基于分形理论滇池流域水土流失生态影响评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以滇池流域为研究对象,对该流域的自然状况与社会经济状况进行了较为系统的调查、分析与相关图件的制作。在此基础之上,对滇池流域的水土流失现状、特点、成因、危害、变化趋势等诸多方面进行了较为全面、系统的深度剖析,结合以上的研究成果,围绕滇池流域水土流失生态影响评价这一主题进行了以下方面的研究工作。
     (1)基于Arc GIS平台之上,对影响滇池流域水土流失生态环境状况的土地利用这一自然性指标,进行了斑块形状分维数的计算,计算得土地利用各斑块的分维值介于1.09~1.35之间,总分维值1.15。若不考虑水域影响,稳定性指数均介于0.2~0.5之间的土地利用类型面积占滇池流域土地总面积的80.18%,总体稳定性良好,并对这一分析问题的思路类推至土壤侵蚀这一人为指标的稳定性分析上。同时,本文将分形理论与生态敏感性评价结合起来,应用敏感性评价数学模型进行了滇池流域生态敏感区的区划,最终,将滇池流域划分为5个不同的生态敏感区,并提出了各敏感分区应该采取的各项简要措施。
     (2)基于Arc GIS平台之上,对影响滇池流域水土流失的其中两个因素水系与地形进行了盒维数计算,计算得出:滇池流域水系分维数1.07与滇池流域地形分维数0.93,基于对滇池流域水系与地形的分维数计算与分形特征分析之上,将影响滇池流域水土流失的另外两个因素坡度和高程纳入进来,取其坡度中值(2348m)与高程中值(31。),应用基于信息扩散原理改进的模糊综合评价模型对这四个影响因素进行了综合评价,得出滇池流域水土流失等级和综合评价指数分别为2级和2.26。
     (3)应用层次分析法构建了滇池流域生态环境状况指标体系,并应用生态环境状况指数法对滇池流域首次进行了生态环境质量评价,可得滇池流域生态环境状况分级值为0.31与滇池流域生态环境状况级别为差,即该地区的生态环境条件较为恶劣,人类生存环境恶劣。最后,将该评价结果与《滇池流域水污染防治“十五”计划》中的数据进行了比较,证明该评价方法可靠,在此基础之上,针对生态环境状况各指数计算结果,并结合滇池流域实际状况,对滇池流域提出了相关的生态环境状况改善建议,其中,包括滇池流域水土流失治理规划图与滇池流域水土流失各项治理措施图。
     综上所述,本文通过应用分形理论这一种方法论,并通过使用Arc GIS这一强大的空间数据管理与处理工具,对滇池流域水土流失进行了系统的生态影响评价研究,从而扩充和丰富了生态影响评价方法论体系,为生态影响评价研究注入新的血液,并为滇池流域和全国其他湖泊流域的生态安全保障提供新的思路。
In this paper, natural condition and socioeconomic status of Dianchi lake basin were investigated and analysed, then some maps were drawed, such as geographic location of Dianchi lake basin. Current situation, characteristic, causes, damage and variation tendency of soil and water erosion were comprehensively and systematically analysed in Dianchi lake basin. The work contains three parts about soil and water erosion ecological impact assessment based on the fractal theory in Dianchi lake basin.
     (1) Based on fractal method and GIS technology, the naturalness index of land utilizationcan be classified into 5 types:cropland, woodland, grassland, water land, industrial and residential areas, and analysis on fractal dimension of Dianchi lake basin in Yunnan province. The algorithm is a fractal dimension expression about area and perimeter. The results indicate that land use type can be described with fractal structure. Fractal dimension (D) values vary from 1.09 to 1.35 in the case application of Dianchi lake basin. The D of land use types reflects the degree of complexity, stability and developing trend. When the value of fractal dimension (D) is 1.15, namely D is critical value; the change mode of land use types means Brownian motion. The value of D is closer to the critical value, the stability of land use type is worse, and the complexity of land use type is higher. Without considering the impact of water land, the stability indexes of 80.18 percent of study areas are between 0.2 and 0.5, which means the total stability is in a good condition. Due to ecosystem sensitivity evaluation is very important to the stability analysis of regional ecological system, then the fractal theory combined with ecological sensitivity evaluation were used together for the ecological sensitivearea divisions in Dianchi lake basin. Finally, the study area was divided into five different ecological sensitivearea, and brief measures would be put forward to them.
