雷帕霉素与紫杉醇对血管成形术后再狭窄作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     评价雷帕霉素、紫杉醇等抗增殖药物对血管成形术(percutaneous transluminalangioplasty,PTA)后新生内膜增生及血管重塑的影响;评价雷帕霉素、紫杉醇对PTA后血管内皮化及血管壁凝血相关因子的影响;比较不同给药方式下紫杉醇对PTA后新生内膜增生及血管壁凝血相关因子的影响。
     材料与方法:
     1.建立大鼠颈总动脉损伤模型。
     2.采取外膜给药(以pluonic F-127为药物释放载体),测定大鼠颈总动脉损伤后15天、30天新生内膜、中膜厚度与面积,分别计算内膜与中膜面积比、狭窄率、内弹力膜及外弹力膜围绕面积等指标,与对照组进行比较,观察并定量分析在抗增殖药物影响下血管壁大体形态学变化。
     3.采取外膜给药,以CD31标记血管内皮细胞检测抗增殖药物对血管内皮化的影响;通过免疫组化及原位杂交评估抗增殖药物对血管壁组织因子(tissue factor,TF)、组织型纤溶酶原激活剂(tissue type plasminogen activator,t-PA)及纤溶酶原激活物抑制剂1(inhibitors of plasminogen activator-1,PAI-1)表达的影响。
     4.采取腔内给药,观察不同浓度紫杉醇局部瞬时给药对损伤后新生内膜增生、血管内皮化的影响及其血栓形成倾向,与外膜给药进行比较。
     结果:
     1.外膜给药,损伤后15天、30天,雷帕霉素(300μg/100μl组及600μg/100μl组)及紫杉醇(20μg/100μl及40μg/100μl)实验组新生内膜厚度及面积、内膜与中膜面积比及狭窄率均低于对照组(P<0.01);对血管重塑的影响,损伤后30天两种抗增殖药物组均出现内、外弹力膜围绕面积的缩小(P<0.05);两种抗增殖药物高低两种浓度对血管壁的影响无统计学差别。
     2.外膜给药,损伤后15天、30天,雷帕霉素及紫杉醇实验组不同程度阻碍损伤后血管内皮化,内膜游离缘不光整并且出现异常增大变形的内皮细胞;与对照组相比,雷帕霉素及紫杉醇实验组新生内膜中TF mRNA及TF的表达高于对照组(P<0.05),TF在新生内膜具有向心性分布的特点,即主要集中于新生内膜游离缘,损伤后30天尤为明显;与对照组相比,雷帕霉素及紫杉醇实验组新生内膜PAI-1 mRNA及PAI-1的表达高于对照组(P<0.05);雷帕霉素与紫杉醇实验组新生内膜t-PA蛋白的表达低于对照组(P<0.05)。
     3.腔内瞬时给药:血管损伤后15天及30天,紫杉醇高浓度(180μg/30μl)2分钟、10分钟组及低浓度(90μg/30μl)10分钟组新生内膜厚度、面积、内膜与中膜面积比及狭窄率等均低于对照组(P<0.05);内、外弹力膜围绕面积测定显示,实验组与对照组之间无统计学差异;与对照组相比较,实验组TF mRNA及TF蛋白在新生内膜中的表达与对照组没有统计学差别(P>0.05);实验组对新生内膜中PAI-1mRNA的影响与对照组相比没有统计学差别(P>0.05);对于PAI-1蛋白在新生内膜中的表达,高浓度10分钟组高于对照组(P<0.05),而其他3组(高浓度2分钟、低浓度2分钟及10分钟组)与对照组相比没有统计学差别(P>0.05);对新生内膜中t-PA蛋白表达的影响,实验组除了高浓度2分钟组低于对照组(P<0.05)以外,其余各组虽然在数值上低于对照组,但无统计学意义。
     结论:
     1.雷帕霉素与紫杉醇外膜给药缓慢持续释放有效的抑制PTA后新生内膜增生。
     2.雷帕霉素与紫杉醇外膜给药缓慢持续释放具有一定的负性重塑效应(本实验中损伤后30天),此效应对于以支架作为释放载体来说意义不大,但对于非支架释放载体以及未来新治疗方式的研发具有一定参考意义。
     3.雷帕霉素与紫杉醇外膜给药缓慢持续释放在抑制PTA后新生内膜增殖的同时阻碍内皮化,再生或残存内皮细胞发生形态改变。
     4.雷帕霉素与紫杉醇外膜给药缓慢持续释放诱导损伤后血管内膜TF在mRNA及蛋白水平的表达,并且TF蛋白有沿内膜腔面游离缘分布的特点。
     5.雷帕霉素与紫杉醇外膜给药缓慢持续释放诱导血管内膜PAI-1在mRNA及蛋白水平的表达,而相应t-PA在蛋白水平的表达有下降趋势。
     6.紫杉醇局部瞬时用药(180μg/30μl 2分钟及10分钟组;90μg/30μl 10分钟组)可以有效的抑制新生内膜增生,而且这种效应具有持续性。
     7.紫杉醇局部瞬时用药(180μg/30μl 2分钟组及90μg/30μl 10分钟组)在有效抑制内膜增生的同时不增加TF及PAI-1的表达。
Objective
     ①to evaluate the effect of sirolimus and paclitaxel on neointimal hyperplasia andvessel wall remodeling after PTA.②to investigate the effect of sirolimus andpaclitaxel on endothelialization and related coagulation factors in the vessel after PTA.③to compare the effect of different ways of administration of paclitaxel onrendothelialization and related coagulation factors in the vessel after PTA.
     Materials and methods
     1.Establishment of experimental common carotid artery injury model in the rat.
     2.Adventitial administration (Pluronic gel containing sirolimus or paclitaxel wasapplied to the exposed adventitial surface of the injured carotid artery)was applied.The neointimal thickness and area,medial thickness and area,the ratio of intimal areato medial area,stenotic ratio,internal elastic lamina area,and external elastic laminaarea were measured or calculated 15 and 30 days after injury respectively,which werecompared to those of controls,in order to evaluate the morphological changes of thevessel wall under the influence of the anti-proliferative agents.
     3.Adventitial administration was applied.CD31 antibody was used to label theendothelial cells in order to assess the effect of anti-proliferative agents onrendothelialization.The influence of anti-proliferative agents on the expression of TF,PAI-1 and t-PA of the vessel wall was observed by immunohistochemistry (IHC)andin situ hybridization (ISH).
     4.Local intra-arterial administration (an admixture of paclitaxel to contrast medium)was applied,and the effects of short-term delivery of paclitaxel on neointimalhyperplasia,vessel wall remodeling and related coagulation factors in the vessel wereevaluated.
     Relults
     1.Adventitial administration:15 and 30 days after injury,the neointimal thicknessand area,the ratio of intimal area to medial area and stenotic ratio were significantlydecreased in sirolimus (300μg/100μl,600μg/100μl)and paclitaxel (20μg/100μl,40μg/100μl)groups compared to control group (P<0.01);Compared to controlgroup,the decrease of internal and external elastic lamina area could be seen (P<0.05)30 days after injury;No significant difference of the effects of sirolimus andpaclitaxel on the vessel of could be seen between two concentrations respectively.
