新型NF-κB抑制剂Clitocine抑制耐药性肿瘤细胞的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化疗是癌症临床治疗的重要手段,化疗药物通过直接杀死肿瘤细胞或者抑制肿瘤细胞的分裂增殖、促进细胞分化来达到治疗效果。化疗的缺陷是无差别地对正常细胞的杀伤作用。此外,肿瘤细胞对化疗药物的耐药性也是目前癌症治疗的一个主要障碍,近90%的转移性和复发癌症病人治疗失败都是由于耐药性引起的。因此寻找高效低毒的抗肿瘤药物以及逆转肿瘤细胞的耐药性(Drug Resistance)是治疗癌症的两个重要课题。本研究从蘑菇中提取到一种天然药物成分Clitocine(克力托辛),并发现该化合物能有效抑制多种肿瘤细胞的增殖。更为重要的是我们首次报道了Clitocine能有效诱导耐药性肿瘤细胞的凋亡以及逆转肿瘤细胞的多药耐药性。本文从分子生物学水平揭示了Clitocine的抗肿瘤生物活性的分子机理,并首次确定了该化合物是NF-κB的抑制剂,这一发现暗示了Clitocine可能具备更加广泛的生物活性。本文的主要研究结果如下:
     1、Clitocine能够诱导肿瘤细胞凋亡采用MTT法检测Clitocine对肿瘤细胞的毒性,结果显示该化合物对多种肿瘤细胞包括肝癌细胞HepG2、R-HepG2(耐药性HepG2)和SMMC-7721、宫颈癌细胞HeLa、胃癌细胞SGC-7901、子宫癌细胞MES-SA和MES-SA/Dx5(耐药性MES-SA)以及乳腺癌细胞MCF-7和Bcap37等都表现出较高的活性抑制作用,其中对肝癌的毒性最大。而且Clitocine对敏感性HepG2细胞和耐药性R-HepG2细胞的毒性很相近。进一步实验结果显示Clitocine能够诱导耐药性肝癌细胞凋亡,包括出现DNA片段化(DNA ladder)、磷脂酰丝氨酸(PS)外翻、Caspase激活、线粒体膜崩溃以及PARP的剪切等一系列凋亡的典型特征。此外,Clitocine诱导的肝癌细胞凋亡涉及细胞外与细胞内两条信号通路。
     2、Clitocine诱导的细胞凋亡通过Bcl-2家族成员受到调控蛋白免疫印迹(Western Blot)结果显示,Clitocine能够使Bcl-2家族成员抑凋亡蛋白Bcl-2下调而促凋亡蛋白Bad上调。利用RNA干扰技术(RNAi)表明Bad的上调是Clitocine诱导耐药性肝癌细胞凋亡的重要原因。
     3、Clitocine能够下调P-糖蛋白的表达以逆转耐药性肿瘤细胞的耐药性本文选用的两株耐药性细胞株R-HepG2和MES-SA/Dx5都是细胞膜泵P-糖蛋白(P-glycoprotein)过表达的,该蛋白的过表达是很多肿瘤细胞产生耐药性的重要原因;我们的数据显示Clitocine能够显著降低P-糖蛋白的表达水平。将Clitocine与阿霉素(Doxorubicin)配伍使用可有效增强耐药性细胞对阿霉素的敏感性,大幅提高低浓度下阿霉素对耐药性肿瘤细胞的杀伤作用。流式细胞术的数据显示,Clitocine能够增加阿霉素在细胞内的积累。因此,我们推测Clitocine能够逆转肿瘤细胞的耐药性与P-糖蛋白的表达被抑制密切相关。
     4、Clitocine通过下调NF-KB抑制P-糖蛋白的表达荧光定量PCR的数据显示,Clitocine下调了P-糖蛋白编码基因MDR1的mRNA水平。我们推测Clitocine是在转录水平调控MDR1基因的表达。因此,我们克隆了P-糖蛋白编码基因MDR1的启动子序列,并构建萤光素酶基因报告系统。利用将启动子分段分析的方法,确认Clitocine调控MDR1基因表达的特定启动子区域。结合转录因子预测软件分析,得到NF-κB可能是Clitocine的作用靶点。染色质免疫共沉淀(CHIP)技术确认了NF-κB能够直接结合到我们确认的启动子调控区域,结合位点的点突变以及NF-κB的过表达能够逆转Clitocine的调控作用。
     5、Clitocine能够抑制NF-κB的激活Clitocine能够抑制阿霉素诱导的NF-κB表达的增加,并降低NF-κB重要下游基因凋亡抑制蛋白家族成员XIAP的表达。利用电泳迁移率实验(EMSA),我们发现Clitocine能够有效抑制NF-κB的激活以及活化NF-κB向细胞核内的转运。
     6、Clitocine能够在动物模型中抑制耐药性肿瘤细胞的生长将耐药性肿瘤细胞R-HepG2接种到裸鼠皮下形成肿瘤,Clitocine能够显著抑制肿瘤细胞的生长。此外利用剥离的肿瘤组织进行免疫组织化学实验,结果表明Clitocine能够在体内抑制P-糖蛋白的以及NF-κB的表达。
     概括起来,Clitocine能够有效诱导耐药性肿瘤细胞的凋亡,并通过抑制NF-κB的来下调P-糖蛋白的表达,进而逆转肿瘤细胞的耐药性。我们首次证明了Clitocine是一种NF-κB的新型抑制剂,这说明该化合物可能具有较为广泛的生物活性,具备了重要了应用前景。
Chemotherapy is a very important means during cancer clinical treatment. The chemotherapeutic agents can be used to treat tumor by killing cancer cells directly, inhibiting cancer cells proliferation and growth or activating cancer cells to differentiation. However, these toxic agents are unable to distinguish the cancer cells and normal cells. So, chemotherapy always brings in some side effect during clinical application such as too toxic to patients. Further more cancer cells can also develop drug resistance to drugs during chemotherapy. Resistance to chemotherapeutic drugs is currently a major problem in cancer therapy, accounting for treatment failure in over 90% of human patients with metastatic or recurrent cancer. Therefore, it is urgent to find novel anticancer agents which can kill cancer cells with higher efficiency and significantly circumvent their drug resistance. Here, we extracted a natural compound clitocine from mushroom Leucopaxillus giganteus and further study initially indicated that the compound can effectively inhibit the proliferation of many human cancer cell lines and overcome drug resistance in drug resistant cancer cells. At the present, we revealed the biological activities of clitocine and the underlying molecular mechanism as follows:
