毛竹林土壤有机碳变化及其与土壤性质的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球变化研究的深入,森林土壤作为陆地生态系统中最大的碳库,受到越来越多研究者的关注,毛竹因其独特的生物学、生态学等特点,将是一个不断增大的碳汇,在中国可持续发展战略中正发挥着越来越重要的作用。因此,本研究在大岗山森林生态站辖区内选取不同海拔的五个毛竹林样地,通过对林下土壤有机碳含量、有机碳密度及土壤理化性质的分析,探讨不同土层、不同海拔、不同时间毛竹林下有机碳及其他土壤性质的变化特征,并进一步运用相关分析、逐步多元回归分析等数学方法研究了土壤有机碳含量、土壤有机碳密度和土壤性质的关系。
     结果表明:毛竹林土壤有机碳含量、有机碳密度、土壤化学性质均存在明显的垂直变化和季节变化规律,都随着土层深度的增加显著降低,但不同海拔毛竹林土壤有机碳含量减少的程度不同,表层土壤中有机碳含量随海拔的变化为300m>700m>400m>600m>500m,且存在显著差异;毛竹林土壤各个层次的有机碳含量、土壤化学指标含量都呈现出3月份>11月份>8月份的规律;不同海拔毛竹林0-20cm土层中土壤有机碳密度变化状况与土壤有机碳含量沿海拔梯度变化的状况相同,而下层呈现出不同的变化规律,不同海拔间下层土壤密度差异不显著,且其沿海拔变化的规律与有机碳密度变化规律不同;土壤自然含水率、田间持水量、最大持水量、毛管持水量、土壤密度、非毛管孔隙等物理性质都随着土层的加深而减小,且表层与其余两层存在显著差异性,而毛管孔隙度各层之间不存在显著差异。
     通过相关性分析得出,土壤有机碳含量与自然含水率、田间持水量、饱和持水量、毛管持水量、非毛管孔隙度、土壤通气度、全氮量、碱解氮量、有效磷量、速效钾量均呈极显著或显著正相关,与化学性质的相关性较大,其中与全氮量的相关系数最大;土壤有机碳密度与有机碳含量、全氮、碱解氮、有效磷、速效钾呈极显著正相关,与土壤密度呈显著负相关。为了进一步得到土壤有机碳含量、有机碳密度与土壤性质的关系,利用逐步多元回归得出,对毛竹土壤有机碳含量影响最大的为全氮量,土壤有效磷量影响土壤有机碳含量仅次于土壤全氮量,影响程度第三的是毛管孔隙度;对毛竹土壤有机碳密度影响最大的为有机碳含量,对土壤有机碳密度的影响次之的为土壤全氮量,土壤有效磷量对其影响程度也较大。
With the deepening of the research of global change, as the largest terrestrial ecosystem carbon pool,the forest had been received more and more attention. Phyllostachys owing to its unique characteristics such as biology, ecology, will be a constant increase of carbon, sustainable development strategy in China is playing an increasingly important role. Therefore, this study selected five different altitude Phyllostachys forest plots,in DaGang mountain forest area,Through the analysis of soil organic carbon content, organic carbon density and the soil physical and chemical properties,to explore the soil organic carbon and other soil properties in different layers,different altitudes,different time in Phyllostachys forest.And further the study had researched soil organic carbon content, soil organic carbon density and soil properties of the relationship using mathematichal methods such as correlation analysis, stepwise regression analysis.
     The results were as follows:Phyllostachys forests Soil organic carbon content, organic carbon density, soil chemical properties are obvious vertical variation and seasonal change regularity in Phyllostachys forests,they were all significantly reduced with the increase of depth of soil.But different elevations of soil organic carbon content reduced at different levels,surface soil organic carbon content with altitude change was 300m>700m>400m>600m>500m, and there were significant differences; At all levels of soil organic carbon content and soil chemical indicators of content emerged in March> November> August; Changes of soil organic carbon density along altitudinal gradients were the same as changes of soil organic carbon content in 0~20cm,but the lower showed the variation of different.Between the lower soil density at different altitudes were no significant differences,and it was different from changes of organic carbon density; Soil physical properties are all decreased with soil depth,surface and the others had significant differences, but the capillary porosity of layers was no significant difference.