     (2) Based on GIS technology, two factors of impacting soil erison which are the water system and terrain would be made the fractal value calculation. The results show that the value of stream fractal dimension (Db) is 1.07and terrain fractal dimension (Db) is 0.93. Then, the other two factors of impacting soil erison which are the mid-value of slope and the mid-value of elevation combined with the value of stream fractal dimension and the value of terrain fractal dimension were applied to the improved fuzzy comprehensive assessment model based on information diffusion principle. The result shows that the level of soil and water erosion is 2 and comprehensive evaluation index is 2.26 in Dianchi lake basin.
     (3) The system of eco-environmental appraisal index was established by using the Analytical Hierarchy Process (AHP) model in Dianchi lake basin. Using the related data, the ecological index (EI) of this basin in 2005 was assessed. The results show that grading value of eco-environmental status is 0.31 which is compared with the related value of the "water pollution prevention in Dianchi lake basin "five-year" plan". Then, the relevant improved suggestion was put forward according to the result. Finally, map of soil and water erosion treatment plan and map of soil and water erosion control measures were drawed according to the actual circumstances of Dianchi lake basin.
     To sum up, through the application of fractal theory that is a methodology, and through the use of Arc GIS that is a strong space data management and treatment tool, ecological impact assessment were systematically taken for the soil and water erosion of Dianchi lake basin, which has expanded and enriched the ecological impact assessment methodology system, which has injected new blood to ecological impact assessment, and has provided a new thinking for ecological security in Dianchi lake basin and the other lakes.
引文
1.艾南山,陈嵘,李后强.走向分形地貌学[J].地理学与国土研究,1999,15(1):92-96.
    2.程俊峰,万方浩,郭建英.西花蓟马在中国适生区的基于CLIMEX的GIS预测[J].中国农业科学,2006,39(3):525-529.
    3.陈圣波,胡郁.水系分维模式研究[J].遥感技术与应用,1999,12(4):44-48.
    4.陈述彭,鲁学军,周成虎.地理信息系统导论[M].北京:科学出版社,2000.
    5.陈颖,吴柏清,邹卓阳,王广杰.基于GIS的土地适宜性评价一以四川省马尔康县为例[J].水土保持研究,2010,17(4):100-103.
    6.陈颙,陈凌.分形几何学[M].北京:地震出版社,2005.
    7. 崔灵周.流域降雨侵蚀产沙与地貌形态特征耦合关系研究[D].西安:西北农林科技大学,2002.
    8. 董连科.分形理论及应用[M].沈阳:辽宁科学出版社,1991.
    9. 杜尚海,苏小四,朱琳.松花江流域地表水系分形维及其影响因素分析[J].水文,2009,29(5):30-35.
    10.冯金良,张稳.海滦河流域水系分形[J].泥沙研究,1999,(1):62-65.
    11.高旭,徐永安,张牧.分形曲线曲面在三维地貌中的应用[J].河海大学学报,1996,24(6):83-87.
    12.何隆华,赵宏.水系的分形维数及其含义[J].地理科学,1996,16(2):124-128.
    13.冯平,冯焱.河流形态特征的分维计算方法[J].地理学报,1997,52(4):324-330.
    14.何迎,李洪远,鞠美庭,汲奕君.规划生态影响评价探讨[C].中国环境科学学会学术年会优秀论文集(2006):1177-1180.
    15.HJ/T192—2006.生态环境状况评价技术规范(试行)[S].北京:中国环境科学出版社,2006.
    16.胡继才,万福钧,吴珍权,等.应用模糊数学[M].武汉:武汉测绘科技大学出版社,1998.