     1. Clitocine can induce apoptosis in human cancer cells. The anti-proliferation effect of clitocine on human cancer cell lines was assessed by the MTT assay, including hepatoma HepG2, R-HepG2 (drug resistant HepG2) and SMMC-7721 cells, human cervical cancer HeLa cells, human gastric cancer SGC-7901 cells, human uterine cancer MES-SA and MES-SA/Dx5 cells, human breast carcinoma MCF-7 and Bcap37 cells. The compound exerted highest cytotoxicity in hepatoma cells and the toxicity is similar in both sensitive and drug resistant cells. Further study showed that citcocine can induce apoptosis in hepatoma R-HepG2 cells which was confirmed by DNA ladder, PS externalization, caspase activation, mitochondria disruption and PARP cleavage. Additionally, both intrinsic and extrinsic signaling pathways were involved in the apoptosis induced by clitocine in R-HepG2 cells.
     2. Bcl-2 family members regulated the apoptosis induced by clitocine. The data of western blot assay indicated that clitocine can downregulate the Bcl-2 level and upregulate the Bad level. Furthermore, the Bad played an indispensable role in apoptosis induced by clitocine confirmed by using siRNA to silence the Bad mRNA.
     3. Clitocine can circumvent drug resistance of R-HepG2 cells by downregulating P-glycoprotein expression. Drug resistant R-HepG2 cells presented very low sensitivity to doxorubicin. However, combine using of clitocine and low dose doxorubicin can effectively kill cancer cells. The data from flow cytometry indicated that clitocine significantly increased the doxorubicin accumulation in the cancer cells. More interestingly, we found that clitocine can inhibit the P-glycoprotein expression in both two drug resistant cancer cells R-HepG2 and MES-S/Dx5 which were P-glycoprotein overexpressed.
     4. Clitocine inhibited P-glycopritein expression via downregulation NFκB. Cloned the P-glycoprotein coding gene MDR1 promoter to construct the dual reporter luciferase system. Truncation analysis of MDR1 promoter sequence was performed to determine the regulatory region of clitocine. Combining computational analysis for the putative transcription factor binding sites, it was confirmed that NFκB may be the target through which clitocine regulated the MDR1 expression. Additionally, the binding of NF-κB to the putative binding site within the MDR1 promoter was confirmed by chromatin immunoprecipitaition (CHIP) assay. Point mutation in the putative binding site of NF-κB and overexpression of this transcriptional factor can interestingly counteracted the clitocine effect on P-gp in R-HepG2 cells.
     5. Clitocine could inhibit the activation of NF-κB by doxorubicin. Clitocine could also suppress the expression of NF-κB and its'downstream genes such as XIAP even in presence of doxorubicin in RD cells. More importantly, clitocine significantly overcome the activation of NF-κB by doxorubicin which was characterized as nuclear translocation of NF-κB.
     6. Clitocine can inhibit the tumor growth in animal model. In order to find out if clitocine was also able to suppress the tumor growth in vivo, a nude mouse animal model subcutaneously injected with R-HepG2 cells was employed. After solid tumor formation, the tumors were treated with clitocine. Our compound can effectively inhibit the tumor growth. On the other hand, immunohistochemistry assay showed that the expressions of NF-κB p65 and P-gp were both suppressed by clitocine in vivo.