     2.Adventitial administration:15 and 30 days after injury,rendothelization of thevessel wall in sirolimus and paclitaxel experimental groups was delayed anduncompleted,and the inside surface of intima was uneven with enlarged and deformed endothelial cells diffusely distributed;Compared to control group,theexpression of TF mRNA and TF in neointima of sirolimus and paclitaxel groups wasincreased significantly (P<0.05),and the expression of TF mainly located at theinside surface of intima,especially 30 days after injury;The expression of PAI-1mRNA and PAI-1 was increased significantly (P<0.05),but the expression of t-PAwas decreased significantly (P<0.05)in neointima of sirolimus and paclitaxel groupscompared to controls.
     3.Local intra-arterial administration:15 and 30 days after injury,the neointimalthickness and area,the ratio of intimal area to medial area and stenotic ratio weresignificantly decreased in paclitaxel high concentration (180μg/30μl)2 min,10mingroup and low concentration (180μg/30μl)10 min group(P<0.05);No significantdifference of the internal and external elastic lamina area could be seen betweenpaclitaxel experimental groups and controls;Compared to controls,no obviouslysignificant changes for the expression of TF mRNA and TF exists in the neointima ofpaclitaxel experimental groups;there was no significant difference for the expressionof PAI-lmRNA in the intima between experimental groups and controls;Theexpression of PAI-1 in the intima of high concentration 10 min group was higher thancontrol group (P<0.05),but no statistical difference was found between other 3groups(high concentration 2min,low concentration 2min and 10min groups)andcontrols;The expression t-PA in neointima of high concentration 2 min groupdecreased significantly than control group (P<0.05),and for other 3 groups,Theexpression t-PA in neointima seemed to be lower than control group,but no statisticalsignificance could be seen.
     Conclusion
     1.A sustained release of sirolimus and paclitaxel with adventitial administrationcould inhibit the neointimal hyperplasia effectively after PTA.
     2.There was a negative remodeling effect after PTA (30 days after injury in theexperiment)for sustained release of sirolimus and paclitaxel with adventitialadministration.Although the negative remodeling effect seemed to have no effects forstent-based local drug delivery,but for non-stent-based local drug delivery or for thenew therapy of restenosis prevention,it had practical significance.
     3.A sustained release of sirolimus and paclitaxel with adventitial administrationdelayed rendothelization and caused the remained or regenerative cell deformed orenlarged after PTA.
     4.A sustained release of sirolimus and paclitaxel with adventitial administrationinduced high expression of TF mRNA and TF in intima.
     5.A sustained release of sirolimus and paclitaxel with adventitial administrationcaused high expression of PAI-1mRNA and PAI-1 in intima,however the expressionof t-PA in intima had a decreasing tendency.
     6.A short-term release of paclitaxel with local intra-arterial administration(180μg/30μl 2 min and 10 min,90μg/30μl 10 min group in the experiment)couldeffectively suppress the neointimal hyperplasia in the long term (30 days in theexperiment).
     7.A short-term release of paclitaxel with local intra-arterial administration(180μg/30μl 2 min and 90μg/30μl 10min group in the experiment)could effectivelysurpress the neointimal hyperplasia,meanwhile,have no influence on the expressionof TF and PAI-1 in intima.
引文
[1]. Serruys PW, de Jaegere P, Kiemeneij F, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N Engl J Med. 1994,331(8):489-495.
    [2]. Fischman DL, Leon MB, Bairn DS, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators.N Engl J Med, 1994,331(8):496-501.
    [3]. Sigwart U, Puel J, Mirkovitch V, et al. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med, 1987,316(12):701-706.
    [4]. Slavin L, Chhabra A, Tobis JM. Drug-eluting stents: preventing restenosis.Cardiol Rev, 2007, 15(1): 1-12
    
    [5]. Saia F, Marzocchi A, Serruys PW. Drug-eluting stents. The third revolution in percutaneous coronary intervention, Ital Heart J, 2005, 6(4):289-303
    [6]. Rabbat MG, Bavry AA, Bhatt DL, et al. Understanding and minimizing late thrombosis of drug-eluting stents. Cleve Clin J Med, 2007, 74(2):129-136.
    [7]. Moses JW, Leon MB, Popma JJ, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med, 2003,349(14):1315-1323
    [8]. Morice MC, Serruys PW, Sousa JE, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med, 2002, 346(23): 1773-1780.
    [9]. Chen JP. Safety and efficacy of the drug-eluting stent: a double-edged sword?South Med J, 2008, 101(2): 174-178
    [10]. Shuchman M. Trading restenosis for thrombosis? New questions about drug-eluting stents. N Engl J Med. 2006, 355(19):1949-1952
    [11]. Maisel WH. Unanswered questions—drug-eluting stents and the risk of late thrombosis. N Engl J Med, 2007, 356(10):981-984
    [12]. Rogers C, Edelman ER. Pushing drug-eluting stents into uncharted territory:simpler than you think—more complex than you imagine. Circulation, 2006,113(19):2262-2265
    [13]. Virmani R, Guagliumi G, Farb A, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation, 2004,109(6):701-705
    [14]. Pfisterer M, Brunner-La Rocca HP, et al. Late clinical events after clopidogrel discontinuation may limit the benefit of drug-eluting stents: an observational study of drug-eluting versus bare-metal stents. J Am Coll Cardiol.2006,48(12):2584-2591
    [15]. Stettler C, Wandel S, Allemann S, et al. Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis. Lancet.2007, 370(9591):937-948
    [16]. Daemen J, Wenaweser P, Tsuchida K, et al. Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. Lancet. 2007,369(9562):667-678
    [17]. Webster MW, Ormiston JA. Drug-eluting stents and late stent thrombosis Lancet. 2007, 370(9591):914-915