    17.姜德文.开发建设项目水土流失影响度评价方法研究[J].中国水土保持科学,2007,5(2):107-109.
    18.金德生,陈浩,郭庆伍.流域物质与水系及产沙间非线性关系实验研究[J].地理学报,2000,55(4):439-448.
    19.金德生,张欧阳,陈浩,等.侵蚀基准面下降对水系发育与产沙影响的实验研究[J].地理研究,2003,22(5):560-570.
    20.康秀亮,刘艳红.生态系统敏感性评价方法研究[J].安徽农业科学,2007,35(33):10569-10571.
    21.肯尼思·法尔科内[英].分形几何一数学基础及其应用[M].沈阳:东北大学出版社,2001.
    22.昆明市政府.滇池流域水污染防治规划:2006—2010年[R].2005.
    23.昆明市森林资源管理总站.滇池面山绿化项目可行性研究报告[R].2003.
    24.李后强,艾南山.分形地貌学及地貌发育的分形模型[J].自然杂志,1991,15(7):516-519.
    25.李建国,刀红英,张亮,等.滇池流域水土流失监测[J].水土保持研究,2004,11(2):75-77.
    26.李丽,郝振纯.基于DEM流域特征提取综述[J].地球科学进展,2003,18(2):251-256.
    27.李晶.太湖流域水土流失与地貌分形耦合特征研究[D].北京:北京林业大学,2009.
    28.李茂刚,陈松林.基于分形理论的福州市土地利用空间格局变化研究[J].聊城大学学报·自然科学版,2006,19(4):60-63.
    29.李锰,朱令人.地形等高线的分形特征及其动力学含义[J].西北地震学报,2002,24(2):97-103.
    30.李祚泳,程红霞,邓新民,等.城市可持续发展的指数普适公式及评价模型[J].环境科学,2001,22(6):108-111.
    31.林涓涓,潘文斌.基于GIS的流域生态敏感性评价及其区划方法研究[J].安全与环境工 程,2005,12(2):23-26.
    32.刘蜀治,李济纬,曹超,等.滇池流域农村固体废物资源化和无害化处理对策研究[J].云南环境科学,2006,25(增刊):156-158.
    33.刘震.从我国水土流失现状看水土保持生态建设战略布局[J].中国水土保持,2002,(6):2-4.
    34.陆书玉,栾胜基,朱坦.环境影响评价[M].北京:高等教育出版社,2001.
    35.吕连宏,张征,李道峰,迟志淼,尚晓颖.应用层次分析法构建中国煤炭城市生态环境质量评价指标体系[J].能源环境保护,2005,19(5):53-56.
    36.罗坤,汤小华,杨明.基于GIS的龙岩市土地利用生态敏感性评价[J].云南地理环境研究,2008,20(3):6-9.
    37.吕秀琴.多尺度DEM无级表达的比例尺评估[D].武汉:武汉大学,2005.
    38.马晓微,杨勤科,刘宝元.基于GIS的中国潜在水土流失评价研究[J].水土保持学报,2002,16(4):49-54.
    39.牟向玉.基于GIS的滇池流域水土流失非点源污染研究[D].北京:北京林业大学,2009.
    40.欧阳志云,郑华,高喜吉,黄宝荣.区域生态环境质量评价与生态功能区域[M].北京:中国环境科学出版社,2009.
    41.盘晓东,康力.浑江断裂带及水系的分形特征和构造活动性研究[J].东北地震研究,2002,18(4):7-15.
    42.荣琨,陈兴伟,王林,等.流域非点源污染与水系分维关系研究[J].水土保持研究,2009(4):128-131.
    43.唐从国,刘丛强.基于Arc Hydro Tools的流域特征自动提取—以贵州省内乌江流域为例[J].地球与环境,2006,34(3):30-37.
    44.王秀春,吴姗,毕晓丽,等.泾河流域水系分维特征及其生态意义[J].北京师范大学学报·自然科学版,2004,40(3):364-368.
    45.王大鹏,王周龙,李德一,等.太湖流域水系分形特征的空间分异研究[J].浙江水利科技,2006,145(3):5-7.