     Taken together, Clitocine can induce apoptosis in multidrug resistant cancer cells effectively and suppress the P-glycoprotein expression via inhibiting NF-κB. All our data indicated that Clitocine may possess various biological activities as a novel NF-κB inhibitor and reveal a potential application in future.
引文
1. Tzianabos AO. Polysaccharide immunomodulators as therapeutic agents:structural aspects and biologic function. Clin Microbiol Rev 2000; 13(4):523-33.
    2. Lu QY, Jin YS, Zhang Q, et al. Ganoderma lucidum extracts inhibit growth and induce actin polymerization in bladder cancer cells in vitro. Cancer Lett 2004;216(1):9-20.
    3. Sliva D. Ganoderma lucidum in cancer research. Leuk Res 2006;30(7):767-8.
    4. Zhao S, Ye G, Fu G, Cheng JX, Yang BB, Peng C. Ganoderma lucidum exerts anti-tumor effects on ovarian cancer cells and enhances their sensitivity to cisplatin. Int J Oncol 2011;38(5):1319-27.
    5. Ikekawa T. Beneficial Effects of Edible and Medicinal Mushrooms on Health Care 2001;3(4):8.
    6. Zhang M, Huang J, Xie X, Holman CD. Dietary intakes of mushrooms and green tea combine to reduce the risk of breast cancer in Chinese women. Int J Cancer 2009; 124(6):1404-8.
    7. Kim MO, Moon DO, Jung JM, Lee WS, Choi YH, Kim GY. Agaricus blazei Extract Induces Apoptosis through ROS-dependent JNK Activation Involving the Mitochondrial Pathway and Suppression of Constitutive NF-{kappa}B in THP-1 Cells. Evid Based Complement Alternat Med 2009.
    8. Hong SA, Kim K, Nam SJ, Kong G, Kim MK. A case-control study on the dietary intake of mushrooms and breast cancer risk among Korean women. Int J Cancer 2008;122(4):919-23.
    9. Sugano N, Hibino Y, Choji Y, Maeda H. Anticarcinogenic actions of water-soluble and alcohol-insoluble fractions from culture medium of Lentinus edodes mycelia. Cancer Lett 1982; 17(2): 109-14.
    10. Wasonga CG, Okoth SA, Mukuria JC, Omwandho CO. Mushroom polysaccharide extracts delay progression of carcinogenesis in mice. J Exp Ther Oncol 2008;7(2):147-52.
    11. McKenzie S, Kyprianou N. Apoptosis evasion:the role of survival pathways in prostate cancer progression and therapeutic resistance. J Cell Biochem 2006;97(1):18-32.
    12. Jang KJ, Han MH, Lee BH, et al. Induction of apoptosis by ethanol extracts of Ganoderma lucidum in human gastric carcinoma cells. J Acupunct Meridian Stud 2010;3(1):24-31.
    13. Liu FY, Luo KW, Yu ZM, et al. Suillin from the mushroom Suillus placidus as potent apoptosis inducer in human hepatoma HepG2 cells. Chem Biol Interact 2009;181(2):168-74.
    14. Chen JN, Wang YT, Wu JS. A glycoprotein extracted from golden oyster mushroom Pleurotus citrinopileatus exhibiting growth inhibitory effect against U937 leukemia cells. J Agric Food Chem 2009;57(15):6706-11.
    15. Tsay JG, Chung KT, Yeh CH, et al. Calvatia lilacina protein-extract induces apoptosis through glutathione depletion in human colorectal carcinoma cells. J Agric Food Chem 2009;57(4):1579-88.
    16. Luo XJ, Li LL, Deng QP, et al. Grifolin, a potent antitumour natural product upregulates death-associated protein kinase 1 DAPK1 via p53 in nasopharyngeal carcinoma cells. Eur J Cancer 2010;47(2):316-25.
    17. Kim SP, Kang MY, Kim JH, Nam SH, Friedman M. Composition and mechanism of antitumor effects of Hericium erinaceus mushroom extracts in tumor-bearing mice. J Agric Food Chem 2011;59(18):9861-9.
    18. Wang J, Wiltshire T, Wang Y, et al. ATM-dependent CHK2 activation induced by anticancer agent, irofulven. J Biol Chem 2004;279(38):39584-92.
    19. Ye M, Luo X, Li L, et al. Grifolin, a potential antitumor natural product from the mushroom Albatrellus confluens, induces cell-cycle arrest in G1 phase via the ERK1/2 pathway. Cancer Lett 2007;258(2):199-207.
    20. Pietenpol JA, Stewart ZA. Cell cycle checkpoint signaling:cell cycle arrest versus apoptosis. Toxicology 2002; 181-182:475-81.
    21. Cassileth BR. Complementary therapies:the American experience. Support Care Cancer 2000;8(1): 16-23.
    22. Isoda N, Eguchi Y, Nukaya H, et al. Clinical efficacy of superfine dispersed lentinan (beta-1,3-glucan) in patients with hepatocellular carcinoma. Hepatogastroenterology 2009;56(90): 437-41.