    [18]. Stone GW, Ellis SG, Colombo A, et al. Offsetting impact of thrombosis and restenosis on the occurrence of death and myocardial infarction after paclitaxel-eluting and bare metal stent implantation. Circulation. 2007,115(22):2842-2847
    [19]. Iakovou I, Schmidt T, Bonizzoni E, et al. Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA. 2005,293(17):2126-2130
    [20]. Joner M, Finn AV, Farb A, et al. Pathology of drug-eluting stents in humans:delayed healing and late thrombotic risk. J Am Coll Cardiol. 2006, 48(1): 193-202
    [21]. Steffel J, L(?)scher TF, Tanner FC. Tissue factor in cardiovascular diseases:molecular mechanisms and clinical implications. Circulation. 2006,113(5):722-731
    [22].Steffel J,Latini RA,Akhmedov A,et al.Rapamycin,but not FK-506, increases endothelial tissue factor expression:implications for drug-eluting stent design.Circulation,2005,112(13):2002-2011
    [23].Nebeker JR,Virmani R,Bennett CL,et al.Hypersensitivity cases associated with drug-eluting coronary stents:a review of available cases from the Research on Adverse Drug Events and Reports (RADAR) project.J Am Coll Cardiol.2006, 47(1):175-181
    [24].Speck U,Scheller B,Abramjuk C,et al.Neointima inhibition:comparison of effectiveness of non-stent-based local drug delivery and a drug-eluting stent in porcine coronary arteries.Radiology,2006,240(2):411-418
    [25].Albrecht T,Speck U,Baier C,et al.Reduction of stenosis due to intimal hyperplasia after stent supported angioplasty of peripheral arteries by local administration ofpaclitaxel in swine.Invest Radiol,2007,42(8):579-585
    [26].Scheller B,Hehrlein C,Bocksch W,et al.Two year follow-up after treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter.Clin Res Cardiol,2008,97(10):773-781
    [27].Scheller B,Hehrlein C,Bocksch W,et al.Treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter.N Engl J Med,2006, 355(20):2113-2124
    [28].Clowes AW,Clowes MM,Fingerle J,et al.Kinetics of cellular proliferation after arterial injury.V.Role of acute distension in the induction of smooth muscle proliferation.Lab Invest,1989,60(3):360-364
    [29]. 王永利,贺能树,张家兴,等,血管成形术后外膜细胞表型转化和迁移的实验研究.介入放射学杂志,2006,15(7):424-429
    [30].Kim DW,Park YS,Kim YG,et al.Local delivery of green tea catechins inhibits neointimal formation in the rat carotid artery injury model.Heart Vessels, 2004,19(5):242-247
    [1]. Lim Y, Kim TJ, Jin YR, et al. Epothilone B inhibits neointimal formation after rat carotid injury through the regulation of cell cycle-related proteins. J Pharmacol Exp Ther. 2007, 321(2):648-655
    [2]. Ishizaka N, Taguchi J, Kimura Y, et al. Effects of a single local administration of cilostazol on neointimal formation in balloon-injured rat carotid artery.Atherosclerosis. 1999,142(1):41-46
    [3]. Kereiakes DJ, Choo JK, Young JJ, et al. Thrombosis and drug-eluting stents: a critical appraisal. Rev Cardiovasc Med, 2004, 5(1):9-15
    [4]. Finn AV, Kolodgie FD, Harnek J, et al. Differential response of delayed healing and persistent inflammation at sites of overlapping sirolimus- or paclitaxel-eluting stents. Circulation. 2005,112(2):270-278
    [5]. Suzuki T, Kopia G, Hayashi S, et al. Stent-based delivery of sirolimus reduces neointimal formation in a porcine coronary model. Circulation.2001,104(10):1188-1193
    [6]. Slavin L, Chhabra A, Tobis JM,et al. Drug-eluting stents: preventing restenosis. Cardiol Rev. 2007, 15(1):1-12
    [7]. Lowe HC, Oesterle SN, Khachigian LM, et al. Coronary in-stent restenosis:current status and future strategies. J Am Coll Cardiol. 2002, 39(2):183-193.
    [8]. Mintz GS, Popma JJ, Pichard AD, et al. Arterial remodeling after coronary angioplasty: a serial intravascular ultrasound study. Circulation. 1996,94(1):35-43
    [9]. Rensing BJ, Hermans WR, Beatt KJ, et al. Quantitative angiographic assessment of elastic recoil after percutaneous transluminal coronary angioplasty. Am J Cardiol. 1990, 66(15):1039-1044.
    [10]. Scott NA, Cipolla GD, Ross CE, et al. Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries. Circulation. 1996, 93(12):2178-2187
    [11]. Schwartz RS, Henry TD. Pathophysiology of coronary artery restenosis. Rev Cardiovasc Med. 2002;3 Suppl 5:S4-9
    [12]. Grant MB, Wargovich TJ, Ellis EA, et al. Localization of insulin-like growth factor I and inhibition of coronary smooth muscle cell growth by somatostatin analogues in human coronary smooth muscle cells. A potential treatment for restenosis? Circulation. 1994, 89(4):1511-1517
    [13]. Reidy MA, Fingerle J, Lindner V, et al. Factors controlling the development of arterial lesions after injury. Circulation. 1992 Dec;86(6 Suppl):III43-46
    [14]. Oberhoff M, Novak S, Herdeg C, et al. Local and systemic delivery of low molecular weight heparin stimulates the reendothelialization after balloon angioplasty. Cardiovasc Res. 1998, 38(3):751-762.
    [15]. Indolfi C, Mongiardo A, Curcio A, et al. Molecular mechanisms of in-stent restenosis and approach to therapy with eluting stents. Trends Cardiovasc Med.2003,13(4):142-148
    [16]. Indolfi C, Awedimento EV, Rapacciuolo A, et al. Inhibition of cellular ras prevents smooth muscle cell proliferation after vascular injury in vivo. Nat Med.1995, 1(6):541-545
    [17]. Indolfi C, Awedimento EV, Rapacciuolo A, et al. In vivo gene transfer:prevention of neointima formation by inhibition of mitogen-activated protein kinase kinase. Basic Res Cardiol. 1997, 92(6):378-384.
    [18]. Schwartz RS, Henry TD. Pathophysiology of coronary artery restenosis. Rev Cardiovasc Med. 2002;3 Suppl 5:S4-9
    [19]. Grewe PH, Deneke T, Machraoui A, et al. Acute and chronic tissue response to coronary stent implantation: pathologic findings in human specimen. J Am Coll Cardiol. 2000, 35(1):157-163
    [20]. Mintz GS, Popma JJ, Pichard AD, et al. Arterial remodeling after coronary angioplasty: a serial intravascular ultrasound study. Circulation. 1996,94(1):35-43
    [21]. Wilcox JN, Waksman R, King SB, et al. The role of the adventitia in the arterial response to angioplasty: the effect of intravascular radiation. Int J Radiat Oncol Biol Phys. 1996, 36(4):789-796.
