色合成.徐州师范大学学报,2011,29,70-73.
    [20]王树良,杨科,王香善.离子液体中Yb(OTf)3催化下喹唑啉酮衍生物的绿色合成.有机化学,2011,31,1235-1239.
    [21] Alaimo R.J., Russell H.E. Antibacterial2,3-dihydro-2-(5-nitro-2-thieny1)-quinazolin-4(1H)-ones. J.Med. Chem.1972,15,335-336.
    [22] Parish H.A., Gilliom R.D., Purcell W.P. et al. Syntheses and diuretic activity of1,2-dihydro-2-(3-pyridyl)-3H-pyrido[2,3-d]pyrimidin-4-one and related compounds. J. Med. Chem.1982,25,98-102.
    [23] Hour M.J., Huang L.J., Kuo S.C. et al.6-Alkylamino-and2,3-dihydro-3′-methoxy-2-phenyl-4-quinazolinones and related compounds: their synthesis, cytotoxicity, and inhibition of tubulinpolymerization. J. Med. Chem.2000,43,4479-4487.
    [24] Bhalla P.R., Walworth B.L. US Patent4,431,440,1981. Chem Abstr.1984,100,174857.
    [25] Bhalla P.R., Walworth B.L. EP Patent58,822,1982. Chem Abstr.1983,98,1669.
    [26]贺能琴,严胜骄,林军.喹唑啉类化合物的合成及活性研究进展.化学通报,2010,314-325.
    [27] Cai G.P., Xu X.L., Li Z.F. et al. A one-pot synthesis of2-aryl-2,3-dihydro-4(1H)-quinazolinones byuse of samarium iodide. J. Heterocycl. Chem.2002,39,1271-1272.
    [28] Su W.K., Yang B.B. Reductive Cyclization of Nitro and Azide Compounds with Aldehydes andKetones Promoted by Metallic Samarium and Catalytic Amount of Iodine. Aust. J. Chem.2002,55,695-697.
    [29] Dabiri M., Salehi P., Otokesh S. Efficient synthesis of mono-and disubstituted2,3-dihydroquinazolin-4(1H)-ones using KAl(SO4)2·12H2O as a reusable catalyst in water and ethanol. Tetrahedron Lett.2005,46,6123-6126.
    [30] Chen J.X., Wu H.Y., Su W.K. A facile synthesis of2,3-dihydro-2-aryl-4(1H)–quinazolinonescatalyzed by scandium(III) triflate. Chin. Chem. Lett.2007,18,536–538.
    [31] Chen J.X., Su W.K., Wu H.Y. Eco-friendly synthesis of2,3-dihydroquinazolin-4(1H)-ones in ionicliquids or ionic liquid–water without additional catalyst. Green Chem.2007,9,972-975.
    [32] Qiao R.Z., Xu B.L., Wang Y.H. A facile synthesis of2-substituted-2,3-dihydro-4(1H)-quinazolinonesin2,2,2-trifluoroethanol. Chin. Chem. Lett.2007,18,656–658.
    [33] Dabiri M., Salehi P. Silica sulfuric acid: An effcient reusable heterogeneous catalyst for the synthesisof2,3-dihydroquinazolin-4(1H)-ones in water and under solvent-free conditions. Catal. Commun.2008,9,785-788.
    [34] Chen J.X., Wu D.Z., He F. et al. Gallium(III) triflate-catalyzed one-pot selective synthesis of2,3-dihydroquinazolin-4(1H)-ones and quinazolin-4(3H)-ones. Tetrahedron Lett.2008,49,3814-3818.
    [35] Shaabani, A., Maleki, A., Mofakham, H. Click Reaction: Highly Efficient Synthesis of2,3-Dihydroquinazolin-4(1H)-ones. Synth Commun.2008,38,3751-3759.
    [36] Wang L.M., Hu L., Shao J.H. et al. A novel catalyst zinc(II) perfluorooctanoate [Zn(PFO)2]-catalyzedthree-component one-pot reaction: Synthesis of quinazolinone derivatives in aqueous micellar media.J. Fluorine Chem.2008,129,1139-1145.
    [37]一种在温和铜催化条件下合成喹唑啉酮的有效方法.亮点介绍. Angew. Chem. Int. Ed.2009,48,348-351.
    [38] Davoodnia A., Allameh S., Fakhari A.R. Highly efficient solvent-free synthesis of2,3-dihydroquinazolin-4(1H)-ones using tetrabutylammonium bromide as novel ionic liquid catalyst.Chin. Chem. Lett.2010,21,550-553.
    [39] Zong Y.X., Zhao Y., Luo W.C. et al. Highly efficient synthesis of2,3-dihydroquinazolin-4(1H)-onescatalyzed by heteropoly acids in water. Chin. Chem. Lett.2010,21,778-781.