    23. Han SS, Cho CK, Lee YW, Yoo HS. Antimetastatic and immunomodulating effect of water extracts from various mushrooms. J Acupunct Meridian Stud 2009;2(3):218-27.
    24. Weng CJ, Chau CF, Yen GC, Liao JW, Chen DH, Chen KD.*Inhibitory effects of ganoderma lucidum on tumorigenesis and metastasis of human hepatoma cells in cells and animal models. J Agric Food Chem 2009;57(11):5049-57.
    25. Huang GJ, Yang CM, Chang YS, et al. Hispolon suppresses SK-Hepl human hepatoma cell metastasis by inhibiting matrix metalloproteinase-2/9 and urokinase-plasminogen activator through the PI3K/Akt and ERK signaling pathways. J Agric Food Chem 2010;58(17):9468-75.
    26. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000;408(6809):239-47.
    27. Bowerman B. Cell biology. Oxidative stress and cancer:a beta-catenin convergence. Science 2005;308(5725):1119-20.
    28. Lee IK, Kim YS, Jang YW, Jung JY, Yun BS.*New antioxidant polyphenols from the medicinal mushroom Inonotus obliquus. Bioorg Med Chem Lett 2007; 17(24):6678-81.
    29. Jumes FM, Lugarini D, Pereira AL, et al.*Effects of Agaricus brasiliensis mushroom in Walker-256 tumor-bearing rats. Can J Physiol Pharmacol 2010;88(1):21-7.
    30. Gilmore TD. Introduction to NF-kappaB:players, pathways, perspectives. Oncogene 2006;25(51): 6680-4.
    31. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell 2008; 132(3):344-62.
    32. Kumar A, Takada Y, Boriek AM, Aggarwal BB. Nuclear factor-kappaB:its role in health and disease. J Mol Med 2004;82(7):434-48.
    33. Chaturvedi MM, Sung B, Yadav VR, Kannappan R, Aggarwal BB. NF-kappaB addiction and its role in cancer:'one size does not fit all'. Oncogene 2011;30(14):1615-30.
    34. Kim HG, Shrestha B, Lim SY, et al. Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-kappaB through Akt and p38 inhibition in RAW 264.7 macrophage cells. Eur J Pharmacol 2006;545(2-3):192-9.
    35. Kim HG, Yoon DH, Lee WH, et al. Phellinus linteus inhibits inflammatory mediators by suppressing redox-based NF-kappaB and MAPKs activation in lipopolysaccharide-induced RAW 264.7 macrophage. J Ethnopharmacol 2007;114(3):307-15.
    36. Ruimi N, Petrova RD, Agbaria R, et al. Inhibition of TNFalpha-induced iNOS expression in HSV-tk transduced 9L glioblastoma cell lines by Marasmius oreades substances through NF-kappaB-and MAPK-dependent mechanisms. Mol Biol Rep 2010;37(8):3801-12.
    37. Ruimi N, Rwashdeh H, Wasser S, et al. Daedalea gibbosa substances inhibit LPS-induced expression of iNOS by suppression of NF-kappaB and MAPK activities in RAW 264.7 macrophage cells. Int J Mol Med 2010;25(3):421-32.
    38. Lee JS, Hong EK. Agaricus blazei Murill enhances doxorubicin-induced apoptosis in human hepatocellular carcinoma cells by NFkappaB-mediated increase of intracellular doxorubicin accumulation. Int J Oncol 2011;38(2):401-8.
    39. Bentires-Alj M, Barbu V, Fillet M, et al. NF-kB transcription factor induces drug resistance through MDR1 expression in cancer cells:Nature Publishing Group,2003.
    40. Lee JS, Park SY, Thapa D, et al. Grifola frondosa water extract alleviates intestinal inflammation by suppressing TNF-alpha production and its signaling. Exp Mol Med 2010;42(2):143-54.
    41. Jeong JW, Jin CY, Kim GY, et al. Anti-inflammatory effects of cordycepin via suppression of inflammatory mediators in BV2 microglial cells. Int Immunopharmacol 2010;10(12):1580-6.
    42. Hseu YC, Huang HC, Hsiang CY. Antrodia camphorata suppresses lipopolysaccharide-induced nuclear factor-kappaB activation in transgenic mice evaluated by bioluminescence imaging. Food Chem Toxicol 2010;48(8-9):2319-25.
    43. Liu DZ, Liang HJ, Chen CH, et al. Comparative anti-inflammatory characterization of wild fruiting body, liquid-state fermentation, and solid-state culture of Taiwanofungus camphoratus in microglia and the mechanism of its action. J Ethnopharmacol 2007;113(1):45-53.
    44. Petrova RD, Mahajna J, Wasser SP, et al. Marasmius oreades substances block NF-kappaB activity through interference with IKK activation pathway. Mol Biol Rep 2009;36(4):737-44.
