新型Hoffmann消除-Diels-Alder环加成串联反应的研究和新型嘧啶并环分子构架的设计与合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分为两部分:N-烷基取代的吲哚并氮杂及其类似物与α,β-不饱和醛的分子内Hoffmann 消除-Diels-Alder 环加成串联反应的研究和嘧啶并环结构的分子构架及其特权结构化合物库的设计与制备。
    在第一部分中,首先探讨了N-烷基取代的吲哚并氮杂与α,β-不饱和醛的反应,并以此作为关键步骤尝试了天然生物碱(±)-andranginine 的全合成。该反应是以Hoffmann 消除产生的吲哚丙烯酸酯为亲双烯体,二烯胺为双烯体的Diels-Alder 环加成反应。
    其次,我们还合成了2,3,4,5-四氢-1H-苯并[d]氮杂-1-羧酸酯及其噻吩类似物并首次用“一锅煮”法由α-氯甲基四氢异喹啉扩环为3-苯并氮杂。
    在第二部分中,以嘧啶为基本母核,通过Pictet-Spengler 型环合反应构建了三类具有特权结构的新型嘧啶并环分子构架,并在此基础上设计了结构多样性的化合物库,验证了其合成的可行性。
This dissertation is divided into two parts. In the first part, a novel intra-molecular tandem Hoffmann elimination-Diels-Alder cyclization reaction of N-alkyl indoloazapines and their analogs with α,β-unsaturated aldehydes was studied. In the second part, three novel pyrimidine-fused heterocyclic scaffods were designed and synthesized. These scaffolds are useful in preparation of libraries of priviledged structures in drug discovery.
    In part one, Chapter One summarizes tandem Diels-Alder cyclizations in the literature. Reactions of N-alkyl indoloazapines with saturated aldehydes have been systematically studied by Kuehne et al. They involve a tandem Hoffmann elimination-Diels-Alder cyclization, in which the Hoffmann elimination product indoloacrylate part from the indoloacrylate-enamine intermediate is used as the diene while the enamine within the same molecule as the dienophile.
    In Chapter Two, a novel anti-Kuehne tandem Hoffmann elimination–Diels-Alder cyclization is described. Reaction of N-alkyl indoloazapines with α,β-unsaturated aldehydes in refluxing toluene led to novel tetracyclic products in 48-92% yields. All these compounds were characterized by NMR spectra, MS and elemental analysis. The reaction results can be summarized as follows: 1) Reaction of indoloazepines containing N-substitutents, such as benzyl, allyl, ethyl, with α, β-unsaturated aldehydes could proceed to give the expected tetracyclic
    compounds; 2) The reaction is highly stereoselective; 3) The existence of β-substituents on α, β-unsaturated aldehydes facilitates this reaction while α-substituents hinder it. To explain the above results, an anti-Kuehne’s Hoffmann elimination-Diels-Alder cycylization mechanism was proposed. The key to this mechanism is an intramolecualr Diels-Alder reaction by indoloacrylate (dienophile)-dienamine (diene) intermediate generated in situ. As a subsequence, the synthesis of natural alkaloid (±)-andranginine was attempted and its ABCE skeleton has been prepared. In Chapter Three, 3-benzazepine-1-carboxylate and its thieno analogs were synthesized. Following a three-step reaction sequence involving Pictet-Spengler cyclization, ring-expansion and reduction, the desired methyl 2,3,4,5-tetrahydro-1H-benzo[d]azepine-1-carboxylate derivatives were obtained from β-phenyl-ethanamine hydrochloride. In the ring-expansion stage, a simple ‘one-pot’ring enlargement method was developed. it involves reactions of a-chloromethyl-tetrahydroisoquinoline with alkylating reagents such as benzyl or allyl bromide under basic conditions. The keys were proposed to be the formation of aziridinium salt and subsequent bond breaking between the nitrogen and tertiary carbon atoms. This one-pot reaction provides a convenient way to prepare 3-benzazepine in high yields. Thienoazepine derivatives were synthesized from β-(thiophen-3-yl)ethanamine hydrochloride in a similar manner. The newly discovered intramolecular tandem Hoffmann elimination-Diels-Alder cyclizations were applied to 3-benzazepine-1-carboxylate and its thieno analogs. Unfortunately, no desired products were obtained. Chapter Four to Seven deal with design and synthesis of novel privileged structures. In Chapter Four, the application of privileged structures and pyrimidine-fused heterocycles in drug design were reviewed. Priviledged structures represent a class of molecules capable of binding to multiple receptors with high affinity. As a structural component of key biomolecules, pyrimidine
