北京山区典型森林枯落物层生态功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以北京山区三种典型林分类型油松、刺槐、侧柏人工林枯落物层为研究对象,通过对三种林分枯落物层现存量,碳和养分的分析,持水特性的研究,保水保土功能的研究,分析得出三种林分类型枯落物层水文功能的异同,并创新性的对三种林分类型枯落物化感物质及相互之间的化感作用进行了系统的研究,分析得出初步结论,为三种林分类型混交提供可行性建议。
     油松、刺槐、侧柏三种林分类型下枯落物储量有一定差别,依次为油松林、刺槐林,侧柏林储量最小。枯枝落叶层中叶养分储量均以N为最高,P浓度最低。地表养分周转率用凋落物养分年归还量与枯枝落叶层养分贮量的比值表示,其中油松林地表N和K的周转率最大,P周转率最大值(1.48)出现在侧柏林。油松林枯落物层碳储量最高,均大于刺槐林和侧柏林,而侧柏林枯落物层的碳周转率较油松、刺槐林稍高。
     三种林分枯落物的最大持水量有所不同。刺槐林枯落物的最大持水量最大,侧柏林最小,枯落物最大持水率排序依次为:刺槐林>侧柏林>油松林。
     枯落物持水量与浸泡时间具有一定的相关关系,三种林分枯落物各层持水量与浸泡时间的关系进行回归分析,得出该时段内持水量与浸泡时间之间存在如下关系:Q=aln(t)+b式中:Q—枯落物持水量(g/kg);t—浸泡时间(h);a—方程系数;b—方程常数项。
     三种林分枯落物的吸水速率表现出一定的规律性。对三种林分不同层次枯落物吸水速率与浸泡时间进行拟合,发现其关系如下:V=Ktn式中:V—枯落物吸水速度(g·kg-1·h-1);t—浸泡时间(h);k—方程系数;n—指数。
     从有效拦蓄率看,三种林分枯落物未分解层均大于半分解层,呈现相同的变化规律。综合枯落物未分解层和半分解层的变化规律可知,三种林分中刺槐林枯落物的拦蓄能力最强。
     三种林分枯落物层的阻滞径流速率的效应十分显著,在同等的条件下,随着坡度的增加,开始产流时间依次缩短,产流速率依次增大。裸地与有枯落物覆盖产沙产流量有明显的差异。
     三种林分枯落物中化学成分主要有醇、烷、酯、酚、烯等,三种林分枯落物中的化学成分有相似的成分,但同时也有各自特有的化学成分。
     通过对三种浓度枯落物水浸液对种子生长的影响分析,探讨三种树种的种间关系。
This research takes three typical planted forest floor in Beijing mountainous area,by studying on three typical planted forest floor,the carbon and the nutrient pool analysis,water retaining capacity,the function of the water and soil conservation,the analysis obtains three kind of forest floor ecology function the similarities and differences,and the innovative research is on allelochemicals to three kinds of forest floor and allelopathy effect between them,the analysis has drawn the preliminary conclusion to provide the feasible suggestion on three kinds of trees types mixes the junction. The paper main results are as follows:
     The litter total storage capacity of three typical planted forest are different,the order is:the Pinus tabulaeformis forest> the Robinia pseudoacacia forest> the Platycladus orientalis forest.
     The nutrient of the Pinus tabulaeformis,the Robinia pseudoacacia,the Platycladus orientalis,three kind of planted forest floor take N as highest, P is lowest.The surface nutrient cycling rate with withers and falls the nutrient year restore quantity and forest floor nutrient pool ratio indicated that Pinus tabulaeformis forest surface N and the K cycling rate is biggest,the P cycling rate maximum value (1.48) appears in the Platycladus orientalis forest. The Pinus tabulaeformis forest forest floor carbon reserves is highest, is bigger than the Robinia pseudoacacia and the Platycladus orientalis forest,but Platycladus orientalis's carbon cycling rate compares the Pinus tabulaeformis and the Robinia pseudoacacia forest to be slightly high.
     The maximum water capacity of the Pinus tabulaeformis,the Robinia pseudoacaci,the Platycladus orientalis forest floor are different. The maximum water capacity of Robinia pseudoacacia is highest, the Platycladus orientalis to be smallest. The rate of maximum water capacity is in turn:the Robinia pseudoacacia> the Platycladus orientalis> the Pinus tabulaeformi.