    45. Masuda Y, Matsumoto A, Toida T, Oikawa T, Ito K, Nanba H. Characterization and antitumor effect of a novel polysaccharide from Grifola frondosa. J Agric Food Chem 2009;57(21):10143-9.
    46. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science 2002;298(5600):1912-34.
    47. Kaneko A, Tsukada M, Fukai M, et al. KDR Kinase Inhibitor Isolated from the Mushroom Boletopsis leucomelas. J Nat Prod 2010;73(5):1002-4.
    48. Yassin M, Wasser SP, Mahajna J. Substances from the medicinal mushroom Daedalea gibbosa inhibit kinase activity of native and T315I mutated Bcr-Abl. Int J Oncol 2008;32(6):1197-204.
    49. Cassinelli G, Lanzi C, Pensa T, et al.*Clavilactones, a novel class of tyrosine kinase inhibitors of fungal origin. Biochem Pharmacol 2000;59(12):1539-47.
    50. Yang HL, Kuo YH, Tsai CT, et al. Anti-metastatic activities of Antrodia camphorata against human breast cancer cells mediated through suppression of the MAPK signaling pathway. Food Chem Toxicol 2011;49(1):290-8.
    51. Loewer A, Batchelor E, Gaglia G, Lahav G. Basal dynamics of p53 reveal transcriptionally attenuated pulses in cycling cells. Cell 2010; 142(1):89-100.
    52. Marte B. Cancer:super p53. Nature 2002;420(6913):279.
    53. Chang KL, Kung ML, Chow NH, Su SJ. Genistein arrests hepatoma cells at G2/M phase: involvement of ATM activation and upregulation of p21wafl/cipl and Weel. Biochem Pharmacol 2004;67(4):717-26.
    54. Wiltshire T, Senft J, Wang Y, et al. BRCA1 contributes to cell cycle arrest and chemoresistance in response to the anticancer agent irofulven. Mol Pharmacol 2007;71(4):1051-60.
    55. Ratliff TL. Aspirin, ibuprofen, and other non-steroidal anti-inflammatory drugs in cancer prevention:a critical review of non-selective COX-2 blockade (review). J Urol 2005; 174(2):787-8.
    56. Zeng Y, Yokohira M, Saoo K, et al. Inhibition of prostate carcinogenesis in probasin/SV40 T antigen transgenic rats by raloxifene, an antiestrogen with anti-androgen action, but not nimesulide, a selective cyclooxygenase-2 inhibitor. Carcinogenesis 2005;26(6):1109-16.
    57. Narayanan BA, Reddy BS, Bosland MC, et al. Exisulind in combination with celecoxib modulates epidermal growth factor receptor, cyclooxygenase-2, and cyclin D1 against prostate carcinogenesis:in vivo evidence. Clin Cancer Res 2007;13(19):5965-73.
    58. Zhang Y, Mills GL, Nair MG. Cyclooxygenase inhibitory and antioxidant compounds from the mycelia of the edible mushroom Grifola frondosa. J Agric Food Chem 2002;50(26):7581-5.
    59. Jedinak A, Dudhgaonkar S, Jiang J, Sandusky G, Sliva D. Pleurotus ostreatus inhibits colitis-related colon carcinogenesis in mice. Int J Mol Med 2010;26(5):643-50.
    60. Champoux JJ. DNA topoisomerases:structure, function, and mechanism. Annu Rev Biochem 2001;70:369-413.
    61. Topcu Z. DNA topoisomerases as targets for anticancer drugs. J Clin Pharm Ther 2001;26(6): 405-16.
    62. Bae JS, Park JW, Park SH, et al. Apoptotic cell death of human leukaemia U937 cells by ubiquinone-9 purified from Pleurotus eryngii. Nat Prod Res 2009;23(12):1112-9.
    63. Miura S, Izuta S. DNA polymerases as targets of anticancer nucleosides. Curr Drug Targets 2004;5(2):191-5.
    64. Graham DG, Tye RW, Vogel FS. Inhibition of DNA polymerase from L1210 murine leukemia by a sulfhydryl reagent from agaricus bisporus. Cancer Res 1977;37(2):436-9.
    65. Mizushina Y, Takahashi N, Ogawa A, et al. The cyanogenic glucoside, prunasin (D-mandelonitrile-beta-D-glucoside), is a novel inhibitor of DNA polymerase beta. J Biochem 1999; 126(2):430-6.
    66. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000;407(6801):249-57.
    67. Chi AS, Sorensen AG, Jain RK, Batchelor TT. Angiogenesis as a therapeutic target in malignant gliomas. Oncologist 2009;14(6):621-36.
    68. Sliva D, Jedinak A, Kawasaki J, Harvey K, Slivova V. Phellinus linteus suppresses growth, angiogenesis and invasive behaviour of breast cancer cells through the inhibition of AKT signalling. Br J Cancer 2008;98(8):1348-56.