     Obtained by correlation analysis, soil organic carbon content was showed a significant or significant positive correlation to natural water content, field capacity, saturated water, capillary water holding capacity, non-capillary porosity, degree of soil aeration, total nitrogen, available nitrogen, available phosphorus, rapidly available potassium, the correlation of chemical properties is more larger,and the maximum amount of nitrogen related coefficient; Soil organic carbon density was showed significant positive correlation to organic carbon, total nitrogen, available nitrogen, available phosphorus, rapidly available potassium, and was showed significant negative correlation to soil density, The biggest influence to content of soil organic carbon in Phyllostachys forests was total nitrogen,Content of soil available phosphorus was less influenced than total nitrogen, The third impact is the capillary porosity. The biggest influence to soil organic carbon density was organic carbon content,the next was total nitrogen,and content of soil available phosphorus was also influenced soil organic carbon density.
引文
1.安兴琴,陈玉春.浅议西北地区生态环境建设的气候效应[J].干旱地区农业研究,2002,20(1):116—119.
    2.曹群根,傅懋毅,李正才.毛竹林凋落叶分解失重及养分累积归还模式[J].林业科学研究,1997,10(3):303—308.
    3.曹群根,罗佩韬.毛竹林凋落叶分解过程中土壤微生物学特性的研究[J].竹子研究汇刊,1996,15(3):58—66.
    4. 常征,徐海轶.应用数学在土壤毛管持水量计算中的应用[J].黑龙江水利科技,2009,37(5):73—74.
    5.陈楚莹,王开平,张家武,等.杉木火力楠混交林生态系统中营养元素的积累、分配和循环的研究[J].生态学杂志,1988,7(4):7—13.
    6.陈华癸.土壤微生物学[M].上海:上海科学技术出版社,1979.
    7.陈庆美,王绍强,于贵瑞,等.内蒙古自治区土壤有机碳、氮蓄积量的空间特征[J].应用生态学报,2003,14(5):699-704
    8.陈双林,杨清平,郭子武.海拔对毛竹林土壤物理性质和水分特性的影响[J].林业科技开发,2010,24(1):60-64
    9. 陈双林,杨伟真.我国毛竹人工林地力衰退成因分析[J].林业科技开发,2002,16(5):3—5.
    10.陈卫文,罗治建,陈防,等.鄂南毛竹林的养分状况与营养诊断标准[J].东北林业大学学报,2004,32(2):41—44.
    11.陈兴福.毛竹培育与利用[M].中国林业出版社,1996
    12.陈宜瑜,陈津勤,葛全胜,等.全球变化研究进展与展望[J].地学前缘,2002,1:11—1 8.
    13.程煜.闽楠叶凋落物分解动态及其养分释放规律研究[D].福建农林大学硕士论文,2003
    14.崔国发.落叶松人工林土壤水分物理性状的研究[J].林业科技,1996,(1):6—9.
    15.崔玉亭,韩纯儒,卢进登.集约高产农业生态系统有机物分解及土壤呼吸动态研究应用生态学报[J].1997,8(1):59—64.
    16.戴全厚,刘国彬,等.侵蚀环境退耕撂荒地水稳性团聚体演变特征及土壤养分效应[J].水土保持学报,2007,21(2):61—64.
    17.邓艳,蒋忠诚,李先琨,等.广西弄岗不同演替阶段植被群落的小气候特征[J].热带地理,2004,24(4):316—320.
    18.杜慧平.高寒草地土壤有机碳组分之间及有机碳组分与土壤物理性质之间的相关性[D].甘肃农业大学,2007.