    46.谢和平,张永平,宋晓秋,等.分形几何—数学基础与应用[M].重庆:重庆大学出版社,1991.
    47.徐广才,康慕谊,赵从举,等.阜康市生态敏感性评价研究[J].北京师范大学学报·自然科学版,2007,43(1):88-92.
    48.徐建华,艾南山,金炯,等.西北干旱区景观要素镶嵌结构的分形研究—以黑河流域为例[J].干旱区研究,2001,18(1):35-39.
    49.杨克诚.GIS软件实验指导书:基于Arc GIS Desktop[M]昆明:云南大学出版社,2009.
    50.尹海伟,徐建刚,陈昌勇,等.基于GIS的吴江东部地区生态敏感性分析[J].地理科学,2006,26(1):64-69.
    51.云南省水利水电科学研究所.滇池流域水土流失整治工程可行性研究报告[R].2002.
    52.张超,郑钧,张尚弘,等Arc GIS9.0中基于DEM的水文信息提取方法[J].水利水电技术,2005,36(11):1-4.
    53.张少文,王文圣,丁晶,等.分形理论在水文水资源中的应用[J].水科学进展,2005,16(1):141-146.
    54.张宏才,汤国安.基于GIS的河网分形研究[J].西北大学学报·自然科学版,2006,36(4):659-662.
    55.张济忠.分形[M].北京:清华大学出版社,1995.
    56.张继国.基于信息扩散原理的模糊综合评价模型[J].统计与决策,2007(20):155-156.
    57.张建龙,王月健,丁武泉,谢付杰.玛纳斯河流域近30年生态环境质量评价[J].安徽农业科学,2010,38(14):7446-7448.
    58.张晓明.黄土高原典型流域土地利用/森林植被演变的水文生态响应与尺度转换研究[D].北京:北京林业大学,2007.
    59.赵健,贾忠华,罗纨Arc GIS环境下基于DEM的流域特征提取[J].水资源与水工程学报,2006,17(1):74-76.
    60.赵锐,顾其钧,等.地理现象分形研究[J].地理科学,1994,14(1):9-15.
    61.郑新奇,王爱萍.基于RS与GIS的区域生态环境质量综合评价研究—以山东省为例[J].环境科学学报,2000,20(4):489-493.
    62.中国环境监测总站.中国生态环境质量评价研究[M].北京:中国环境科学出版社,2004.
    63.朱梅芳.湖南省生态环境质量研究[J].作物研究,2005,19(1):38-40.
    64.朱晓华,蔡运龙.中国水系的盒维数及其关系[J].水科学进展,2003,14(6):731-735.
    65.朱晓华.中国主要地貌与地质灾害的空间分维及其关系研究[D].南京:南京师范大学,2002.
    66.朱茵,孟志勇.用层次分析法计算权重[J].北方交通大学学报,1999,23(5):119-122.
    67.朱永清,李占斌,崔灵周,等.基于GIS流域地貌形态特征分形与计算方法研究[J].武汉大学学报·信息科学版,2005,30(12):1089-1091.
    68. A.P.J.de Roo, et al.LISEM:A Physically-based Hydrological and Soil and water erosion Model Incorporated in a GIS [J].EGIS,1994,224:439-448.
    69. Boggs G.GIS-based rapid assessment of erosionrisk in a small catchment in the wet/dry tropics of Australia [J].Land Degradation and Development,2001,12(5):417-434.
    70. Bonell M.Progress in the understanding of runoff generation dynamics in forests [J].Hydrol,1993, 150:217-275.
    71. Carr L W, Fahrig L. Effect of road traffic on two amphibians specied of differing vagility [J]. Conservation Biology,2001,15:1071-1078.
    72. Chen R S,Kang Ersi,Yang J P,et al.A distributed runoff model for inland mountainous river basin of Northwest China[J].Journal of Geographical Sciences,2003,13(3):363-372.
    73. Clarke G P, White P C L, Harris S. Effects of roads on badger Meles meles populations in south-west England [J].Biological Conservation,1998,86:117-124.