    69. Kim SH, Song YS, Kim SK, Kim BC, Lim CJ, Park EH. Anti-inflammatory and related pharmacological activities of the n-BuOH subfraction of mushroom Phellinus linteus. J Ethnopharmacol 2004;93(1):141-6.
    70. Lee YS, Kim YH, Shin EK, et al. Anti-angiogenic activity of methanol extract of Phellinus linteus and its fractions. J Ethnopharmacol 2010;131(1):56-62.
    71. Boh B, Berovic M, Zhang J, Zhi-Bin L. Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol Annu Rev 2007;13:265-301.
    72. Stanley G, Harvey K, Slivova V, Jiang J, Sliva D. Ganoderma lucidum suppresses angiogenesis through the inhibition of secretion of VEGF and TGF-betal from prostate cancer cells. Biochem Biophys Res Commun 2005;330(1):46-52.
    73. Kodama N, Murata Y, Asakawa A, et al.*Maitake D-Fraction enhances antitumor effects and reduces immunosuppression by mitomycin-C in tumor-bearing mice. Nutrition 2005;21(5):624-9.
    74. Masuda Y, Ito K, Konishi M, Nanba H.*A polysaccharide extracted from Grifola frondosa enhances the anti-tumor activity of bone marrow-derived dendritic cell-based immunotherapy against murine colon cancer. Cancer Immunol Immunother 2010;59(10):1531-41.
    75. Lau WY, Lai EC. Hepatocellular carcinoma:current management and recent advances. Hepatobiliary Pancreat Dis Int 2008;7(3):237-57.
    76. Yeung YP, Lo CM, Liu CL, Wong BC, Fan ST, Wong J. Natural history of untreated nonsurgical hepatocellular carcinoma. Am J Gastroenterol 2005;100(9):1995-2004.
    77. Uka K, Aikata H, Takaki S, et al. Clinical features and prognosis of patients with extrahepatic metastases from hepatocellular carcinoma. World J Gastroenterol 2007; 13(3):414-20.
    78. Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol 2005;205(2): 275-92.
    79. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med 2002;53:615-27.
    80. Cheung JY, Ong RC, Suen YK, et al. Polyphyllin D is a potent apoptosis inducer in drug-resistant HepG2 cells. Cancer Lett 2005;217(2):203-11.
    81. Kerr JF, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26(4):239-57.
    82. Hengartner MO. The biochemistry of apoptosis. Nature 2000;407(6805):770-6. 83. Igney FH, Krammer PH. Death and anti-death:tumour resistance to apoptosis. Nat Rev Cancer 2002;2(4):277-88.
    84. Shore GC, Nguyen M. Bcl-2 proteins and apoptosis:choose your partner. Cell 2008;135(6): 1004-6.
    85. Moss RJ, Petrie CR, Meyer RB, Jr., et al. Synthesis, intramolecular hydrogen bonding, and biochemical studies of clitocine, a naturally occurring exocyclic amino nucleoside. J Med Chem 1988;31(4):786-90.
    86. Kubo I, Kim M, Hood WF, Naoki H. Clitocine, a new insecticidal nucleoside from the mushroom clitocybe inversa. Tetrahedron Letters 1986;27(36):4277-80.
    87. Ren G, Zhao YP, Yang L, Fu CX. Anti-proliferative effect of clitocine from the mushroom Leucopaxillus giganteus on human cervical cancer HeLa cells by inducing apoptosis. Cancer Lett 2008;262(2):190-200.
    88. Fortin H, Tomasi S, Delcros JG, Bansard JY, Boustie J. In vivo antitumor activity of clitocine, an exocyclic amino nucleoside isolated from Lepista inversa. ChemMedChem 2006; 1(2):189-96.
    89. Li YC, Fung KP, Kwok TT, Lee CY, Suen YK, Kong SK. Mitochondrial targeting drug lonidamine triggered apoptosis in doxorubicin-resistant HepG2 cells. Life Sci 2002;71(23):2729-40.
    90. Cossarizza A, Baccarani-Contri M, Kalashnikova G, Franceschi C. A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5',6,6'-tetrachloro-1,1'r,3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem Biophys Res Commun 1993;197(1):40-5.
    91. Suen YK, Fung KP, Choy YM, Lee CY, Chan CW, Kong SK. Concanavalin A induced apoptosis in murine macrophage PU5-1.8 cells through clustering of mitochondria and release of cytochrome c. Apoptosis 2000;5(4):369-77.
    92. Fisher DE. Apoptosis in cancer therapy:crossing the threshold. Cell 1994;78(4):539-42.
    93. Frankfurt OS, Krishan A. Apoptosis-based drug screening and detection of selective toxicity to cancer cells. Anticancer Drugs 2003; 14(7):555-61.
    94. Bortner CD, Oldenburg NB, Cidlowski JA. The role of DNA fragmentation in apoptosis. Trends Cell Biol 1995;5(1):21-6.
    95. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281(5381):1309-12.