     Semi-decomposition litter and undecomposition litter reached saturation in 8h or 10h,on the regression analysis between each water capacity to 0.5-24h and the soaking time relations,obtains in this time interval between the water capacity and the immersion time has the following relations:the relationship of water holding capacity and soaking time is Q=aln(t)+b.In first half-hour,the absorption rate is the largest,the rate was obviously slowed down after 4 h,the relationship of absorption rate and immersion time is V= ktn.
     The modified interception amount of three kind of forest litter presents the same change rule,that is undecomposition litter to be bigger than semi-decomposition litter.The litter of Robinia pseudoacacia forest is the biggest.
     With the increase of the slope,it is more obvious to retard effect on runoff and reduce effect on the sediment and runoff yield. The bare land with has withers and falls the cover to produce the sand to produce the current capacity to have the obvious difference.
     The chemical composition of the Pinus tabulaeformis,the Robinia pseudoacacia,the Platycladus orientalis forest litter mainly to have the mellowness, the alkane,the ester,the phenol,the alkene.The chemical composition of the Pinus tabulaeformis,the Robinia pseudoacacia,,the Platycladus orientalis forest litter to have the similar ingredient, but simultaneously also has respectively the unique chemical composition.
     Effect of different concentration extract of three forest litter on seed absolute germination percentage, the absolute germination tendency,the root,the embrionic axial length has the varying degree to suppress the influence.
引文
[1]蔡晓明.生态系统生态学[M].北京:科学出版社,2002:223-237.
    [2]陈华,田汉勤,等.全球变化对陆地生态系统枯落物分解的影响[J].生态学报,2001,21(9):1549-1563.
    [3]陈丽华,余新晓,张东升,等.贡嘎山冷杉林区苔藓层截持降水过程研究[J].北京林业大学学报,2002,24(4):60-63.
    [4]陈奇伯.森林枯落物及苔脚阻延径流速度研究[J].北京林业大学学报,1996,18(1):1-5.
    [5]陈淑芳.植物化感作用影响因素的探讨[J].中国农学通报,2009,25(23):258-261.
    [6]董章杭,林文雄.作物化感作用研究现状及前景展望[J].中国生态农业学报,2001,9(1):80-83.
    [7]冯宗炜,陈楚莹,等.亚热带人工林生态系统中营养元素的积累、分配和循环的研究[J].植物生态学与地植物学丛刊,1985,9(4):245-255.
    [8]贾黎明,翟明普,.尹伟伦等.油松、辽东栎混交林中生化他感作用的研究[J].林业科学,1995,31(6):491-497.
    [9]贾黎明,高立鹏.油松白桦混交林中生化他感作用的生物测定[J].北京林业大学学报,1996,18(4):115-119.
    [10]韩芬,王辉,边银霞,等.华北落叶松枝叶挥发性物质的化学成分及其化感作用[J].应用生态学报,2008,19(11):2327-2332.
    [11]孔垂华,胡飞.植物化学通迅研究进展[J].植物园生态学报,2003,27(4):561-566.
    [12]孔垂华.植物化感作用研究中应注意问题[J].应用生态学报,1998,9(3):332-336.
    [13]雷瑞德.秦岭火地塘林区华山松水源涵养功能的研究[J].西北林学院学报,1984, (1):19-34.
    [14]林思祖,杜玲,曹光球,等.化感作用在林业中的研究进展及应用前景[J].福建林学院学报,2002,22(2):184-188.
    [15]刘世荣,孙鹏森,王金锡,等.长江上游森林植被水文功能研究[J].自然资源学报,2001,16(5):451-456.
    [16]刘世荣,温远光,王兵,等.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社,]996.
    [17]刘世荣,温远光.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社,1996:149-159.
    [18]刘文姗,荆桂芬,和爱军.滇中常绿阔叶林及云南松林凋落物和死地被物中的养分动态[J].植物学报,1990,32(8):637-646.
    [19]马样庆,刘爱琴,黄宝龙.杉木人工林自毒作用研究[J].南京林业大学学报,2000,24(1):12-16.