    74. Cochrane T A.Assessing water erosion in small watersheds using WEPP with GIS and digital elevation models [J].Journal of Soil and water Conservation,1999,54(4).678-685.
    75. Da Ouyang.Web-based GIS application for soil and water erosion prediction [A].Soil and water erosion research for the 21st century[C].Proceedings of the International Symposium,2001.
    76. Dennis C. Flanagan.Application of the WEPP model with digital geographic information [A].4th International Conference on Integration GIS and Environmental Modeling (GIS/EM4)[C].September,2000.
    77. EI-Awar F A. Using GIS and hydrologic modeling for erosion hazard assessment in Lebanese mountainous areas [A].Soil and water erosion research for the 21st century[C].Proceedings of the International Symposium, January,2001.
    78. Fianagan D C.Simulating small watersheds with water erosion prediction project technology [A].Soil and water erosion research for the 21st century[C].Proceedings of the International Symposium, January,2001.
    79. Forman R T T, Deblinger L E. The ecological road-effect zones of a Massachusetts (USA) suburban highway [J].Conservation Biology,2000,14:36-46.
    80. Foster G R.A laboralory study of hill hydraulies, Ⅰ, Velocity relations, Ⅱ, Shear stress relationships [J].Trans of ASAE,1984,62:790-804.
    81. Foster G R. Modeling soil and water erosion and sediment yield.LALR.Soil and water erosion research methods [J], Soil and Water Conserv,1988:97-117.
    82. Gtassberger P. On Efficient Box Counting Algorithms [J].International Journal of Modern Physics C,1983,4(3):515-523.
    83. Houghton R A, Hackler J L, Lawrence K T. The U.S. carbon budget:contribution from land-use change [J].Science,1999,285:574-578.
    84. Huang C.Principle of information diffusion [J].Fuzzy Sets and System,1997(91):69-90.
    85. Jain S K.Estimation of soil and water erosion for a Himalayan watershed using GIS technique [J].Water Resources Management,2001,15(1):41-54.
    86. Johnson B.E. The two-dimensinal upland erosion model CASC2D-SED [J]. American Water Resources Association Journal,2000,36(1):31-42.
    87. Jones J A, Swanson F J, Wemple B C, et al. Effects of roads on hydrology, geomorphplogy, and disturbance patches in stream networks [J].Conservation Biology,2000,14:76-85.
    88. Kainay E, Cai M. Impact of urbanization and land-use change on climate [J].Nature,2003, 423:528-531.
    89. Keller I, Largiader C R. Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles [J]. Process Research Social London B, 2003,270:417-423.
    90. Kirkby M J.Hillslope hydrology [M].New York:John Wiley&Sons, Ltd,1978.
    91. La.Barbera.P, Rosso E. On the fractal dimension of river networks [J]. Water Resource Research, 1989,25:735-741.
    92. Lambin E F, Geist H J.Lepers, Dynamics of land-use and land-cover change in tropical regions [J].Annal Review of Environment and Resources,2003,28:205-241.
    93. Li Yuehui, Hu Yuanman, Li Xiuzhen, et al. A review on road ecology [J]. Chinese Journal of Applied Ecology,2003,14(3):447-452.
    94. Mandelbrot B.B.How long is the coast of Britain? Statistical self-similarity and fractional dimension [J]. Science,1967,155:636-638.
    95. Mandelbrot B.B.The Fractal Geometry of nature [M].San Francisco:W.H. Freeman,1982.
    96. Millward A A. Adapting the RUSLE to model soil and water erosion potential in a mountainous tropical watershed [J], Catena,1999,38(2):109-129.
    97. Mortolock D F.A self-organizing dynamics system approach to the simulation of rill initiation and development on hill-slopes[J].Computer& Ceosciences,1998,24(4):353-372.
    98. Nikora V I, Sapozhnikov V B. River network fractal geometry and its computer simulation [J]. Water Resources Research,1993,29(10):3569-3576.