    19.杜凌燕.长白山区不同森林类型下土壤养分空间变异性的初步研究[D].东北师 范大学,2009.
    20.方精云,朴世龙,赵淑清.CO2失汇与北半球中高纬度陆生态系统的碳汇[J]..植物生态学报,2001,25(5):594-602.
    21.方云霆,莫江明:Browns,等.鼎湖山自然保护区土壤有机碳贮量和分配特征[J].生态学报,2004,24(1):135-142.
    22.高志勤,傅懋毅.毛竹林土壤速效养分的季节变化特征[J].竹子研究汇刊,2008,27(2):25-31.
    23.高志勤,傅懋毅.不同毛竹林土壤水分物理性质的特征比较[J].林业科技开发,2005,19(6):12-15.
    24.高志勤,傅悬毅.不同毛竹林土壤碳氮养分的季节变化特征[J].浙江林学院学报,2006,23(3):248-254
    25.郭凤台.土壤水库及其调控.华北水利水电学院学报,1996,17(2):72-80
    26.郭剑芬,杨玉盛,陈光水,等.森林凋落物分解研究进展[J].林业科学,2006,42(4):93-100
    27.郭起荣,杨光耀,杜天真,等.中国竹林的碳素特征[J].世界竹藤通讯,2005,3(3):25-28
    28.郭晓敏,牛德奎,杜天真.毛竹林平衡施肥持续效应研究初报[J].江西农业大学学报.1999,24(6):786—790.
    29.郭晓敏,牛德奎,郭熙,等.奉新毛竹林土壤养分空间变异性研究[J].植物营养与肥料学报,2006,12(3):420—425
    30.何志斌,赵文智,刘鹊,等.祁连山青海云杉林斑表层土壤有机碳特征及其影响因素[J].生态学报,2006,26(8):2572-2577
    31.胡冬南,陈立新,李发凯,等.配方施肥对毛竹笋材的影响[J].江西农业大学学报,2004,26(2):196—199.
    32.胡海波,王汉杰,鲁小珍,等.中国干旱半干旱地区防护林气候效应的分析[J].南京林业大学学报(自然科学版),200 1,25(3):77—82.
    33.黄昌勇.土壤学[M].北京:中国农业出版社,2000
    34.黄承才.中亚热带东部毛竹林土壤微生物生物量的研究[J].浙江林业科技,2002,22(4):5-8
    35.黄启堂,陈爱玲,贺军.不同毛竹林林地土壤理化性质特征比较[J].福建林学院学报,2006,26(4):299—302.
    36.黄奕龙,陈利顶,傅伯杰,等.黄土丘陵小流域土壤水分空间格局及其影响因子[J].自然资源学报,2005,20(4):483-492.
    37.江泽慧.世界竹藤[M].沈阳:辽宁.科学技术出版社,2002
    38.姜丽芬,石福臣,王化田,等.东北地区落叶松人工林的根系呼吸[J].植物生理学通讯,2004,40(2):27-30
    39.姜培坤.不同林分下土壤活性有机碳库研究[J].林业科学.2005,41(1):10—13
    40.蒋俊明,费世民,魏世军.川南地区森林养分输入量与大气降水的关系[J].浙江林学院学报.2007,24(1):22—27
    41.蒋俊明,费世民,余英,等.长宁竹海5种林分类型的水文效应评价[J].西部林业科学,2006,35(2):17—22
    42.蒋俊明,朱维双,刘国华等.川南毛竹林土壤肥力研究[J].浙江林学院学报.2008,25(4):486-490
    43.焦峰,温仲明,李锐.黄土高原退耕还林(草)环境效应分析[J].水土保持研究,2005,12(1):26—29.
    44.焦如珍,杨承栋,孙启武,等.杉木人工林不同发育阶段土壤微生物数量及其生物量的变化[J].林业科学,2005,41(6):163-165
    45.解宪丽,孙波,周慧珍,等.中国土壤有机碳密度和储量的估算与空间分布分析[J].土壤学报,2004,41(1):35-43.