    [22]. Scott NA, Cipolla GD, Ross CE, et al. Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries. Circulation. 1996, 93(12):2178-2187
    [23]. Saunders RN, Metcalfe MS, Nicholson ML. Rapamycin in transplantation: a review of the evidence. Kidney Int. 2001, 59(1):3-16
    [24]. Poon M, Marx SO, Gallo R, et al. Rapamycin inhibits vascular smooth muscle cell migration. J Clin Invest. 1996, 98(10):2277-2283
    [25]. Rowinsky EK, Donehower RC. Paclitaxel (taxol). N Engl J Med. 1995,332(15):1004-1014
    [26]. Fajadet J, Morice MC, Bode C, et al. Maintenance of long-term clinical benefit with sirolimus-eluting coronary stents: three-year results of the RAVEL trial. Circulation. 2005,111(8):1040-1044
    [27]. Moses JW, Leon MB, Popma JJ, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med.2003,349(14):1315-1323
    [28]. Schofer J, Schl(?)ter M, Gershlick AH, et al. Sirolimus-eluting stents for treatment of patients with long atherosclerotic lesions in small coronary arteries:double-blind, randomised controlled trial (E-SIRIUS). Lancet. 2003,362(9390): 1093-1099
    [29]. Schliiter M, Schofer J, Gershlick AH, et al. Direct stenting of native de novo coronary artery lesions with the sirolimus-eluting stent: a post hoc subanalysis of the pooled E- and C-SIRIUS trials. J Am Coll Cardiol. 2005,45(1):10-13
    [30]. Grube E, Silber S, Hauptmann KE, et al. TAXUS I: six- and twelve-month results from a randomized, double-blind trial on a slow-release paclitaxel-eluting stent for de novo coronary lesions. Circulation. 2003,107(1):38-42
    [31]. Colombo A, Drzewiecki J, Banning A, et al. Randomized study to assess the effectiveness of slow- and moderate-release polymer-based paclitaxel-eluting stents for coronary artery lesions. Circulation. 2003, 108(7):788-794
    [32]. Stone GW, Ellis SG, Cox DA, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med. 2004, 350(3):221-231
    [33]. Wong SC, Hong MK, Ellis SG, et al. Influence of stent length to lesion length ratio on angiographic and clinical outcomes after implantation of bare metal and drug-eluting stents (the TAXUS-IV Study). Am J Cardiol. 2005, 95(9):1043-1048
    [34]. Stone GW, Ellis SG, Cannon L, et al. Comparison of a polymer-based paclitaxel-eluting stent with a bare metal stent in patients with complex coronary artery disease: a randomized controlled trial. JAMA. 2005 Sep 14;294(10):1215-23
    [35]. Park SJ, Shim WH, Ho DS, et al. A paclitaxel-eluting stent for the prevention of coronary restenosis. N Engl J Med. 2003, 348(16):1537-1545
    [36]. Gershlick A, De Scheerder I, Chevalier B, et al. Inhibition of restenosis with a paclitaxel-eluting, polymer-free coronary stent: the European evaLUation of pacliTaxel Eluting Stent (ELUTES) trial. Circulation. 2004,109(4):487-493
    [37]. Lansky AJ, Costa RA, Mintz GS, et al. Non-polymer-based paclitaxel-coated coronary stents for the treatment of patients with de novo coronary lesions:angiographic follow-up of the DELIVER clinical trial. Circulation. 2004,109(16):1948-1954
    [1]. Joner M, Finn AV, Farb A, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol. 2006, 48(1): 193-202
    [2]. Matter CM, Rozenberg I, Jaschko A, et al. Effects of tacrolimus or sirolimus on proliferation of vascular smooth muscle and endothelial cells. J Cardiovasc Pharmacol. 2006, 48(6):286-292
    [3]. Parry TJ, Brosius R, Thyagarajan R, et al. Drug-eluting stents: sirolimus and paclitaxel differentially affect cultured cells and injured arteries. Eur J Pharmacol.2005,524(1-3):19-29
    [4]. Pires NM, Eefting D, de Vries MR. Sirolimus and paclitaxel provoke different vascular pathological responses after local delivery in a murine model for restenosis on underlying atherosclerotic arteries. Heart. 2007, 93(8):922-927
    [5]. Steffel J, Latini RA, Akhmedov A, et al. Rapamycin, but not FK-506, increases endothelial tissue factor expression: implications for drug-eluting stent design.Circulation. 2005,112(13):2002-2011
    [6]. Stahli BE, Camici GG, Steffel J, et al. Paclitaxel enhances thrombin-induced endothelial tissue factor expression via c-Jun terminal NH2 kinase activation.Circ Res. 2006, 99(2): 149-155
    
    [7]. Libby P. Inflammation in atherosclerosis. Nature. 2002,420(6917): 868-874
    [8]. Madge LA, Pober JS. TNF signaling in vascular endothelial cells. Exp Mol Pathol. 2001, 70(3):317-325.
    [9]. Bennett MR, O'Sullivan M. Mechanisms of angioplasty and stent restenosis:implications for design of rational therapy. Pharmacol Ther. 2001, 91(2): 149-166
    [10]. Bennett MR. Vascular pathology as a result of drug-eluting stents. Heart.2007, 93(8):895-896
    [11]. Finn AV, Joner M, Nakazawa G, et al. Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization.Circulation. 2007, 115(18):2435-2441
    [12]. Matter CM, Rozenberg I, Jaschko A, et al. Effects of tacrolimus or sirolimus on proliferation of vascular smooth muscle and endothelial cells. J Cardiovasc Pharmacol. 2006,48(6):286-292
    [13]. Parry TJ, Brosius R, Thyagarajan R, et al. Drug-eluting stents: sirolimus and paclitaxel differentially affect cultured cells and injured arteries. Eur J Pharmacol.2005, 524(1-3): 19-29
    [14]. Urao N, Okigaki M, Yamada H, et al. Erythropoietin-mobilized endothelial progenitors enhance reendothelialization via Akt-endothelial nitric oxide synthase activation and prevent neointimal hyperplasia. Circ Res. 2006, 98(11):1405-1413
    [15]. Griese DP, Ehsan A, Melo LG, et al. Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts:implications for cell-based vascular therapy. Circulation, 2003,108(21):2710-2715
    [16]. Butzal M, Loges S, Schweizer M, et al. Rapamycin inhibits proliferation and differentiation of human endothelial progenitor cells in vitro. Exp Cell Res, 2004,300(1):65-71
    [17]. Chen TG, Chen JZ, Wang XX, et al. Effects of rapamycin on number activity and eNOS of endothelial progenitor cells from peripheral blood. Cell Prolif, 2006,39(2):117-125
    [18]. Luscher TF, Steffel J, Eberli FR, et al. Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications. Circulation, 2007,115(8):1051-1058
    [19]. Semeraro N, Colucci M.Tissue factor in health and disease, Thromb.Haemost, 1997(78): 759-764.
    [20]. Shen BQ, Lee DY, Cortopassi KM, et al. Vascular endothelial growth factor KDR receptor signaling potentiates tumor necrosis factor-induced tissue factor expression in endothelial cells. J Biol Chem, 2001,276(7):5281-5286
    [21]. Steffel J, Luscher TF, Tanner FC, et al. Tissue factor in cardiovascular diseases: molecular mechanisms and clinical implications. Circulation, 2006,113(5):722-731
    [22]. Steffel J, Latini RA, Akhmedov A, et al. Rapamycin, but not FK-506,increases endothelial tissue factor expression: implications for drug-eluting stent design. Circulation, 2005, 112(13):2002-2011
    [23]. Guha M, Mackman N. The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J Biol Chem, 2002,277(35):32124-32132
    [24]. Guba M, Yezhelyev M, Eichhorn ME, et al. Rapamycin induces tumor-specific thrombosis via tissue factor in the presence of VEGF. Blood, 2005,105(11):4463-4469
    [25]. Guba M, von Breitenbuch P, Steinbauer M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med. 2002, 8(2): 128-135
    [26]. Stahli BE, Camici GG, Steffel J, et al. Paclitaxel enhances thrombin-induced endothelial tissue factor expression via c-Jun terminal NH2 kinase activation.Circ Res. 2006, 99(2): 149-155
    [27]. Lee LF, Li G, Templeton DJ, et al. Paclitaxel (Taxol)-induced gene expression and cell death are both mediated by the activation of c-Jun NH2-terminal kinase (JNK/SAPK). J Biol Chem, 1998,273(43):28253-28260.