    moiety has been widely employed in design of privileged structures in medicinal chemistry. In Chapter Five, an efficient method for rapid preparation of 5,6-dihydroindolo[2,1-h]pteridine scaffods has been developed. The key step involves the intramolecular cyclization of an iminium ion intermediate derived from the reaction of 4-chloro-6-(1H-indol-1-yl)-pyrimidin-5-amine with aldehydes or ketones. The key precursor 4-chloro-6-(1H-indol-1-yl)-pyrimidin-5-amine was prepared by three steps of reactions involving indoline substitution, nitro reduction and oxidation aromation from commercially available 5-amino-4, 6-dichloro-pyrimidine. The one-pot reaction of imine formation of this key precursor with aldehydes or ketones and cyclization under the catalysis of trifluoroacetic acid led to 5,6-dihydroindolo[2,1-h]pteridine derivatives in 47-98% yields. The cyclization represents a special Pictet-Spengler type reaction involving an aromatic amine. In the acidic condition, aminopyrimidine condensed with an aldehyde or ketone to form the iminium ion intermediate, which was attacked by the electron-rich 2-position carbon atom of the indole ring to result in the desired product. To test the scope of this cyclization and as a special case, an electon-withdrawing ester group was introduced into the 3-position of indole moiety. The results demonstrated that various substituents including electron-donating or withdrawing group might be tolerated. Similarly, the substitution of 4-chloro atom in the cyclized products by an amine symbolized the ease of convertion by other nucleopliles, which further increases the structural diversity of this new scaffold. Based on the results in chapter five, we envisioned that if indoline-substituted aminopyrimidine instead of indole-substituted one reacted with an aldehyde or ketone, the cyclization would be forced to occur on the benzene ring of indoline due to the absence of the electron-rich indole 2-carbon. The details of this study is described in Chapter Six. Following the cyclization
    conditions described in Chapter Five, indoline-substituted aminopyrimidine reacted with a series of aldehydes or ketones respectively to give the expected tetracyclic 4-chloro-5, 6-dihydro-pyrimido[4,5-b][1,4]benzodiazepine derivatives. This strategy was applied to tetrahydroquinoline-substituted aminopyrimidine system. It was found that reactivity of tetrahydroquinoline-substituted aminopyrimidine was lower compared to that of indoline-substituted aminopyrimidine, especially in the reactions with ketones. The results were explained by two possible factors, the steric hindrance and/or the bond angle strain. On the bases of the aboved results, we have designed a combinatorial library containing 1000 to 2000 5, 6-dihydro-pyrimido[4,5-b][1,4]benzo-diazepines with various substituents. In Chapter Seven, the above cyclization strategy was applied to the 5-pyrrolyl-substituted amino-pyrimidine system. Starting from 5-amino-4,6-dichloro-pyrimidine, the required precursor was prepared in two steps. The new aminopyrimidine reacted with aldehydes or ketones under the catalyzation of p-TsOH to result the desired 1-chloro-5,6-dihydropyrrolo-[1,2-f]pteridine derivatives. In a similar manner, the chloro atom on the newly formed cyclized products is highly reactive towards a nucleophile, such as an amine. Based on these results, a combinatorial library containing about 600 5, 6-dihydropyrrolo[1,2-f]pteridine derivatives was designed.
引文
[1] 王兰明,新药研究开发的途径与方法(上),中国药业,2000,9(1),11-13。
    [2] Bohacek, R. S.; McMartin, C.; Guida, W. C. Med. Res. Rev., 1996, 16, 3.
    [3] Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions, .Angew. Chem. Int. Ed. Engl., 2001, 40, 2004-2021.
    [4] Evans, B. E.; Rittle, K. E.; Bock, M. G.; DiPardo, R. M.; Freidinger, R. M.; Whitter, W. L.; Lundell, G. F.; Veber, D. F.; Anderson, P. S.; Chang, R. S. L.; Lotti, V. J.; Cerino, D. J.; Chen, T. B.; Kling, P. J.; Kunkel, K. A.; Springer, J. P.; Hirshfield, J. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem., 1988, 31, 2235-2246.
    [5] (a)Patchett, A. A.; Nargund, R. P. Annu. Rep. Med. Chem., 2000, 35, 289;
    (b)Hajduk, P. J.; Bures, M.; Praestgaard, J.; Fesik, S. W. Privileged Molecules for Protein Binding Identified from NMR-Based Screening. J. Med. Chem., 2000, 43, 3443-3447.