    96. Wang X. The expanding role of mitochondria in apoptosis. Genes Dev 2001;15(22):2922-33.
    97. Joza N, Susin SA, Daugas E, et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 2001;410(6828):549-54.
    98. Cande C, Cecconi F, Dessen P, Kroemer G. Apoptosis-inducing factor (AIF):key to the conserved caspase-independent pathways of cell death? J Cell Sci 2002;115(Pt 24):4727-34.
    99. Salvesen GS, Dixit VM. Caspase activation:the induced-proximity model. Proc Natl Acad Sci U S A 1999;96(20):10964-7.
    100. Salvesen GS, Dixit VM. Caspases:intracellular signaling by proteolysis. Cell 1997;91(4):443-6.
    101. Mehmet H. Caspases find a new place to hide. Nature 2000;403(6765):29-30.
    102. T M. The extraction and development of antitumor-active polysaccharides from medicinal mushrooms in Japan (review). Int J Med Mushr 1999;1:9-29.
    103. Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 2002;60(3):258-74.
    104. ST Chang. A 40-year journey through bioconversion of lignocellulosic wastes to mushrooms and dietary supplements. Int J Med Mushr 2001;3:299-310.
    105. Yassin M MJaWS. Submerged cultured mycelium extracts of higher basidiomycetes mushrooms selectively inhibit proliferation and induce differentiation of K562 human chronic myelogenous leukemia cells. Int J Med Mushr 2003;5:261-76.
    106. Zaidman BZ, Yassin M, Mahajna J, Wasser SP. Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl Microbiol Biotechnol 2005;67(4):453-68.
    107. Petrova RD WS, Mahajna J, Denchev CM and Nevo E. Medicinal Mushrooms:A new source for breast cancer therapeutics. Int J Med Mushr 2005;7:445-46.
    108. Zaidman BZ, Wasser SP, Nevo E, Mahajna J. Androgen receptor-dependent and-independent mechanisms mediate Ganoderma lucidum activities in LNCaP prostate cancer cells. Int J Oncol 2007;31(4):959-67.
    109. Petrova RD, Mahajna J, Reznick AZ, Wasser SP, Denchev CM, Nevo E. Fungal substances as modulators of NF-kappaB activation pathway. Mol Biol Rep 2007;34(3):145-54.
    110. Ling V. Multidrug resistance:molecular mechanisms and clinical relevance. Cancer Chemother Pharmacol 1997;40 Suppl:S3-8.
    111. Huang XF, Luo SK, Xu J, et al. Aurora kinase inhibitory VX-680 increases Bax/Bcl-2 ratio and induces apoptosis in Aurora-A-high acute myeloid leukemia. Blood 2008;111(5):2854-65.
    112. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 1995;80(2):285-91.
    113. Datta SR, Ranger AM, Lin MZ, et al. Survival factor-mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. Dev Cell 2002;3(5):631-43.
    114. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993;62:385-427.
    115. Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 1999;39:361-98.
    116. Ling V, Kartner N, Sudo T, Siminovitch L, Riordan JR. Multidrug-resistance phenotype in Chinese hamster ovary cells. Cancer Treat Rep 1983;67(10):869-74.
    117. Bosch I, Croop J. P-glycoprotein multidrug resistance and cancer. Biochim Biophys Acta 1996;1288(2):F37-54.
    118. Aller SG, Yu J, Ward A, et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 2009;323(5922):1718-22.
    119. Hennessy M, Spiers JP. A primer on the mechanics of P-glycoprotein the multidrug transporter. Pharmacol Res 2007;55(1):1-15.
    120. Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 2000; 11 (4):265-83.
    121. Yusa K, Tsuruo T. Reversal mechanism of multidrug resistance by verapamil:direct binding of verapamil to P-glycoprotein on specific sites and transport of verapamil outward across the plasma membrane of K562/ADM cells. Cancer Res 1989;49(18):5002-6.
    122. Loo TW, Clarke DM. Defining the drug-binding site in the human multidrug resistance P-glycoprotein using a methanethiosulfonate analog of verapamil, MTS-verapamil. J Biol Chem 2001;276(18):14972-9.
    123. Slater L, Sweet P, Wetzel M, Stupecky M, Osann K. Comparison of cyclosporin A, verapamil, PSC-833 and cremophor EL as enhancing agents of VP-16 in murine lymphoid leukemias. Leuk Res 1995;19(8):543-8.
    124. Chin KV, Ueda K, Pastan I, Gottesman MM. Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Science 1992;255(5043):459-62.
    125. Cornwell MM, Smith DE. SP1 activates the MDR1 promoter through one of two distinct G-rich regions that modulate promoter activity. J Biol Chem 1993;268(26):19505-11.
    126. Zhou G, Kuo MT. Wild-type p53-mediated induction of rat mdr1b expression by the anticancer drug daunorubicin. J Biol Chem 1998;273(25):15387-94.
    127. Zhou G, Kuo MT. NF-kappaB-mediated induction of mdr1b expression by insulin in rat hepatoma cells. J Biol Chem 1997;272(24):15174-83.