    [28]. Wang TH, Wang HS, Ichijo H, et al. Microtubule-interfering agents activatec-Jun N-terminal kinase/stress-activated protein kinase through both Ras and apoptosis signal-regulating kinase pathways. J Biol Chem,1998,273(9):4928-4936.
    [29]. Yujiri T, Fanger GR, Garrington TP, et al. MEK kinase 1 (MEKK1) transduces c-Jun NH2-terminal kinase activation in response to changes in the microtubule cytoskeleton. J Biol Chem. 1999,274(18):12605-12610.
    [30]. Wang TH, Wang HS, Ichijo H, et al. Microrubule-interfering agents activatec-Jun N-terminal kinase/stress-activated protein kinase through both Ras and apoptosis signal-regulating kinase pathways. J Biol Chem. 1998,273(9):4928-4936
    [31]. Stahli BE, Camici GG, Steffel J, et al. Paclitaxel enhances thrombin-induced endothelial tissue factor expression via c-Jun terminal NH2 kinase activation.Circ Res, 2006, 99(2):149-155
    [32]. Steffel J, Hermann M, Greutert H, et al. Celecoxib decreases endothelial tissue factor expression through inhibition of c-Jun terminal NH2 kinase phosphorylation. Circulation, 2005,111(13):1685-1689
    [33]. Lang NN, Newby DE. Emerging thrombotic effects of drug eluting stents. Arterioscler Thromb Vasc Biol, 2007, 27(2):261-262
    [34]. Rosenberg RD, Aird WC. Vascular-bed--specific hemostasis and hypercoagulable states. N Engl J Med, 1999, 340(20): 1555-1564
    [35]. Eren M, Painter CA, Atkinson JB, et al. Age-dependent spontaneous coronary arterial thrombosis in transgenic mice that express a stable form of human plasminogen activator inhibitor-1. Circulation, 2002,106(4):491-496
    [36]. Marcucci R, Brogi D, Sofi F, et al. PAI-1 and homocysteine, but not lipoprotein (a) and thrombophilic polymorphisms, are independently associated with the occurrence of major adverse cardiac events after successful coronary stenting. Heart, 2006, 92(3):377-381
    [37]. Muldowney JA 3rd, Stringham JR, Levy SE, et al. Antiproliferative agents alter vascular plasminogen activator inhibitor-1 expression: a potential prothrombotic mechanism of drug-eluting stents. Arterioscler Thromb Vasc Biol,2007,27(2):400-406
    [38]. Bruemmer D, Yin F, Liu J, Kiyono T, et al, Rapamycin inhibits E2F-dependent expression of minichromosome maintenance proteins in vascular smooth muscle cells. Biochem Biophys Res Commun, 2003, 303(1):251—258.
    [39]. Koziczak M, Muller H, Helin K, et al. E2Fl-mediated transcriptional inhibition of the plasminogen activator inhibitor type 1 gene. Eur J Biochem,2001,268(18):4969-4978.
    [40]. Subbaramaiah K, Marmo TP, Dixon DA, et al. Regulation of cyclooxgenase-2 mRNA stability by taxanes: evidence for involvement of p38,MAPKAPK-2, and HuR. J Biol Chem, 2003,278(39):37637-37647.
    [41]. Das KC, White CW. Activation of NF-kappaB by antineoplastic agents. Role of protein kinase C. J Biol Chem, 1997, 272(23):14914-14920.
    [42]. Liistro F, Colombo A. Late acute thrombosis after paclitaxel eluting stent implantation. Heart, 2001, 86(3):262-264.
    [43]. Pontrelli P, Rossini M, Infante B, et al. Rapamycin inhibits PAI-1 expression and reduces interstitial fibrosis and glomerulosclerosis in chronic allograft nephropathy. Transplantation, 2008, 85(1):125-134
    [44]. Shihab FS, Bennett WM, Yi H, et al. Sirolimus increases transforming growth factor-betal expression and potentiates chronic cyclosporine nephrotoxicity. Kidney Int, 2004,65(4): 1262-1271
    [45]. Carmeliet P, Moons L, Lijnen R. Inhibitory role of plasminogen activator inhibitor-1 in arterial wound healing and neointima formation: a gene targeting and gene transfer study in mice. Circulation, 1997, 96(9):3180-3191
    [1]. Moses JW, Leon MB, Popma JJ, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med, 2003,349(14): 1315-1323
    [2]. Morice MC, Serruys PW, Sousa JE, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med, 2002, 346(23): 1773-1780.
    [3]. Shuchman M. Trading restenosis for thrombosis? New questions about drug-eluting stents. N Engl J Med. 2006, 355(19):1949-1952
    [4]. Maisel WH. Unanswered questions—drug-eluting stents and the risk of late thrombosis. N Engl J Med. 2007, 356(10):981-984
    [5]. Rogers C, Edelman ER. Pushing drug-eluting stents into uncharted territory:simpler than you think-more complex than you imagine. Circulation. 2006,113(19):2262-2265
    [6]. Duda SH, Bosiers M, Lammer J, et al. Sirolimus-eluting versus bare nitinol stent for obstructive superficial femoral artery disease: the SIROCCO II trial. J Vasc Interv Radiol. 2005,16(3):331-338.
    [7]. Speck U, Scheller B, Abramjuk C, et al. Neointima inhibition: comparison of effectiveness of non-stent-based local drug delivery and a drug-eluting stent in porcine coronary arteries. Radiology. 2006, 240(2):411-418
    [8]. Albrecht T, Speck U, Baier C, et al. Reduction of stenosis due to intimal hyperplasia after stent supported angioplasty of peripheral arteries by local administration of paclitaxel in swine. Invest Radiol. 2007,42(8):579-585
    [9]. Scheller B, Hehrlein C, Bocksch W, et al. Two year follow-up after treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter. Clin Res Cardiol, 2008, 97(10):773-781.
    [10]. Colombo A, Drzewiecki J, Banning A, et al. Randomized study to assess the effectiveness of slow- and moderaterelease polymer-based paclitaxel-eluting stents for coronary artery lesions. Circulation, 2003, 108(7):788 -794.
    [11]. Halkin A, Stone GW. Polymer-based paclitaxel-eluting stents in percutaneous coronary intervention: a review of the TAXUS trials. J Interv Cardiol. 2004,17(5):271-282.
    [12]. Ranade SV, Miller KM, Richard RE, et al. Physical characterization of controlled release of paclitaxel from the TAXUS Express2 drug-eluting stent. J Biomed Mater Res A. 2004, 71(4): 625-634.