    [6] Jacobson, K. A.; Kim, Y.-C.; King, B. F. J. Auton. Nerv. Syst., 2000, 81, 152.
    [7] (a)Nicolaou, K. C.; Pfefferkorn, J. A.; Barluenga, S.; Mitchell, H. J.; Roecker, A. J.; Cao, G.-Q. Natural Product-like Combinatorial Libraries Based on Privileged Structures. 3. The "Libraries from Libraries" Principle for Diversity Enhancement of Benzopyran Libraries. J. Am. Chem. Soc., 2000, 122, 9968-9976;
    (b) Nicolaou, K. C.; Pfefferkorn, J. A.; Mitchell, H. J.; Roecker, A. J.; Barluenga, S.; Cao, G.-Q.; Affleck, R. L.; Lillig, J. E. Natural Product-like Combinatorial Libraries Based on Privileged Structures. 2. Construction of a 10 000-Membered Benzopyran Library by Directed Split-and-Pool Chemistry Using NanoKans and Optical Encoding. J. Am.Chem. Soc., 2000, 122, 9954-9967.
    [8] Pevarello, P.; Amici, R.; Brasca, M. G.; Villa, M.; Varasi, M. Targets Heterocycl. Syst. 1999, 3, 301.
    [9] Zhou, C.; Guo, L.; Morriello, G.; Pasternak, A.; Pan, Y.; Rohrer, S. P.; Birzin, E. T.; Huskey, S.-E. W.; Jacks, T.; Schleim, K. D.; Cheng, K.; Schaeffer, J. M.; Patchett, A. A.; Yang, L. Nipecotic and iso-nipecotic amides as potent and selective somatostatin subtype-2 receptor agonist.
    Bioorg. Med. Chem. Lett., 2001, 11, 415-417.
    [10](a)Mason, J. S.; Morize, I.; Menard, P. R.; Cheney, D. L.; Hulme, C.; Labaudiniere, R. F. New 4-Point Pharmacophore Method for Molecular Similarity and Diversity Applications: Overview of the Method and Applications, Including a Novel Approach to the Design of Combinatorial Libraries Containing Privileged Substructures. J. Med. Chem., 1999, 42, 3251-3264 ;
    ( b ) Austin, J. F.; MacMillan, D. W. C. Enantioselective Organocatalytic Indole Alkylations. Design of a New and Highly Effective Chiral Amine for Iminium Catalysis. J. Am. Chem. Soc., 2002, 124, 1172-1173.
    [11](a)Ding, S.; Gray, N. S.; Ding, Q.; Schultz, P. G. Expanding the diversity of purine libraries. Tetrahedron Lett., 2001, 42, 8751-8755;(b) Brun, V.; Legraverend, M.; Grierson, D. S. Cyclin-dependent kinase (CDK) inhibitors: development of a general strategy for the construction of 2,6,9-trisubstituted purine libraries. Part 1. Tetrahedron Lett., 2001, 42, 8161-8164.
    [12](a)Hirschmann, R.; Hynes, J., Jr.; Cichy-Knight, M. A.; van Rijn, R. D.; Sprengeler, P. A.; Spoors, P. G.; Shakespeare, W. C.; Pietranico-Cole, S.; Barbosa, J.; Liu, J.; Yao, W.; Rohrer, S.; Smith, A. B. Modulation of Receptor and Receptor Subtype Affinities Using Diastereomeric and Enantiomeric Monosaccharide Scaffolds as a Means to Structural and Biological Diversity. A New Route to Ether Synthesis. J. Med. Chem., 1998, 41, 1382-1391;
    (b) Liu, J.; Underwood, D. J.; Cascieri, M. A.; Rohrer, S. P.; Cantin, L.-D.; Chicchi, G.; Smith, A. B., III; Hirschmann, R. Synthesis of a Substance P Antagonist with a Somatostatin Scaffold: Factors Affecting Agonism/Antagonism at GPCRs and the Role of Pseudosymmetry. J. Med.Chem., 2000, 43, 3827-3831.