    [40]庄启亚,付永春,唐丹.无溶剂条件下固相合成2,3-二芳基-2,3-二氢喹唑啉-4(1H)-酮.有机化学,2010,30,1405-1409.
    [41]刘霞,胡大华.2-芳基-2,3-二氢-4(1H)-喹唑啉酮类化合物的合成.化学研究与应用,2011,23,1541-1545.
    [42] Bazgir A., Amani V.1-[(2-Hydroxynaphthalen-1-yl)(phenyl) methyl]-3-methylurea. Acta Cryst.2006,62,3875-3876.
    [43] Bazgir A., AmaniV., Khavasi H.R. Methyl N-[(2-hydroxynaphthalen-1-yl)-(phenyl)methyl]carbamate.Acta Cryst.2006,62,3533-3534.
    [44] Dabiri M., Delbari A.S., Bazgir A. A simple and environmentally benign method for the synthesis ofnaphthoxazin-3-one derivatives. Hete. Chem.2007,71,543-548.
    [45] Shaterian H.R., Hosseinian A., Ghashang M. A three-component novel synthesis of1-carbamato-alkyl-2-naphthol derivatives. Tetra. Lett.2008,49,5804-5806.
    [46] Niloofar T.H., Heravi M.M., Bamoharram F. et al. Br nsted Acidic Ionic Liquids as Efficient Catalystsfor Clean Synthesis of Carbamatoalkyl Naphthols. Bull. Korean Chem.2011,32,787-792.
    [47] Shaterian H.R., Hosseinian A. PPA-SiO2Catalyzed Multi-component Synthesis of N-[α-(β-Hydroxy-α-naphthyl)(benzyl)]O-Alkyl Carbamate Derivatives. Chin. J. Chem.2009,27,821-824.
    [48] Shaterian H.R., Hosseinian A. Synthesis of New and Novel N-Protected1-Aminoalkyl-2-naphtholDerivatives. Synth. Commun.2009,39,2560-2574.
    [49] Kundu Dhiman., Majee A., Hajra A. Zwitterionic-type molten salt: An efficient mild organocatalyst forsynthesis of2-amidoalkyl and2-carbamatoalkyl naphthols. Catal. Commun.2010,11,1157-1159.
    [50] Heravai M.M., Niloofar T.H. Silica-supported Preyssler nano particles: a green, reusable and highlyefficient heterogeneous catalyst for the synthesis of carbamatoalkyl naphthols. Green. Chem.2010,3,263-267.
    [51] Boehm J.C., Smietana J.M., Sorenson M.E. et al.1-Substituted4-Aryl-5-Pyridinylimidazoles: A NewClass of Cytokine Suppressive Drugs with Low5-Lipoxygenase and Cyclooxygenase InhibitoryPotency. J. Med. Chem.1996,39,3929–3937.
    [52] Lee J.C., Laydon J.T., McDonnell P.C. et al. A Protein Kinase Involved in the Regulation ofInflammatory Cytokine Biosynthesis. Nature.1994,372,739–746.
    [53] Maier T., Schmierer R., Bauer K. et al.1-Substituted Imidazole-5-Carboxylic Acid Derivatives, TheirPreparation and Their Use as Biocides. U.S. Patent4820335,1989.
    [54] Pierce M.E., Carini D.J., Huhn G.F. et al. Practical Synthesis and Regioselective Alkylation of Methyl4(5)-(Pentafluoroethyl)-2-Propylimidazole-5(4)-Carboxylate to give DuP532, a Potent Angiotensin IIAntagonist. J. Org. Chem.1993,58,4642–4645.
    [55] Chang L.L., Sidler K.L., Cascieri M.A. et al. Substituted Imidazoles as Glucagon ReceptorAntagonists. Bioorg. Med. Chem. Lett.2001,11,2549–2553.
    [56] Gallagher T.F., Fier-Thompson S.M., Garigipati R.S. et al.2,4,5-Triarylimidazole Inhibitors of IL-1Biosynthesis. Bioorg. Med. Chem. Lett.1995,5,1171–1176.
    [57] Radziszewski B. Ueber die constitution des lophins und verwandter ver′bindungen. Chem. Ber.1882,15,1493–1496.
    [58] Japp F.R., Robinson H.H. Constitution des lophins und des amarins. Chem. Ber.1882,15,1268–1270.
    [59] Cook A.H., Jones D.G. Experiments in the triazine and the glyoxaline series. J. Chem. Soc.1941,278–282.
    [60] Kokare N.D., Sangshetti J.N., Shinde D.B. One-Pot Efficient Synthesis of2-Aryl-1-Arylmethyl-1H-Benzimidazoles and2,4,5-Triaryl-1H-Imidazoles Using Oxalic Acid Catalyst. Synthesis2007,18,2829–2834.