    [20]聂道平.森林生态系统营养元素生物循环[J].林业科学研究.1991,4(4):435-439.
    [21]齐鑫山.油松侧柏混交林及其纯林枯枝落叶生态效益的研究[J].生态学杂志,1992,11(1):32-37.
    [22]沈海龙,丁宝永,沈国舫,等.樟子松人工林下针阔叶凋落物分解动态[J].林业科学,1996,32(5):393-402.
    [23]宋君.植物间的他感作用[J].生态学杂志,1990,9(6):43-47.
    [24]孙立达,朱金兆.水土保持林体系综合效益研究与评价[M].北京:中国科学技术出版社,1995.
    [25]孙文浩等.相生相克效应及其应用[J].植物生理学通讯,1992,28(2):81-87.
    [26]王金建,崔培学,刘霞,等.小流域水土保持生态修复区森林枯落物的持水性能[J].中国水土保持科学,2005,3(1):48-52.
    [27]王海燕,蒋展鹏.化感作用及其在环境保护中的应用[J].环境污染治理技术与设备,2002,3(6):86-89.
    [28]王佑民.中国林地枯落物持水保土作用研究概况[J].水士保持学报,2000,14(4):108-113.
    [29]吴长文,王礼先.水土保持林中枯落物的作用[J].中国水土保持,1993,(4):28-30.
    [30]吴钦孝,赵鸿雁,刘向东,等.森林枯枝落叶层涵养水源保持水土的作用评价[J].水土保持学报,1998,4(2):23-28.
    [31]吴钦孝,刘向东,苏宁虎,等.山杨次生林枯枝落叶蓄积量及其水文作用[J].水土保持学报,1992,6(1):71-76.
    [32]阎飞,杨振明,韩丽梅.论农业持续发展中的化感作用[J].应用生态学报,2001,12(4):633-635.
    [33]阎飞,杨振明,韩丽梅.植物化感作用及其作用物的研究方法[J].生态学报,2000,20(4):692-696.
    [34]叶吉,郝占庆,姜萍.长白山暗针叶林苔藓枯落物层的降雨截留过程[J].生态学报,200424(12):2859-2862.
    [35]余雪标,莫晓勇,龙腾,等.不同连栽代次桉树林枯落物及其养分组成研究[J].海南大学学报,1999,17(2):140-144.
    [36]于志明,王礼先.水源涵养林效益研究[M].北京:中国林业出版社,1991:32-37.
    [37]翟明普等.森林植物间的化感作用[J].北京林业大学学报,1993,15(3):138-144.
    [38]张德弧,余清发,孔国辉,等.鼎湖山季风常绿阔叶林凋落物层化学性质的研究[J].生态学报,1998,18(1):96-100.
    [39]张洪江,程金花,史玉虎,等.三峡库区3种林下枯落物储量及其持水特性[J].水土保持学报,2003,17(3):55-58,123.
    [40]张万儒,许本彤,杨承栋,等.山地森林土壤枯枝落叶层结构和功能的研究[J].土壤学报,1990,27(2):121-302.
    [41]张振明,余新晓,牛健植,等.不同林分枯落物层的水文生态功能[J].水土保持学报,2005,19(3):139-143.
    [42]赵鸿雁,吴钦孝,从怀军.黄土高原人工油松林枯枝落叶截留动态研究[J].自然资源学报,2001,16(4):381-385.
    [43]赵鸿雁,吴钦孝,刘国彬.黄土高原人工油松林枯枝落叶层的水土保持功能研究[J].林业科学,2003,39(1):168-172.
    [44]赵玉涛,余新晓,张志强,等.长江上游亚高山峨眉冷杉林枯落物层界面水分传输规律研究[J].水土保持学报,2002,16(3):118-121.
    [45]中野秀章(日本).森林水文学[M].北京:中国林业出版社,1981.
    [46]周永文,黄文辉,陈红跃,等.不同人工林分枯落物和土壤持水能力研究[J].生态环境,2003,(4):449-451.
    [47]Arunachalam A,Kusum A.,Pandey H.N.Fine litterfall and nutrient dynamics during forest regrowth in the humid subtorpics of north-eastern India [J]. For.Ecol.Manage.,1998,110(1-3):209-219.