    [13](a)Yang, L.; Berk, S. C.; Rohrer, S. P.; Mosley, R. T.; Guo, L.; Underwood, D. J.; Arison, B. H.; Birzin, E. T.; Hayes, E. C.; Mitra, S. W.; Parmar, R. M.; Cheng, K.; Wu, T. J.; Butler, B. S.; Foor, F.; Pasternak, A.; Pan, Y.; Silva, M.; Freidinger, R. M.; Smith, R. G.; Chapman, K.; Schaeffer, J. M.; Patchett, A. A. Proc. Natl. Acad. Sci. U.S.A., 1998, 95, 10836;
    (b) Howard, A. D.; McAllister, G.; Feighner, S. D.; Qingyun, L.; Nargund, R. P.; Van der Ploeg, L. H. T.; Patchett, A. A. Trends Pharmacol. Sci., 2001, 22, 132.
    [14](a) Smith, A. B., III; Favor, D. A.; Sprengeler, P. A.; Guzman, M. C.; Carroll, P. J.; Furst, G. T.; Hirschmann, R. Molecular modeling, synthesis, and
    structures of N-methylated 3,5-linked pyrrolin-4-ones toward the creation
    of a privileged nonpeptide scaffold. Bioorg. Med. Chem., 1999, 7, 9-22;
    (b) Abrous, L.; Hynes, J., Jr; Friedrich, S. R.; Smith, A. B., III; Hirschmann, R. Design and Synthesis of Novel Scaffolds for Drug Discovery: Hybrids of -D-Glucose with 1,2,3,4-Tetrahydrobenzo[e][1,4]diazepin-5-one, the Corresponding 1-Oxazepine, and 2-and 4-Pyridyldiazepines. Org. Lett., 2001, 3, 1089-1092.
    [15]Horton, D. A.; Bourne, G. T.; Smythe, M. L. The Combinatorial Synthesis of Bicyclic Privileged Structures or Privileged Substructures. Chem. Rev., 2003, 103, 893-930.
    [16]仉文升,李安良. 药物化学,北京:高等教育出版社,1999.
    [17]Kompis, I. M.; Islam, K.; Then, R. L. DNA and RNA Synthesis: Antifolates. Chem. Rev., 2005, 105, 593-620.
    [18]McGuire, J. J. Curr. Pharm. Des., 2003, 9, 2593.
    [19]Sanders, W. J.; Nienaber, V. L.; Lerner, C. G.; McCall, J. O.; Merrick, S. M.; Swanson, S. J.; Harlan, J. E.; Stoll, V. S.; Stamper, G. F.; Betz, S. F.; Condroski, K. R.; Meadows, R. P.; Severin, J. M.; Walter, K. A.; Magdalinos, P.; Jakob, C. G.; Wagner, R.; Beutel, B. A. Discovery of Potent Inhibitors of Dihydroneopterin Aldolase Using CrystaLEAD High-Throughput X-ray Crystallographic Screening and Structure-Directed Lead Optimization. J. Med. Chem., 2004, 47, 1709-1718.
    [20]Ridley, R. G. Nature, 2002, 415, 686.
    [21]Lee, C-H.; Daanen, J. F.; Jiang, M.; Yu, H.; Kohlhaas, K. L.; Alexander, K.; Jarvis, M. F.; Kowaluk, E. L.; Bhagwat, S. S. Synthesis and biological evaluation of Clitocine analogues as adenosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2001, 11, 2419-2422.
    [22]Perner, R. J.; Lee, C-H.; Jiang, M.; Gu, Y-G.; DiDomenico, S.; Bayburt, E. K.; Alexander, K. M.; Kohlhaas, K. L.; Jarvis, M. F.; Kowaluk, E. l.; Bhagwat, S. S. Synthesis and biological evaluation of 6,7-disubstituted 4-aminopyrido[2,3-d]pyridimines as adenosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2005, 15, 2803-2807.
    [23]Gomtsyan, A.; Didomenico, S.; Lee, C-H.; Stewart, A. O.; Bhagwat, S.S.; Kowaluk, E. A.; Jarvis, M. F. Synthesis and biological evaluation of pteridine and pyrazolopyrimidine based adenosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2004, 14, 4165-4168.
    [24]Gomtsyan, A.; Didomenico, S.; Lee, C-H.; Matulenko, M. A.; Elizabeth, K.K.; Kowaluk, E. A. Wismer, C. T.; Mikusa, J.; Yu, H.; Kohlhaas, K.; Matulenko, M. F.; Bhagwat, S. S. Design, Synthesis, and Structure-Activity Relationship of 6-Alkynylpyrimidines as Potent Adenosine Kinase Inhibitors. J. Med. Chem., 2002, 45, 3639-3648.