    128. Fine RL, Chambers TC, Sachs CW. P-glycoprotein, multidrug resistance and protein kinase C. Stem Cells 1996;14(1):47-55.
    129. Tang XY, Zhu YQ. Epigallocatechin-3-gallate suppressed the over-expression of HSP 70 and MDR1 induced by heat shock in SGC 7901. J Chemother 2008;20(3):355-60.
    130. Chin KV, Tanaka S, Darlington G, Pastan I, Gottesman MM. Heat shock and arsenite increase expression of the multidrug resistance (MDR1) gene in human renal carcinoma cells. J Biol Chem 1990;265(1):221-6.
    131. Fujita T, Ito K, Izumi H, et al. Increased nuclear localization of transcription factor Y-box binding protein 1 accompanied by up-regulation of P-glycoprotein in breast cancer pretreated with paclitaxel. Clin Cancer Res 2005;11(24 Pt 1):8837-44.
    132. David GL, Yegnasubramanian S, Kumar A, et al. MDR1 promoter hypermethylation in MCF-7 human breast cancer cells:changes in chromatin structure induced by treatment with 5-Aza-cytidine. Cancer Biol Ther 2004;3(6):540-8.
    133. Yatouji S, El-Khoury V, Trentesaux C, et al. Differential modulation of nuclear texture, histone acetylation, and MDR1 gene expression in human drug-sensitive and -resistant OV1 cell lines. Int J Oncol 2007;30(4):1003-9.
    134. Kim SN, Kim NH, Lee W, Seo DW, Kim YK. Histone deacetylase inhibitor induction of P-glycoprotein transcription requires both histone deacetylase 1 dissociation and recruitment of CAAT/enhancer binding protein beta and pCAF to the promoter region. Mol Cancer Res 2009;7(5): 735-44.
    135. Chung SY, Sung MK, Kim NH, Jang JO, Go EJ, Lee HJ. Inhibition of P-glycoprotein by natural products in human breast cancer cells. Arch Pharm Res 2005;28(7):823-8.
    136. Mothana RA, Lindequist U, Gruenert R, Bednarski PJ. Studies of the in vitro anticancer, antimicrobial and antioxidant potentials of selected Yemeni medicinal plants from the island Soqotra. BMC Complement Altern Med 2009;9:7.
    137. Patanasethanont D, Nagai J, Matsuura C, et al. Modulation of function of multidrug resistance associated-proteins by Kaempferia parviflora extracts and their components. Eur J Pharmacol 2007;566(1-3):67-74.
    138. Lee CH, Daanen JF, Jiang M, et al. Synthesis and biological evaluation of clitocine analogues as adenosine kinase inhibitors. Bioorg Med Chem Lett 2001;11(18):2419-22.
    139. Tang PM, Chan JY, Zhang DM, et al. Pheophorbide a, an active component in Scutellaria barbata, reverses P-glycoprotein-mediated multidrug resistance on a human hepatoma cell line R-HepG2. Cancer Biol Ther 2007;6(4):504-9.
    140. Ueda K, Pastan I, Gottesman MM. Isolation and sequence of the promoter region of the human multidrug-resistance (P-glycoprotein) gene. J Biol Chem 1987;262(36):17432-6.
    141. Karin M. How NF-kappaB is activated:the role of the IkappaB kinase (IKK) complex. Oncogene 1999; 18(49):6867-74.
    142. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999; 18(49):6853-66.
    143. Wang CY, Mayo MW, Baldwin AS, Jr. TNF- and cancer therapy-induced apoptosis:potentiation by inhibition of NF-kappaB. Science 1996;274(5288):784-7.
    144. Aydin C, Sanlioglu AD, Bisgin A, et al. NF-kappaB targeting by way of IKK inhibition sensitizes lung cancer cells to adenovirus delivery of TRAIL. BMC Cancer 2010; 10:584.
    145. Wang CY, Cusack JC, Jr., Liu R, Baldwin AS, Jr. Control of inducible chemoresistance:enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nat Med 1999;5(4): 412-7.
    146. Bentires-Alj M, Hellin AC, Ameyar M, Chouaib S, Merville MP, Bours V. Stable inhibition of nuclear factor kappaB in cancer cells does not increase sensitivity to cytotoxic drugs. Cancer Res 1999;59(4):811-5.
    147. Kasibhatla S, Brunner T, Genestier L, Echeverri F, Mahboubi A, Green DR. DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-kappa Band AP-1.Mol Cell 1998; 1(4):543-51.
    148. Kuo MT, Liu Z, Wei Y, et al. Induction of human MDR1 gene expression by 2-acetylaminofluorene is mediated by effectors of the phosphoinositide 3-kinase pathway that activate NF-kappaB signaling. Oncogene 2002;21(13):1945-54.
    149. Bentires-Alj M, Barbu V, Fillet M, et al. NF-kappaB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene 2003;22(1):90-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700