    [48]Bansal G L.Allelo Pathy effect of buttercups on wheat varietie[J].AHelopathy Journal,1997, 4(1):139-142.
    [49]Baziraakenga R,Leroux G O,Simard R R.Effects of benzoic and cinnamic acids on membrance permeability of soybean roots[J].Jounral of Chemical Ecology,1995,21(9):1271-1285.
    [50]Berg B,Ekbohm G. Litter massloss rates and decomposition patterns in some needle and leaf litter types.Long-term decomposition in a Scots pine forest. Ⅶ[J].Canadian Journal of Botany,1991,69(7):1449-1456.
    [51]Berg B,Berg M.P.Botmer P.Litter mass loss rates in pine forests of Europe and Eastern United:some relationships with climate and litter quality[J].Biogeoehemistry,1993,20:127-153.
    [52]Blackwell B,Feller MC.Trowbridge R.Conversion of dense odgepole pine stands in west-central British Columbia into young lodgepole pine plantation using prescribed fire.Biomass consumption during buring treatments[J]. Can J. For.Res.,1992,22 (4):572-581.
    [53]Brunner I,luster J,Oche M,et al.Phytotoxic effects of the high molecular weight fraction of an aqueous leaf litter extract on barley root development[J].Plant and Soil,1996,178(1):83-93.
    [54]Cruz OR,Anaya AL,Hernandez BE.Effects of allelochemical stress produced by sicyos deppei on seedling root ultrastructure of Phaseolous valgaris and Cucubita ficifolia[J]. Journal of Chemical Ecology,1998,24(12):2039-2057.
    [55]Dunne T,Dietrich D.Effects of rainfall vegetation and microtopography on infiltration and runoff[J].Water Resour.Res.,1991,27(9):2271-2285.
    [56]E.L.Rice(胡敦孝译).天然化学物质与有害生物防治[M].北京:科学出版社,1988,9-10.
    [57]Elliot WJ et al.The effects of forest management on erosion and soil productivity[J].In Lal R.(ed.),Soil quality and soil erosion,CRC Press,New York,1999,195-208.
    [58]Gardenas A.I. Soil organic matter in European forest floors in relation m stand characteristics and env ironmental factors[J].Scan J. For.Res.,1998,3 (3):274-283.
    [59]Gattas A M, Davide L C,Souza L F.Effects of Sorghum(Sorghub bicolor)root exudates on the cell cycle of the bean plant root[J].Genetics and Molecular Biology,1999,22(1):95-99.
    [60]Hansen J A,Nyamapfene K,Materechera S A.Effects of aqueous extracts from Artemisia afra development in selected plant species[J].South African Journal of Plant and Soil,1998,(1):1-5.
    [61]Hollinger D.Y.,Kelliher F.M.,Schulze E.D..Forest-atmosphere carbon dioxide exchange in eastern Siberia[J].Agricultural and Forest Meteorology,1998,90 (4):291-306.
    [62]Kupidlowska E,kowalee M,Sulkowski G.The effect of coumarins on root elongation and ultrastructure of meristematic cell protoplast[J].Annals of botany,1994,73(5):525-530.
    [63]Putuhena WM,Cordery J. Estimation of interception capacity of the forest floor[J].J.Hydrol,1996, 180(1-4):283-299.
    [64]Scott N.A.,Parfit R.L,Ross D.J.,et al. Carbon and nitrogen transformations in New Zealand plantation forest soils from sites with different N status[J].Can J. For.Res.,1998,28 (7):967-976.
    [65]Stanley W.G.,Montagnini F.Biomass and nutrient accumulation in pure and mixed plantations of indigneous tree species grown on poor soils in the humid torpics of Costa Rica[J].For.Ecol.Manage.,1999,113(1):91-103.
    [66]Tasar MB.Delayed seedling of alfalfa avoids autotoxicity after ploeing or glyphosate treatment of established stands[J].Agron.J.1993(85):256-263.
    [67]Vaughan D,Ord B.Infuence of phenolic acids on morphological changes in root of Pisum sativum[J].Jounral of Science of Food and Agriculture,1990,52(3):289-299.
    [68]Wieder R.K.,Wright S.J.Tropical forest litter dynamics and dry season irrigation on Barro Colorado Island,Panama[J]. Ecology,1995,76(6):1971-1979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700