    [25]Sielecki, T. M.; Boylan, J. F.; Benfield, P. A.; Trainor, G. L. Cyclin-Dependent Kinase Inhibitors: Uesful Targets in Cell Cycle Regulation. J. Med. Chem., 2000, 43, 1-18.
    [26]Arris, C. E.; Boyle, F. T.; Calvert, A. H. et al. Identification of Novel Purine and Pyrimidine Cyclin-Dependent Kinase Inhibitors with Distinct Molecular Interactions and Tumor Cell Growth Inhibition Profiles. J. Med. Chem. 2000, 43, 2797-2804.
    [27]Markwalder, J. A.; Amone, M. R.; Benfiels, P. A. et al. Synthesis and Biological Evaluation of 1-Aryl-4,5-dihydro-1H-pyrazolo[3,4-d] pyrimidin-4-one Inhibitors of Cyclin-Dependent Kinases. J. Med. Chem. 2004, 47, 5894-5911.
    [28]Vanderwel, S. N.; Harvey, P. J.; McNamara, D. J. et al. Pyrido [2,3-d]pyrimidin-7-ones as Specific Inhibitors of Cyclin-Dependent Kinase 4. J. Med. Chem., 2005, 48, 2371-2387.
    [29]Sznaidman, M. L.; Meade, E. A.; Beauchamp, L. M.; Russell, S.; Tisdale, M. The antiinfluenza activity of pyrroo[2,3-d]pyrimidines. Bioorg. Med. Chem. Lett., 1996, 6(5), 565-568.
    [30]Calderwood, D. J.; Johnston, D. N.; Munschauer, R.; Rafferty, P. Pyrrolo[2,3-d] pyrimidines Containing Diverse N-7 Substituents asPotent Inhibitors of Lck. Bioorg. Med. Chem. Lett., 2002, 12, 1683-1686.
    [31]Huang,C. Q.; Wilcoxen, K. M.; Grigoriadis, D. E.; McCarthy, J. R.; Chen. C. Design and synthesis of 3-(2-pyridyl)pyrazolo[1,5-a] pyrimidines as potent CRF1 receptor antagonists. Bioorg. Med. Chem. Lett., 2004, 14, 3943-3947.
    [32]Yuan, J.; Gulianello, M. Lombaert, S. D.; Brodbeck, R.; Kieltyka, A.; Hodgetts, K. J. Bioorg. Med. Chem. Lett., 2002, 12, 2133-2136.
    [33]Connolly, C. J. C. Hamby, J. M. Schroeder, M. C. et al. Discovery and structure-activity studies of a novel series of pyrido[2,3-d] pyrimidine tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett., 1997, 7(18), 2415-2420.
    [34]Maeda, Y.; Nakano, M.; Sato, H.; Miyazaki, Y.; Schweiker, S. L.; Smith, J. L.; Truesdale, A. T. 4-Acylamino-6-arylfuro[2,3-d] pyrimidines: potent and selective glycogen synthase kinase-3 inhibitors. Bioorg. Med. Chem. Lett., 2004, 14, 3907-3911.
    [35]Pictet, A.; Spengler, T. Ber. Dtsch. Chem. Ges. 1911, 44, 2030.
    [36]Whaley, W. M.; Govindachari, T. R. The Pictet-Spengler Synthesis of Tetrahydroisoquinolines and Related Compounds. In Organic Reactions; Adams, R., Ed.; John Wiley and Sons: New York, 1951; Vol. VI, p 151.
    [37]Cox, E. D.; Cook, J. M. The Pictet-Spengler Condensation: A New Direction for an Old Reaction, Chem. Rev., 1995, 95(6); 1797-1842.
    [38]Soerens, D.; Sandrin, J.; Ungemach, F.; Mokry, P.; Wu, G. S.; Yamanaka, E.; Hutchins, L.; Dipierro, M.; Cook, J. M. Study of the Pictet-Spengler Reaction in Aprotic Media: Synthesis of the P-Galactosidase Inhibitor, Pyridindolol. J. Org. Chem., 1979, 44(4), 535-545.
    [39](a) Buck, J. S. Some Substituted Tetrahydroisoquinoline Hydrochlorides. J. Am. Chem. Soc., 1934, 56, 1769-1771.
    (b) Ide, W. S.; Buck, J. S. Pharmacologically Active Compounds from Alkoxy-phenylethylamines J. Am. Chem. Soc., 1937, 59, 726-731.