    46.金峰,杨浩,蔡祖聪,等.土壤有机碳密度及储量的统计研究[J].土壤学报,2001,38(4):522-528
    47.李东坡,武志杰,陈利军,等.长期培肥黑土微生物量碳动态变化及影响因素[J].应用生态学报,2004,15(8):1334-1338
    48.李海潮,王群.土壤物理性质对土壤生物活性及作物生长的影响研究进展[J].2002,36(1):32-37
    49.李洪建,王孟本,柴宝峰.黄土高原土壤水分变化的时空特征分析[J].应用生态学报,2003,14(4):515-519.
    50.李雪峰.长白山森林生态系统碳过程的研究.东北林业大学硕士学位论文,2003
    51.李忠佩,林心雄,车玉萍.中国东部主要农田土壤有机碳库的平衡与趋势分析[J].土壤学报,2002,39(3):351-360
    52.梁音,史学正,史德明.从长江上游地区水土流失及“土壤水库容”分析1998洪水[J].1998(11):32-34
    53.廖利平,高洪,江思龙等.外加氮源对杉木叶凋落物分解及土壤养分淋失的影响[J].植物生态学报,2000,24(1):34-39
    54.林业部科技司编.森林生态系统定位研究方法[M].北京:中国科学技术出版社,1994
    55.刘国华.环渤海地区土壤有机碳库及其空间分布格局研究[J].应用生态学报,2003,14(9):1490-1493
    56.刘强,彭少麟,毕华,等.热带亚热带森林凋落物交互分解的养分动态[J].北京林业大学学报,2005,27(1):24-32
    57.刘绍辉,方精云.土壤呼吸的影响及全球尺度下温度的影响[J].生态学报,1997,17 (5):469-4
    58.刘晓飞,龚倾,李彬等.森林土壤研究进展[J].现代农业科技,2009,23:280-282
    59.刘新民,杨劫.干旱、半干旱区集中典型生境大型土壤动物群落多样性比较[J].中国沙漠,2005,25(2):216—-222.
    60.楼一平,吴良如,邵大方,等.毛竹纯林长期经营对林地土壤肥力的影响[J].林业科学研究,1997,加(2):125—129.
    61.卢俊培,刘其汉.海南岛尖峰岭热带林凋落叶分解过程的研究[J].林业科学研究,1989,2(1):25-32
    62.陆景陵.植物营养学[M].北京:中国农业出版社,2003
    63.马秀梅,朱波,韩广轩,等.土壤呼吸研究进展[J].地球科学进展,2004,19:491—495
    64.毛子军.森林生态系统碳平衡估测方法及其研究进展[J].植物生态学报,2002,26:731-738
    65.彭久生,黄小春,程平等.江西毛竹林土壤肥力变化规律初探[J].世界竹藤通讯,2003,4(1):37-42
    66.齐泽民,杨万勤.苞箭竹根际土壤微生物数量与酶活性[J].生态学杂志,2006,25(11):1370-1374
    67.邱尔发,陈卓梅,郑郁善,等.麻竹山地笋用林凋落物发生、分解及养分归还动态[J].应用生态学报,2005,16(5):811-814
    68.邱扬,傅伯杰,王军,等.黄土丘陵小流域土壤水分的空间异质性及其影响因子[J].应用生态学报,2001,12(5):715-720.
    69.阮宏华,孙多,叶镜中.空青山次生栋林营养元素的动态特性/姜志林.下蜀森林生态系统定位研究论文集.北京:中国林业出版社,1992:66-7
    70.史学正,梁音,于东升.“土壤水库”的合理调用与防洪减[J].土壤侵蚀与水土保持学报,1999,5(3):6-10
    71.王兵,李海静,郭泉水,等.江西大岗山森林生物多样性研究[M].北京,中国林业出版社,2005.