    [13]. Creel CJ, Lovich MA, Edelman ER, et al. Arterial paclitaxel distribution and deposition. Circ Res. 2000, 86(8):879-884.
    [14]. Hwang CW, Wu D, Edelman ER. Physiological transport forces govern drug distribution for stent-based delivery. Circulation, 2001,104(5):600-5.
    [15]. Scheller B, Speck U, Abramjuk C, et al. Paclitaxel balloon coating, a novel method for prevention and therapy of restenosis. Circulation, 2004,110(7):810-814.
    [16]. Scheller B, Speck U, Schmitt A, et al. Addition of paclitaxel to contrast media prevents restenosis after coronary stent implantation. J Am Coll Cardiol.2003,42(8): 1415-1420.
    [17]. Stahli BE, Camici GG, Steffel J. Paclitaxel enhances thrombin-induced endothelial tissue factor expression via c-Jun terminal NH2 kinase activation.Circ Res. 2006, 99(2): 149-155
    [18]. Suzuki J, Ogawa M, Muto S, et al. The effects of pharmacological PAI-1 inhibition on thrombus formation and neointima formation after arterial injury. Expert Opin Ther Targets. 2008, 12(7):783-794
    [19]. Lang NN, Newby DE. Emerging thrombotic effects of drug eluting stents.Arterioscler Thromb Vasc Biol. 2007,27(2):261-262
    [20]. Muldowney JA 3rd, Stringham JR, Levy SE, et al. Antiproliferative agents alter vascular plasminogen activator inhibitor-1 expression: a potential prothrombotic mechanism of drug-eluting stents. Arterioscler Thromb Vasc Biol.2007, 27(2):400-406
    
    [21]. Katsaros KM, Speidl WS, Kastl SP, et al. Plasminogen activator inhibitor-1 predicts coronary in-stent restenosis of drug-eluting stents. J Thromb Haemost.2008, 6(3):508-513
    [1]. Serruys PW, de Jaegere P, Kiemeneij F, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N Engl J Med, 1994,331(8):489-495.
    [2]. Fischman DL, Leon MB, Bairn DS, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators.N Engl J Med, 1994,331(8):496-501.
    [3]. Sigwart U, Puel J, Mirkovitch V, et al. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med, 1987,316(12):701-706.
    [4]. Slavin L, Chhabra A, Tobis JM. Drug-eluting stents: preventing restenosis.Cardiol Rev, 2007,15(1):1-12
    [5]. Saia F, Marzocchi A, Serruys PW.Drug-eluting stents. The third revolution in percutaneous coronary intervention, Ital Heart J, 2005, 6(4):289-303
    [6]. Rabbat MG, Bavry AA, Bhatt DL, et al. Understanding and minimizing late thrombosis of drug-eluting stents. Cleve Clin J Med, 2007, 74(2):129-136.
    [7]. Moses JW, Leon MB, Popma JJ, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery.N Engl J Med, 2003,349(14):1315-1323
    [8]. Morice MC, Serruys PW, Sousa JE, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization.N Engl J Med, 2002, 346(23): 1773-1780.
    [9]. Shuchman M. Trading restenosis for thrombosis? New questions about drug-eluting stents. N Engl J Med, 2006, 355(19):1949-1952
    [10]. Maisel WH. Unanswered questions--drug-eluting stents and the risk of late thrombosis. N Engl J Med, 2007, 356(10):981-984
    [11]. Rogers C, Edelman ER. Pushing drug-eluting stents into uncharted territory: simpler than you think-more complex than you imagine.Circulation, 2006, 113(19):2262-2265
    [12]. Lowe HC, Oesterle SN, Khachigian LM. Coronary in-stent restenosis: current status and future strategies.J Am Coll Cardiol. 2002, 39(2):183-193.
    [13]. Mintz GS, Popma JJ, Pichard AD, et al. Arterial remodeling after coronary angioplasty: a serial intravascular ultrasound study. Circulation, 1996,94(1):35-43
    [14]. Rensing BJ, Hermans WR, Beatt KJ, et al. Quantitative angiographic assessment of elastic recoil after percutaneous transluminal coronary angioplasty. Am J Cardiol, 1990, 66(15):1039-1044.
    [15]. Scott NA, Cipolla GD, Ross CE, et al. Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries.Circulation. 1996, 93(12):2178-2187
    [16]. Schwartz RS, Henry TD. Pathophysiology of coronary artery restenosis.Rev Cardiovasc Med, 2002, 3 Suppl 5:S4-9
    [17]. Grant MB, Wargovich TJ, Ellis EA, et al. Localization of insulin-like growth factor I and inhibition of coronary smooth muscle cell growth by somatostatin analogues in human coronary smooth muscle cells. A potential treatment for restenosis?Circulation, 1994, 89(4):1511-1517
    [18]. Reidy MA, Fingerle J, Lindner V. Factors controlling the development of arterial lesions after injury.Circulation, 86(6 Suppl):III43-46
    [19]. Oberhoff M, Novak S, Herdeg C, Baumbach A, et al. Local and systemic delivery of low molecular weight heparin stimulates the reendothelialization after balloon angioplasty.Cardiovasc Res, 1998, 38(3):751-762.
    [20]. Indolfi C, Mongiardo A, Curcio A, et al. Molecular mechanisms of in-stent restenosis and approach to therapy with eluting stents.Trends Cardiovasc Med,2003, 13(4):142-148
    [21]. Indolfi C, Avvedimento EV, Rapacciuolo A, et al. Inhibition of cellular ras prevents smooth muscle cell proliferation after vascular injury in vivo. Nat Med,1995,1(6):541-545
    [22]. Indolfi C, Avvedimento EV, Rapacciuolo A, et al. In vivo gene transfer:prevention of neointima formation by inhibition of mitogen-activated protein kinase kinase.Basic Res Cardiol. 1997, 92(6):378-384.
    [23]. Grewe PH, Deneke T, Machraoui A, et al. Acute and chronic tissue response to coronary stent implantation: pathologic findings in human specimen.J Am Coll Cardiol, 2000,35(1):157-163
    [24]. Wilcox JN, Waksman R, King SB, et al. The role of the adventitia in the arterial response to angioplasty: the effect of intravascular radiation. Int J Radiat Oncol Biol Phys. 1996, 36(4):789-796.