    [40]Yokoyama, A.; Ohwada, T.; Shudo, K. Prototype Pictet-Spengler Reactions Catalyzed by Superacids.Involvement of Dicationic Superelectrophiles. J. Org. Chem. 1999, 64, 611-617
    [41]For recent examples of microwave-accelerated Pictet–Spengler reactions, see: (a) Yen, Y. H.; Chu, Y.-H. Synthesis of tetrahydro-β-carbolinediketopiperazines in [bdmim][PF6] ionic liquid accelerated by controlled microwave heating. Tetrahedron Lett., 2004, 45, 8137–8140; (b) Wu, C.-Y.; Sun, C.-M. Synlett, 2002, 1709.
    (c) Yang, J. J.-Y.; Chen, S.-T.; Chu, Y.-H. In Optimization of Solid-Phase Combinatorial Synthesis; Yan, B., Czarnik, A., Eds.; Marcel Dekker: New York, 2001, Chapter 14, pp 305–313.
    [42]Kuo, F.; Tseng, M.; Yen, Y.; Chu, Y. Microwave accelerated Pictet–Spengler reactions of tryptophan with ketones directed toward the preparation of 1,1-disubstituted indole alkaloids. Tetrahedron, 2004, 60, 12075-12084.
    [43]Chrzanowska, M.; Rozwadowska, M D. Asymmetric Synthesis of Isoquinoline Alkaloids. Chem. Rev., 2004, 104, 3341-3370.
    [44]Comins, D. L.; Thakker, P. M.; Baevsky, M. F.; Badawi, M. M. Chiral Auxiliary Mediated Pictet-Spengler Reactions: Asymmetric Syntheses of (-)-Laudanosine, (+)-Glaucine and (-)-Xylopinine. Tetrahedron , 1997, 53, 16327-16340.
    [45]Kawai, M.; Deng, Y.; Kimura, I.; Yamamura, H.; Araki, S.; Naoi, M. Convenient enantioselective preparatin of salsolinol-1-carboxylic acid. Tetrahedron: Asymmetry , 1997, 9, 1487-1490.
    [46]Kawate, T.; Yamada, H.; Matsumizu, M.; Nishida, A.; Nakagawa, M. Enantioselective Pictet-Spengler reaction of nitrones derived from Nb-hydroxytryptamine with aldehydes catalyzed by chiral Bronsted acid-assisted Lewis acids. Synlett., 1997, 761-762.
    [47](a) Kalijuste, K.; Unde′n, A. Solid Phase Synthesis of 1,2,3,4-Tetrahydro-β-carbolines; Implications for Combinatorial Chemistry. Tetrahedron Lett., 1995, 36, 9211-9214;
    (b) Yang, L.; Guo, L.Pictet-Spengler reaction on solid support. Tetrahedron Lett., 1996, 37, 5041-5044;
    (c) Mohan, R.; Chou, Y.-L.; Morrissey, M. M. Pictet-Spengler reaction on solid support: Synthesis of 1,2,3,4-tetrahydro-β-carboline libraries. Tetrahedron Lett., 1996, 37, 3963-3966;
    (d) Mayer, J. P.; Bankaitis-Davis, D.; Zhang, J.; Beaton, G.; Bjergarde, K.; Andersen, C. M.; Goodman, B. A.; Herrera, C. J. Application of the Pictet-Spengler reaction in combinatorial chemistry. Tetrahedron Lett., 1996, 37, 5633-5636;
    (e) Dondas, H. A.; Grigg, R.; MacLachlan, W. S.; MacPherson, D. T.; Markandu, J.; Sridharan, V.; Suganthan, S. Solid phase sequential 1,3-dipolar cycloaddition–Pictet–Spengler reactions. Tetrahedron Lett., 2000, 41, 967-970.
    [48]Connors, R. V.; Zhang, A. J.; Shuttleworth, S. J. Pictet–Spengler synthesis of tetrahydrocarbolines using vinylsulfonyl methyl resin. Tetrahedron Lett., 2002, 43, 6661–6663.
    [49]Cheeseman , G.. W. H.; Rafiq, M. Further Cyclisation Reaction of 1-Arylpyrroles J.Chem.Soc.
    (C), 1971, 2732-2734。
    [50]Raines, M.; Chai, S. Y.; Palopoli, F. P. Mannich Reactions. Synthesis of 4,5-Dihydropyrrolo[1,2-a]quinoxalines, 2,3,4,5-Tetrahydro-1H-Pyrrolo [1,2-a] [1,4]diaze-pines and 5,6-Dihydro-4H-pyrrolo[1,2-a][1,4] benzodiazepines. J. Heterocyclic Chem., 1976, 13, 711-716.