    72.王兵,魏文俊,刑兆凯,等.中国竹林生态系统的碳储量[J].生态环境,2008,1 7(4):1680-1 684
    73.王兵,魏文俊.江西省森林碳储量与碳密度研究[J].江西科学,2007,25(6):681-687
    74.王海燕,雷相东,张会儒,等.近天然落叶松云冷杉林土壤有机碳研究[J].北京林业大学学报,2009,31(3):1 1-16.
    75.王琦,张恩和,李凤民.半干旱地区膜垄和土垄的集雨效率和不同集雨时期土壤水分比较[J].生态学报,2004,24(8):1820-1823.
    76.王生华.福建东牙溪流域毛竹混交林的水源涵养功能[J].中南林业调查规划,2004,23(3):5760.
    77.王世昌,卢爱英,王世裕,等.晋西北退耕地物种多样性研究[J].水土保持通报,2007,27(3):124—126.
    78.王旭,周广胜,蒋延玲,等.山杨白桦混交次生林与原始阔叶红松林土壤呼吸作用比较[J].植物生态学报,2007,31(3):348-354
    79.王燕,王兵,赵广东,等.江西大岗山3种林型土壤水分物理性质研究[J].水土保持学报,2008,22(1):151-153,173
    80.王云强,张兴昌.黄土区小尺度坡面土壤含水率时空变异性研究[J].水土保持学报,2008,22(2):32-37
    81.王志强,刘宝元,王晓兰.黄土高原半干旱区天然锦鸡儿灌丛对土壤水分的影响[J].地理研究,2005,24(1):113-120.
    82.吴家森,胡睦荫,蔡庭付等.毛竹生长与土壤环境[J].柱子研究汇刊,2006,25(2):3-6
    83.吴家森,周国模,徐秋芳等.不同年份毛竹营养元素的空间分布及与土壤养分的关系[J].林业科学,2005,41(3):1 71—173
    84.夏北成.植被对土壤微生物群落结构的影响[J].应用生态学报,1998,9(3);296-300
    85.项文化,闰文德。田大伦等.外加氮源及与林下植物叶混合对杉木林针叶分解和养分释放的影响[J].林业科学,2005,41(6):1-6
    86.肖复明,范少辉,汪思龙等.毛竹、杉木人工林生态系统碳贮量及其分配特征[J].生态学报,2007,27(7)
    87.肖复明,张群,范少辉.中国森林生态系统碳平衡研究[J].世界林业研究,2006,19(1):53-57
    88.肖复明.毛竹林生态系统碳平衡特征的研究[D].中国林业科学研究院,2007
    89.肖洁.我国土壤肥力区域变化明显[N].科技时报,2003,8,22
    90.熊咏梅,朱剑云,叶永昌,等.东莞林科园土壤水分的空间异质性[J].华南农业大学报,2006,27(3):21-25
    91.徐秋芳,姜培坤,董教义,等.毛竹林地土壤养分动态研究[J].竹子研究汇刊,2000,19(4):46-49
    92.杨金艳,王传宽.东北东部森林生态系统土壤碳贮量和碳通量[J].生态学报,2005,25(11):2875-2882.
    93.叶笃正,符涂斌,蓝文杰.全球变化科学进展与未来趋势[J].地球科学进展,2002,17(4):467-469
    94.俞元春,赵永艳,曾曙才.苏南丘陵不同林分类型土壤养分的动态特性[J].浙江林学院学报,1998,15(1)32-36
    95.张鼎华.人工林地力的衰退与维护[M].北京:中国林业出版社,2001.