    [25]. Kuntz RE, Gibson CM, Nobuyoshi M, et al. Generalized model of restenosis after conventional balloon angioplasty, stenting and directional atherectomy.J Am Coll Cardiol, 1993,21(1):15-25
    [26]. Gordon PC, Gibson CM, Cohen DJ, et al. Mechanisms of restenosis and redilation within coronary stents—quantitative angiographic assessment. J Am Coll Cardiol, 1993,21(5):1166-1174
    [27]. Daemen J, Serruys PW. Drug-eluting stent update 2007: part I. A survey of current and future generation drug-eluting stents: meaningful advances or more of the same? Circulation, 2007, 116(3):316-328
    [28]. Hoffmann R, Mintz GS, Dussaillant GR, et al. Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study. Circulation, 1996,94(6): 1247-1254
    [29]. Kornowski R, Hong MK, Tio FO, et al. In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J Am Coll Cardiol, 1998, 31(1):224-230
    [30]. Koster R, Vieluf D, Kiehn M, et al. Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis. Lancet. 2000, 356(9245): 1895-1897
    [31]. Saunders RN, Metcalfe MS, Nicholson ML. Rapamycin in transplantation: a review of the evidence. Kidney Int. 2001, 59(1):3-16
    [32]. Poon M, Marx SO, Gallo R, et al. Rapamycin inhibits vascular smooth muscle cell migration. J Clin Invest, 1996, 98(10):2277-2283
    [33]. Rowinsky EK, Donehower RC. Paclitaxel (taxol). N Engl J Med. 1995,332(15):1004-1014
    [34]. Fajadet J, Morice MC, Bode C, et al. Maintenance of long-term clinical benefit with sirolimus-eluting coronary stents: three-year results of the RAVEL trial. Circulation, 2005,111(8): 1040-1044
    [35]. Moses JW, Leon MB, Popma JJ, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med,2003,349(14):1315-1323
    [36]. Schofer J, Schl(?)ter M, Gershlick AH, et al. Sirolimus-eluting stents for treatment of patients with long atherosclerotic lesions in small coronary arteries:double-blind, randomised controlled trial (E-SIRIUS). Lancet, 2003,362(9390): 1093-1099
    [37]. Schliiter M, Schofer J, Gershlick AH, et al. Direct stenting of native de novo coronary artery lesions with the sirolimus-eluting stent: a post hoc subanalysis of the pooled E- and C-SIRIUS trials. J Am Coll Cardiol. 2005,45(1):10-13
    [38]. Grube E, Silber S, Hauptmann KE, et al. TAXUS I: six- and twelve-month results from a randomized, double-blind trial on a slow-release paclitaxel-eluting stent for de novo coronary lesions. Circulation, 2003,107(1):38-42
    [39]. Colombo A, Drzewiecki J, Banning A, et al. Randomized study to assess the effectiveness of slow- and moderate-release polymer-based paclitaxel-eluting stents for coronary artery lesions. Circulation, 2003,108(7):788-794
    [40]. Stone GW, Ellis SG, Cox DA, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med. 2004, 350(3):221-231
    [41]. Wong SC, Hong MK, Ellis SG, et al. Influence of stent length to lesion length ratio on angiographic and clinical outcomes after implantation of bare metal and drug-eluting stents (the TAXUS-IV Study). Am J Cardiol, 2005,95(9):1043-1048
    [42]. Stone GW, Ellis SG, Cannon L, et al. Comparison of a polymer-based paclitaxel-eluting stent with a bare metal stent in patients with complex coronary artery disease: a randomized controlled trial. JAMA, 2005, 294(10):1215-1223
    [43]. Park SJ, Shim WH, Ho DS, et al. A paclitaxel-eluting stent for the prevention of coronary restenosis. N Engl J Med, 2003, 348(16):1537-1545
    [44]. Gershlick A, De Scheerder I, Chevalier B, et al. Inhibition of restenosis with a paclitaxel-eluting, polymer-free coronary stent: the European evaLUation of pacliTaxel Eluting Stent (ELUTES) trial. Circulation. 2004,109(4):487-493
    [45]. Lansky AJ, Costa RA, Mintz GS, et al. Non-polymer-based paclitaxel-coated coronary stents for the treatment of patients with de novo coronary lesions:angiographic follow-up of the DELIVER clinical trial. Circulation. 2004,109(16):1948-1954
    [46]. Goy JJ, Stauffer JC, Siegenthaler M, et al. A prospective randomized comparison between paclitaxel and sirolimus stents in the real world of interventional cardiology: the TAXi trial. J Am Coll Cardiol, 2005,45(2):308-311
    [47]. Windecker S, Remondino A, Eberli FR, et al. Sirolimus-eluting and paclitaxel-eluting stents for coronary revascularization. N Engl J Med, 2005,353(7):653-662
    [48]. Joner M, Finn AV, Farb A, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol, 2006,48(1): 193-202
    [49]. Bennett MR, O'Sullivan M. Mechanisms of angioplasty and stent restenosis:implications for design of rational therapy. Pharmacol Ther, 2001, 91(2): 149-166
    [50]. Bennett MR. Vascular pathology as a result of drug-eluting stents. Heart,2007, 93(8):895-896
    [51]. Finn AV, Joner M, Nakazawa G, et al. Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization.Circulation, 2007, 115(18):2435-2441
    [52]. Matter CM, Rozenberg I, Jaschko A, et al. Effects of tacrolimus or sirolimus on proliferation of vascular smooth muscle and endothelial cells. J Cardiovasc Pharmacol, 2006,48(6):286-292
    [53]. Parry TJ, Brosius R, Thyagarajan R, et al. Drug-eluting stents: sirolimus and paclitaxel differentially affect cultured cells and injured arteries. Eur J Pharmacol,2005, 524(1-3): 19-29
    [54]. Urao N, Okigaki M, Yamada H, et al. Erythropoietin-mobilized endothelial progenitors enhance reendothelialization via Akt-endothelial nitric oxide synthase activation and prevent neointimal hyperplasia. Circ Res, 2006, 98(11):1405-1413
    [55]. Griese DP, Ehsan A, Melo LG, et al. Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: implications for cell-based vascular therapy. Circulation, 2003,108(21):2710-2715
    [56]. Butzal M, Loges S, Schweizer M, et al. Rapamycin inhibits proliferation and differentiation of human endothelial progenitor cells in vitro. Exp Cell Res, 2004,300(1):65-71
    [57]. Chen TG, Chen JZ, Wang XX. Effects of rapamycin on number activity and eNOS of endothelial progenitor cells from peripheral blood. Cell Prolif, 2006,39(2):117-125
    [58]. Luscher TF, Steffel J, Eberli FR, et al. Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications. Circulation. 2007,115(8):1051-1058
    [59]. Steffel J, Luscher TF, Tanner FC. Tissue factor in cardiovascular diseases:molecular mechanisms and clinical implications. Circulation, 2006,113(5):722-731
    [60]. Steffel J, Latini RA, Akhmedov A, et al. Rapamycin, but not FK-506,increases endothelial tissue factor expression: implications for drug-eluting stent design. Circulation, 2005, 112(13):2002-2011
    [61]. Guha M, Mackman N. The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J Biol Chem, 2002,277(35):32124-32132