    [61] Shaabani A., Rahmati A. Silica Sulfuric Acid as an Efficient and Recoverable Catalyst for the Syn-thesis of Trisubstituted Imidazoles. J. Mol. Catal. A: Chem.2006,249,246–248.
    [62] Shaabani A., Rahmati A., Farhangi E. et al. Silica Sulfuric Acid Promoted the One-Pot Syn-thesis ofTrisubstituted Imidazoles Under Conventional Heating Conditions or Using Microwave Irradiation.Catal. Commun.2007,8,1149–1152.
    [63] Yu C.M., Lei M., Su W.K. et al. Europium Triflate-Catalyzed One-Pot Synthesis of2,4,5-Trisubstituted-1H-Imidazoles via a Three-Component Condensation. Synth. Commun.2007,37,3301–3309.
    [64] Mohammadi A.A., Mivechi M., Kefayati H. Potassium Aluminum Sulfate (Alum): An EfficientCatalyst for the One-Pot Synthesis of Trisubstituted Imidazoles. Monatsh. Chem.2008,139,935–937.
    [65] Wang L.M., Wang Y.H., Tian H. et al. Ytterbium Triflate as an Efficient Catalyst for One-Pot Synthesisof Substituted Imidazoles Through Three-Component Condensation Benzil, Aldehydes andAmmonium Acetate. J. Fluorine Chem.2006,127,1570–1573.
    [66] Sangshetti J.N., Kokare N.D., Kotharkar S.A. et al. ZrOCl2·8H2O Catalyzed One-Pot Synthesis of2,4,5-Triaryl-1H-Imidazoles and Substituted1,4-Di(4,5-diphenylimidazol-yl)benzene. Chin. Chem.Lett.2008,19,762–766.
    [67] Sangshetti J.N., Kokare N.D., Kotharkar S.A. et al. Sodium Bisulfite as an Efficient and InexpensiveCatalyst for the One-Pot Synthesis of2,4,5-Triaryl-1H-Imidazoles From Benzil or Benzoin andAromatic Aldehydes. Monatsh. Chem.2008,139,125–127.
    [68] Khosropour A.R. Synthesis of2,4,5-Trisubstituted Imidazoles Catalyzed by [Hmim]HSO4as aPowerful Bronsted Acidic Ionic Liquid. Can. J. Chem.2008,86,264–269.
    [69] Usyatinsky A.Y., Khmelnitsky Y.L. Microwave-Assisted Synthesis of Substituted Imidazoles on aSolid Support Under Solvent-Free Conditions. Tetrahedron Lett.2000,41,5031–5034.
    [70] Crouch R.D., Howard J.L., Zile J.L et al. Microwave-Mediated Synthesis of Lophine: Developing aMechanism to Explain a Product. J. Chem. Educ.2006,83,1658–1660.
    [71] Wolkenberg S.E., Wisnoski D.D., Leister W.H. et al. Efficient Synthesis of Imidazoles FromAldehydes and1,2-Diketones Using Microwave Irradiation. Org. Lett.2004,6,1453–1456.
    [72] Heravi M.M., Bakhtiari K., Oskooie H.A. et al. Synthesis of2,4,5-Triaryl-imidazoles Catalyzedby NiCl2·6H2O Under Heterogeneous System. J. Mol. Catal. A: Chem.2007,263,279–281.
    [73] Kidwai M., Saxena S., Ruby. et al. An Efficient Synthesis of2,4,5-Trisubstituted and1,2,4,5-Tetrasubstituted-1H-Imidazoles. Bull. Korean Chem. Soc.2005,26,2051–2053.
    [74] Jadhav S.D., Kokare N.D., Jadhav S.D. Phosphomolybdic Acid Catalyzed Facile One-Pot Synthesisof2,4,5-Triaryl-1H-Imidazoles From Benzil and Aromatic Aldehydes. J. Heterocyclic Chem.2008,45,1461–1464.
    [75] Shi D.Q., Rong L.C., Wang J.X. et al. Synthesis of quinazolin-4(3H)-ones and1,2-dihydroquinazolin-4(3H)-ones with the aid of a low-valent titanium reagent. Tetrahedron Lett.2003,44,3199–3201.
    [76] Wang M., Jiang H., Wang Z.C. Dehydration studies of Co(II), Cu(II) and Zn(II) methanesulfonates. J.Therm. Anal. Cal.2006,85,751-754.
    [77] Yale H.L., Kalkstein M. Substituted2,3-dihydro-4(1H)-quinazolinones. A new class of inhibitors ofcell multiplication. J. Med. Chem.1967,10,334-336.
    [78] Rostamizadeh S., Amani A.M., Mahdavinia G.H. et al. Synthesis of some novel2-aryl-substituted2,3-dihydroquinazolin-4(1H)-ones under solvent-free conditions using MCM-41-SO3H as a highlyefficient sulfonic acid. Synth. React. Inorg. Met.-Org. Chem.2010,1356-1360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700