    99. Oxley D J, Fenton M B, Carmody G R. The effects of roads on population of small mammals [J] Journal of Applied Ecology,1974,1:51-59.
    100. Peitgen H O, Jurgens H, Saupe D. Chaos and fractals[M].Berlin:Springer Verlag,1992:202-213.
    101. Puglisi M J, Lindzey J S, Bellis E D. Factors associated with highway mortality of white-tailed deer [J]. Journal of Wildlife Management,1974,38:799-807.
    102. Qin Y C, Liu K. Advances in applied studies of fractal theory in geography in China [J]. Journal of Geographical Sciences,2004,14(S1):62-68.
    103. Reijnen R, Foppen R, Terbraak C J,et al. The effects of car traffic on breeding bird population in woodland. Ⅲ. Reduction of density in relation to the proximity of main roads [J].Journal of Applied Ecology,1994,32:187-202.
    104. Richardson L F. The problem of contiguity:an appendix of statistics of deadly quarrels [J]. General Systems Yearbook,1961,6:139-187.
    105. Rieman B E, Lee D C, Thurow R F. Distribution, status, ans likely future trends of bull trout within the Columbia River and Klamath River Basin[J]. North American Journal of Fisheries Management,1997,17:1111-1125.
    106. Rinaldo A, Rodriguez-iturbe I, Rigon R, et al. Self-organized fractal river networks [J]. Physical Review Letters,1993,70(6):822-825.
    107. Seabrook W A, Dettmann E B. Roads as activity corridors for cane toads in Australia [J].Journal of Wildlife Management,1996,60:363-368.
    108. Shakyan M, Chander S.Modelling of hillslope runoff processes [J].Environmental Geology,1998, 35:115-123.
    109. Sii H S, Wang J. A Safety based Decision Support System for the Design of Large Offshore Engineering Products [M].Suffolk, UK,2002.
    110. Sohan Wijesekera. Extraction of Parameters and Modeling Soil and water erosion Using GIS in a Grid Environment [A].22nd Asian Conference on Remote Sensing[C].2001.
    111. Stritholt J R, Dellasala D A. Importance of road less areas in biodiversity conservation in forested ecosystems:case study of the Klamath-Siskiyou Ecoregion of the United States [J].Consevation Biology,2001,15:1742-1754.
    112. Trenberth K E. Rural land-use change and climate [J].Nature,2004,423:213.
    113. Treweek J. Ecological impact assessment [M]. Blackwell Science Ltd., London.1999.
    114. Trombulak S C, Frissell C A. Review of ecological effects of roads on terrestrial aquatic communities [J]. Conservation Biology,2000,14:18-30.
    115. Turner II, B.L., Skole, D.L., Sanderson, S., Fischer, G., Fresco, L. and Leemans, R. Land-use and land-cover change [M]. Science Reserch Plan,1995.
    116. Vanclay F and Bronstein D A. (eds.) Environmental and social impact assessment [M]. John Wiley and Sons, Chichester.1995.
    117. Vangent F A, Rietveld E.Road transport and the environment in Europe [J]. Science of the Total Environment,1993,129:205-218.
    118. Wang J,Fu B J,Qiu Y,et al. The effects of land use on runoff and soil nutrient lesses in a gullly catchment of the hilly areas:implication for erosion control [J] Journal of Geographical Sciences, 2005,15(4):396-404.
    119. Wemple B C, Jones J A, Grant G E. Channel network extension by logging roads in two basins, western Cascades, Oregon [J]. Water Resources Bulletin,1996,32:1195-1207.
    120. Yoon N Y, Wilson G V.Machaines of the sheet flow under simulated rainfall [J].Journal of the Hydraulics Division,1971,97(9):1367-1386.
    121. Zhang Jiaen, Xu Qi. Ecological effect of roads and ecological structure [J]. Journal of Ecology, 1995,14(6):74-77.
    122. Zong Yaoguang, Zhou Shangde, Peng Ping, et al. Perspective of road ecology development [J]. Acta Ecologica Sinica,2003,23(11):2396-2405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700