    [51]Abonia, R.; Insuasty, B.; Quiroga, J.; Kolshorn, H.; Meier, H. A Versatile Synthesis of 4,5-Dihydropyrrolo[1,2-a]quino-xalines. J. Heterocyclic
    Chem., 2001, 38, 671-674.
    [52]Kundu, B.; Sawant, D.; Partani, P.; Kesarwani, A. P. New Application of Pictet-Spengler Reaction Leading to the Synthesis of an Unusual Seven-Memberd Heterocyclic Ring System. J. Org. Chem., 2005, 70, 4889-4892.
    [53]Kundu, B.; Sawant, D.; Chhabra, R. A Modified Strategy for Pictet-Spengler Reaction Leading to the Synthesis of Imidazo-quinoxalines on Solid Phase. J. Comb. Chem., 2005, 7, 317-321.
    [54]Liu, J.; Dang, Q.; Wei, Z.; Zhang, H.; Bai, X. Parallel Solution-Phase Synthesis of a 2,6,8,9-Tetrasubstituted Purine Library via a Sulfur Intermediate. J. Comb. Chem., 2005, 7, 627-636.
    [55]Yang, J.; Dang, Q.; Liu, J.; Wei, Z.; Wu, J.; Bai, X. Preparation of a Fully Substituted Purine Library. J. Comb. Chem., 2005, 7, 474-482.
    [56]Yang, J.; Che, X.; Dang, Q.; Wei, Z.; Gao, S.; Bai, X. Synthesis of Tricyclic 4-Chloro-pyrimido[4,5-b][1,4]benzodiazepines. Org. Lett., 2005, 7(8), 1541-1543.
    [57]Mason, J. S.; Morize, I.; Menard, P. R.; Cheney, D. L.; Hulme, C.; Labaudiniere, R. F. New 4-Point Pharmacophore Method for Molecular Similarity and Diversity Applications: Overview of the Method and Applications, Including a Novel Approach to the Design of Combinatorial Libraries Containing Privileged Substructures. J. Med. Chem. 1999, 42, 3251-3264.
    [58]Austin, J. F.; MacMillan, D. W. C. Enantioselective Organo-catalytic Indole Alkylations. Design of a New and Highly Effective Chiral Amine for Iminium Catalysis. J. Am. Chem. Soc., 2002, 124(7), 1172-1173.
    [59]Sanders-Bush, E.; Mayer, S. E. In Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 9th ed.; Ruddon, R. W., Ed.; McGraw-Hill: New York, 1996, p 249.
    [60]Insel, P. A. In Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 9th ed.; Ruddon, R. W., Ed.; McGraw-Hill: New York, 1996, p 617.
    [61]Hong, F.; Zaidi, J.; Pang, Y. P.; Cusack, B.; Richelson, E. Design, synthesis and pharmacological evaluation of active pyrrole based, nonpeptidic analogues of neurotensin. J. Chem. Soc., Perkin Trans. 1, 1997, 2997.
    [62]Rohrer, S. P.; Birzin, E. T.; Mosley, R. T.; Berk, S. C.; Hutchins, S. M.; Shen, D.-M.; Xiong, Y.; Hayes, E. C.; Parmar, R. M.; Foor, F.; Mitra, S.
    W.; Degrado, S. J.; Shu, M.; Klopp, J. M.; Cai, S.-J.; Blake, A.; Chan, W.
    W.-S.; Pasternak, A.; Yang, L.; Patchett, A. A.; Smith, R. G.; Chapman, K.
    T.; Schaeffer, J. M. Science, 1998, 282, 737.
    [63]Zhang, H.-C.; McComsey, D. F.; White, K. B.; Addo, M. F.; Andrade-Gordon, P.; Derian, C. K.; Oksenberg, D.; Maryanoff, B. E. Thrombin receptor (PAR-1) antagonists. Solid-Phase synthesis of indole-Based peptide mimetics by anchoring to a secondary amide, Bioorg. Med. Chem. Lett., 2001, 11, 2105-2109.
    [64]Heinelt, U.; Herok, S.; Matter, H.; Wildgoose, P. Solid-phase optimisation of achiral amidinobenzyl indoles as potent and selective factor Xa inhibitors, Bioorg. Med. Chem. Lett., 2001, 11, 227-230.
    [65]Tanji, K.; Satoh, R.; Higashino, T. Chem. Pharm. Bull. 1992, 40, 227.