    96.张金波,宋长春.土地利用方式对土壤碳库影响的敏感性评价指标[J].生态环境,2003,12(4):500-504
    97.张全发.植物群落演替与土壤发育之间的关系[J].武汉植物学研究,1 990,8(4):325-334
    98.张万儒,张健,胡庭兴等.森林土壤生态学[M].四川科学技术出版社,2006
    99.张万儒.森林土壤研究的进展[J].土壤,1991,23(4):214-217
    100.张万儒.卧龙自然保护区植物生长季节森林土壤水分状况[J].林业科学研究,1990,3(2):103-112
    101.张钟军,孙国清,朱启疆.植被层对被动微波遥感土壤水分反演影响的研究[J].遥感学报,2004,8(3):207-213.
    102.章家恩,廖宗文.试论土壤的生态肥力及其培育[J].土壤与环境,2000,9(3):253-256
    103.周广胜,王玉辉.陆地生态系统类型转变与碳循环[J].植物生态学报,2002,26(2):250-254
    104.周国模,姜培坤.毛竹林的碳密度和碳贮量及其空间分布[J].林业科学,2004,40(6):20-24
    105.周国模,毛竹林生态系统中碳储量、固定及其分配与分布的研究[J].浙江大学博士学位论文,2006
    106.周国逸.广州市林业碳汇措施——从近10年森林碳汇动态谈起[J].中国城市林业,2007,5(6):24-27
    107.周海庭,郑晓明,蒲德钦.影响中学生数学成绩因素的通径分析[J].数理统计与管理,2002(11):15-20
    108.周涛,史培军,孙睿德,等.气候变化对净生态系统生产力的影响[J].地理学报,2004,59(3):357-365
    109.周兴民.中国蒿草草甸[M].北京:科学出版社,2001
    110.Amato, Ladd J N, Ellington A, et al. Aust. [J]. Soil Res.,1987,25:95~105
    111.Anderson D W, Saggar S. Bettany J R, et al. Particle size fractionation and their use in studies of soil organic matter:Ⅰ. The nature and distribution of forms of carbon, nitrogen and sulfur[J]. Soil Science Society of America,1981,45:767-772
    112.Ayanaba A, Jenkinson D S. Decomposition of Carbon-14 Labeled Plant Material Under Tropical Conditions[J].Soil Science Society of America,1911,41:912-915
    113.Batjes N H. European Journal of Soils Science,1996,47:151~163
    114.Berg B,Berg M P,Bonner P,et al.Litter mass loss rates in pine forests of Europe and Eastern United States:Some relation ships weith climate and litter quality[J].Biogeochemistry,1993,20:127-159
    115.Bolln.B.Change of land biota and their importance for the carbon cycle[J].Science,1977,196:613-616
    116.Boone R D,Nadelhofer K J,Canary J D,et al. Roots exert a strong influence on the temperature sensitivity of soil respiration[J].Nature,1998,396,570-572
    117.Bouwman A F. Global distribution of the major soils and land cover types [J], John Wiley and Sons, New York,1990,33~59
    118.Bowman R A,Vigil M F,Nielsen D C, et al. Soil organic matter changes in intensively cropped dryland system [J]. Soil Science Society of America Journal,1999,63: 186—191.
    119.Burke I C,Lauenroth W K,Coffin D P.Soil organic matter recovery in semiarid grasslands[J].Ecological Applications,1995,5:793-801.
    120.Cebrian J,Duarte C M. Plant growth-rate dependence of detritus carbon storage in ecosystem [J].Science,1995,268:1606-1608.
    121.Chapin III F S,Maston P A,Mooney HA.Principles of Terrestrial Ecosystem Ecology.New York,Berlin,Heidelberg:Springer-Verlag,2002,436
    122.Cock J H,Cassava:New potential for a neglected crop[M].Boulder:Westview Press,1985:191
    123.Cox P M, Betts R A and Jones C D. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model Nature,2000,408:184-187
    124.Coxson D S.Nutrient release from epiphytic bryophytes in tropical montane rain forest(Guadeloupe).Canada Journal of Botany,1991,69:2122-2129
    125.Edwards N T.Root and soil respiration responses to ozone in Pinus taeda L[J].Seedlings New Phytol,1991,118:315-321.