    [66]Beller, M.; Breindl, C.; Riermeier, T. H.; Tillack, A. Synthesis of 2,3-Dihydroindoles, Indoles, and Anilines by Transition Metal-Free Amination of Aryl Chlorides. J. Org. Chem. 2001, 66, 1403-1412.
    [67]Yamagugm, S.; Yamamoto, K.; Ueda, J.; Morikawa, T. et al. A new preparative method of 4-hydroxybenzofuran-2-carboxylic acids. Bull. Chem. Soc. Jpn., 1989, 62,4066-4067.
    [68]Abrous, L.; Hynes, J., Jr; Friedrich, S. R.; Smith, A. B., III; Hirschmann, R. Design and Synthesis of Novel Scaffolds for Drug Discovery: Hybrids of a-D-Glucose with 1,2,3,4-Tetrahydrobenzo[e][1,4]diazepin-5-one, the Corresponding 1-Oxazepine, and 2-and 4-Pyridyldiazepines. Org. Lett,. 2001, 3, 1089-1092.
    [69]Kobayashi, Chem. Lett., 1974, 967.
    [70]Bristol-Myers, FR 2225158, 1974, DE 2418285
    [71]Levkovskaya, L. G.; Sazonov, N. V.; Grineva, N. A.; Mamaeva, I. E.; Serochkina, L. A.; Safonova, T. S., Chem. Heterocycl. Compd. (Engl. Transl.), 1985, 21,100.
    [72]Safonva, T. S.; Nemeryuk, M. P.; Grineva, N. A.; Kermov, M. A.; Likhovidova, M. M., Investigation of Nitrogen-and Sulfur-containing Heterocycles. 53. Reactions of 5-Amino-6-mercaptopyrimidines with Derivatives of p-Chloronitrobenzene. Synthesis of a New Heterocyclic System-Pyrimido[4,5-b]-1,4-benzothiazepine. Chem. Heterocycl. Compd. (Engl. Transl.), 2001, 37, 245.
    [73]Havelkova, M.; Hocek, M. ; Eesnek, M.; Dvorak, D. The Suzuki-Miyaura
    Cross-Coupling Reactions of 6-Halopurines with Boronic Acids Leading to
    6-Aryl-and 6-Alkenylpurines. Synlett, 1999, 7, 1145–1147.
    [74]Chen, B-C.; Zhao, R.; Bednarz, M. S.; Wang, B.; Sundeen, J. E.; Barrish, J. C. A New Strategy for the Construction of the Imidazo[1,5-a]quinoxalin-4-one Ring System and Its Application to the Efficient Synthesis of BMS-238497, a Novel and Potent Lck Inhibitor. J. Org. Chem. 2004, 69, 977-979.
    [75]Jacobsen, E. J.; Stelzer, L. S.; Belonga, K. L.; Carter, D. B.; Im, W. B.; Sethy, V. H.; Tang, A. H.; VonVoigtlander, P. F.; Petke, J. D. 3-Phenyl-Substituted Imidazo[1,5-a]quinoxalin-4-ones and Imidazo[1,5-a] quinoxaline Ureas That Have High Affinity at the GABA /Benzodiazepine Receptor Complex. AJ. Med. Chem., 1996, 39, 3820-3836.
    [76]Colltta, V.; Cecchi, L.; Catarzi, D.; Filacchioni, G.; Martini, C.; Tacchi, P.; Lucacchini, A. Eur. J. Med. Chem., 1995, 30, 133.
    [77]Davey, D. D.; Erhardt, P. W.; Cantor, E. H.; Greenberg, S. S.; Ingebretsen, W. R.; Wiggins, J. Novel compounds possessing potent cAMP and cGMP phosphodiesterase inhibitory activity. Synthesis and cardiovascular effects of a series of imidazo[1,2-a]quinoxalinones and imidazo[1,5-a] quinoxalinones and their aza analogs, J. Med. Chem., 1991, 34, 2671-2677.
    [78] Prunier, H.; Rault, S.; Lancelot, J-C.; Robba, M.; Renard, P.; Delagrange, P.; Pfeiffer, B.; Caignard, D-H.; Misslin, R.; Guardiola-Lemaitre, B.; Hamon, M. Novel and Selective Partial Agonists of 5-HT3 Receptors. 2. Synthesis and Biological Evaluation of Piperazinopyridopyrrolopyrazines, Piperazinopyrrolo-quinoxalines, and Piperazinopyrido-pyrroloquinoxalines. J. Med. Chem., 1997, 40, 1808-1819.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700