    126.Fallcowski P, Scholes R J and Boyle E. A test of Our Knowledge of Earth as a System Science[J].The Global Carbon Cycle,2000,290:291-296
    127.Galicia L,Lopez-Blanco J,Zarco-Arista A E,et al. The relationship between solar radiation interceptionand soil water content in a tropical deciduous forest in Mexico[J]. Gatena,1999(36):153—164.
    128.Gower S T,Krankina O N,Olson R J,et al.Net primary production and carbon allocation pattenrs of boreal forest ecosystems[J].Ecological Applications.2001,11:1395-1411
    129.Greenland D J, Wild A, Philips D. Myths and science of soils in the tropics[J], Soil Science Society of America:American Society ofAgronomy,1992,17-34
    130.Hanson P J, Edwards N T, Garten C T, Andrews J A. Separating root and soil microbial contributions to soil respiration:A review of methods and observations[J]. Biogeochemistry,2000,48:115-146
    131.Hook P B, Burke I C. Biogeochemistry in a shortgrass landscape:Control by topography, soil texture, and microclimate[J].Ecology,2000,81(10):2686—2703.
    132.Houghton J T, Ding Y, Griggs D J,et al. Climate Change 2001:The Scientific Basis. Cambridge. England.Cambridge University Press,2001
    133.IPCC (Intergovernmental Panel on Climate Change). Climate Change 1990:the Science of Climate Change[J]. Cambirdge University Press,Cambridg
    134.JenkinsonD S,Adams D E,Wild A. Model estimates of CO2 emissions from soil in response to global warming[J].Nature,1991,351:304-306
    135.Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbon and it,s relation to climate and vegetation [J]. Ecol Appl,2002,10(2):423-436
    136.Lal R, Kimbkle J,Levine E. Soil and global chang [M]. Boca Raton:CRC Press,1995: 45—65.
    137.Larcher W(ed).Physiological plant ecology.Berlin:Springer-Verlag,1994.303
    138.Liao L P, Gao H,Wang S L. The effect of nitrogen addition on soil nutrient leaching and the decomposition of Chinese fir leaf litter[J].Acta Phytoeoulogica Sinica,2000,24 (1):34-39.
    139.Lundeg ardh H. Carbon dioxide evolution of soil and crop growth [J].Soil Science, 1927,23:417-453
    140.Lynch D L, Cotnoir L J J r. Soil Sci. Soc. Am. Proc.,1956,20:367~370
    141.Malhi Y, Baldocchi D.D, Jarvis P G.The Carbon balance of tropical,temperate and borealforests[J]. Plant Cell and Environment,1999,22:715-740.
    142.Meharg A A,Killham K.A comparison of carbon flow from pre-labelled and pulse-labelled plants[J].Plant and Soil,1988,112:225-231
    143.Micks P,Downs M R,Magill H,et al.Decomposing liter as a sink for 15N,enriched additions to an oak forest and a red pine plantation.Forest Ecology and Management,2004,196:71-87
    144.Nadkarni N M.Canopy roots:convergent evolution in rainforest nutrient cycles.Science,1981,214,:1023-1024
    145.Newman B D, Campbell A R, Wilcox B P. Tracer-based studies of soil water movement in semi-arid forests of New Mexico[J]. Journal of Hydrology,1997(196): 251-270.
    146.Nichols J D. Soil Sci Soc. Am.J.,1984,48 :1382~1384
    147.Oechel W C,Vourlitis G L,Hastings S J,et al.Change in arctic CO2 flux over two decades:effects of climate change at Barrow[J],Alaska.Ecological Applications,1995,5: 846-855
    148.Parton W J,Schimel D S,Cole C V,et al.Analysis of factors controlling soil organic matter levels in Great Plains Grasslands[J].Soil Science Society of America Journal, 1987,51:1173-1179.
    149.Paul K 1,Po lglase P J,Nyakuengama J G.et al.Change in soil carbon following aforestation.Foerst Ecology and Management,2002,168:241-257
    150.Pekka V.Seasonal variation in the soil respiration rate in coniferous forest soils[J].Soil Biology & Biochemistry,2002,34:1375-1379
    151.Perfect G,Kay B D.Fractal theory applied to soil aggregation[J].Soil Science and plant,1991
    152.Pocs T.The epiphytic biomass and its effects on the water balance of two rain forest types in the Olguru Mountains,Tanzania,East Africa.Acta Bot.Hung,1980,26:143-167
    153.Radersma S, Ong C K. Spaial distribution of rootlength density and soil water of linear agroforestry systems in sub-humid Kenya:implications for agroforestry models[J]. Forest Ecology and Management,2004,188:77-89.
    154.Raich J W,Schlesinger W H. The global carbon dioxide flux in soil respiration and it s relationship to vegetation and climate[J].Tellus,1992,44(B):81-99.
    155.Richard T C,Peter D B,Carole C K,et al.Controls on soil respiration in semiarid soil[J].Soil Biology & Biochemistry,2004,36:945-951
    156.Riitta H, Gran I A, Sune L, et al. The likely impact of elevated CO2, nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems:aliterature review[J]. New Phytologist,2007, 173:463-480
    157.Risk D, Kellman L, Beltrami H. Carbon dioxide in soil profiles:production and temperature dependence[J].Geophysical Research Leters,2002,29(6):11-14
    158.Robies M D,Burke I C.Legume, grass,and conservation reserve program effect s on soil organic matter recovery [J].Ecological Applications,1997,7:345-357.
    159.Rojanapichet C.Is cassava crop a soil fertility depletory?[M].Bangkok:Kasetsart University Press.2002,31-37
    160.Schlesinger W H.Carbon sequestration in soils.Science,1999,284:2095
    161.Schume H,Jost G, Katzensteiner K, et al. Spatio-temporal analysis of the soil water content in a mixed Norway spruce(Picea abies(L.)Karst.)-European beech(Fagus sylvatica L.)stand[J]. Gcoderma,2003,112:273-287.
    162.Shanmugharel P.The balance and diversion of nutriment with difference age term in the growth process of bamboo [J].Biol Fertilizer Soil,1997,25(1):69-74
    163.Singh J S,Gapter S R.Plant decomposition and soil respiration in terrestrial ecoecyter[J].The Botanical Review,1997,43:449-528
    164.Van Hees P A,Jones D L,Finlay R,et al.The carbon we do not see—The impact of low molecular weight compounds on carbon dynamics and respiraiton in forest soils:A review[J].Soil Biology & Biochemistry,2005,37:1-13
    165. Weber M G,Van Cleve K.Nitrogen transformations in feather moss and forest floor layers of interior Alaska black spruce ecosystems.Canadian Journal of Forest Research,1984,14:278-290
    166.Widen B, Majdi H. Soil CO2 efflux and root respiration at three sites in a mixed pine and spruce forest:seasonal and diurnal variation[J].Canadion Jounral of Forest Research,2001,31:786-79
    167.William H Schlesinger.Global change and terrestrial ecosystems.American scientist[J].Research Triangle Park,1998,86(1):87
    168.Williams S T, T R G Gray. Biology of plant liter decomposition, Academic Press, 1974,20:611~632
    169.Woodwell G M, Whittaker Reiners R H. Likens W A,et al.The biota and the world carbon budget[J].Science,1978,199:144-146
    170.Xu M,Ye Q. Soil-surface CO2 efflux and its spaital and temporal variaitons in a young pondeorsa pine plantation in northenr California[J].Global Change Biology,2001,7: 667-677
    171.Zunino H, Borie F, Aguilera S. Decomposition of 14C-labeled glucose, plant and microbial products and phenols in volcanic ash-derived soils of Chile.Soil Biology and Biochemistry,1982,14:37-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700