    [62]. Wang TH, Wang HS, Ichijo H, et al. Microtubule-interfering agents activate c-Jun N-terminal kinase/stress-activated protein kinase through both Ras and apoptosis signal-regulating kinase pathways. J Biol Chem, 1998,273(9):4928-4936
    [63]. Stahli BE, Camici GG, Steffel J, et al. Paclitaxel enhances thrombin-induced endothelial tissue factor expression via c-Jun terminal NH2 kinase activation.Circ Res, 2006, 99(2): 149-155
    [64]. Steffel J, Hermann M, Greutert H, et al. Celecoxib decreases endothelial tissue factor expression through inhibition of c-Jun terminal NH2 kinase phosphorylation. Circulation, 2005, 111(13):1685-1689
    [65]. Kereiakes DJ, Choo JK, Young JJ, et al. Thrombosis and drug-eluting stents: a critical appraisal. Rev Cardiovasc Med, 2004, 5(1):9-15
    [66]. Finn AV, Kolodgie FD, Harnek J, et al. Differential response of delayed healing and persistent inflammation at sites of overlapping sirolimus- or paclitaxel-eluting stents. Circulation, 2005,112(2):270-278
    [67]. Suzuki T, Kopia G, Hayashi S, et al. Stent-based delivery of sirolimus reduces neointimal formation in a porcine coronary model. Circulation, 2001,104(10):1188-1193
    [68]. Lang NN, Newby DE. Emerging thrombotic effects of drug eluting stents.Arterioscler Thromb Vasc Biol, 2007, 27(2):261-262
    [69]. Rosenberg RD, Aird WC. Vascular-bed-specific hemostasis and hypercoagulable states. N Engl J Med, 1999, 340(20):1555-1564
    [70]. Eren M, Painter CA, Atkinson JB, et al. Age-dependent spontaneous coronary arterial thrombosis in transgenic mice that express a stable form of human plasminogen activator inhibitor-1. Circulation, 2002,106(4):491-496
    [71]. Marcucci R, Brogi D, Sofi F, et al. PAI-1 and homocysteine, but not lipoprotein (a) and thrombophilic polymorphisms, are independently associated with the occurrence of major adverse cardiac events after successful coronary stenting. Heart. 2006, 92(3):377-381
    [72]. Muldowney JA 3rd, Stringham JR, Levy SE, et al. Antiproliferative agents alter vascular plasminogen activator inhibitor-1 expression: a potential prothrombotic mechanism of drug-eluting stents. Arterioscler Thromb Vasc Biol,2007,27(2):400-406
    [73]. Camenzind ESP, Wijns W. A meta-analysis of first generation drug eluting stent programs. World Congress of Cardiology. Barcelona; September 2-5, 2006.
    [74]. Chen JP. Safety and efficacy of the drug-eluting stent: a double-edged sword?South Med J, 2008,101(2):174-178
    [75]. Nebeker JR, Virmani R, Bennett CL, et al. Hypersensitivity cases associated with drug-eluting coronary stents: a review of available cases from the Research on Adverse Drug Events and Reports (RADAR) project. J Am Coll Cardiol. 2006,47(1):175-181
    [76]. Virmani R, Guagliumi G, Farb A, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation. 2004,109(6):701-705
    [77]. Van Belle E, Susen S, Jude B, et al. Drug-eluting stents: trading restenosis for thrombosis? J Thromb Haemost. 2007, 5 Suppl 1:238-245
    [78]. Iakovou I, Schmidt T, Bonizzoni E, et al. Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA. 2005,293(17):2126-2130
    [79]. Park DW, Park SW, Park KH, et al. Frequency of and risk factors for stent thrombosis after drug-eluting stent implantation during long-term follow-up. Am J Cardiol, 2006, 98(3):352-356
    [80]. Kuchulakanti PK, Chu WW, Torguson R, et al. Correlates and long-term outcomes of angiographically proven stent thrombosis with sirolimus- and paclitaxel-eluting stents. Circulation, 2006,113(8): 1108-1113
    [81]. Holmes DR, Kereiakes DJ, Laskey WK, et al. Thrombosis and drug-eluting stents: an objective appraisal. J Am Coll Cardiol, 2007, 50(2): 109-118
    [82]. Daemen J, Serruys PW. Drug-eluting stent update 2007: part II: Unsettled issues. Circulation, 2007,116(8):961-968
    [83]. Daemen J, Wenaweser P, Tsuchida K, et al. Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. Lancet. 2007,369(9562):667-678
    [84]. Garg P, Mauri L. The conundrum of late and very late stent thrombosis following drug-eluting stent implantation. Curr Opin Cardiol, 2007,22(6):565-571
    [85]. Cutlip DE, Windecker S, Mehran R, et al. Clinical end points in coronary stent trials: a case for standardized definitions. Circulation. 2007,115(17):2344-2351
    [86]. Ong AT, Hoye A, Aoki J, et al. Thirty-day incidence and six-month clinical outcome of thrombotic stent occlusion after bare-metal, sirolimus, or paclitaxel stent implantation. J Am Coll Cardiol, 2005,45(6):947-953.
    [87]. Moreno R, Fernandez C, Hernandez R, et al. Drug-eluting stent thrombosis: results from a pooled analysis including 10 randomized studies. J Am Coll Cardiol. 2005,45(6):954-959
    [88]. Bavry AA, Kumbhani DJ, Helton TJ, et al. Risk of thrombosis with the use of sirolimus-eluting stents for percutaneous coronary intervention (from registry and clinical trial data). Am J Cardiol, 2005, 95(12): 1469-1472
    [89]. Pfisterer M, Brunner-La Rocca HP, et al. Late clinical events after clopidogrel discontinuation may limit the benefit of drug-eluting stents: an observational study of drug-eluting versus bare-metal stents. J Am Coll Cardiol.2006,48(12):2584-2591
    [90]. Webster MW, Ormiston JA. Drug-eluting stents and late stent thrombosis Lancet. 2007, 370(9591):914-915
    [91]. Ong AT, McFadden EP, Regar E, et al. Late angiographic stent thrombosis (LAST) events with drug-eluting stents. J Am Coll Cardiol. 2005,45(12):2088-2092
    [92]. Bavry AA, Kumbhani DJ, Helton TJ, et al. Late thrombosis of drug-eluting stents: a meta-analysis of randomized clinical trials. Am J Med, 2006,119(12):1056-1061.
    [93]. Camenzind E, Steg PG, Wijns W. A meta-analysis of first generation drug eluting stent programs. Program and Abstracts from the World Congress of Cardiology 2006, September 2-5, 2006 Barcelona
    [94]. Stone GW, Moses JW, Ellis SG, et al. Safety and efficacy of sirolimus- and paclitaxel-eluting coronary stents. N Engl J Med. 2007, 356(10):998-1008
    [95]. Mauri L, Hsieh WH, Massaro JM, et al. Stent thrombosis in randomized clinical trials of drug-eluting stents. N Engl J Med, 2007, 356(10):1020-1029
    [96]. Stettler C, Wandel S, Allemann S, et al. Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis. Lancet.2007, 370(9591):937-948
    [97]. McFadden EP, Stabile E, Regar E, et al. Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet, 2004,364(9444):1519-1521
    [98]. Stabile E, Cheneau E, Kinnaird T, et al. Late thrombosis in cypher stents after the discontinuation of antiplatelet therapy Cardiovasc Radiat Med. 2004,5(4):173-176
    [99]. Wenaweser P, Dorffler-Melly J, Imboden K, et al. Stent thrombosis is associated with an impaired response to antiplatelet therapy J Am Coll Cardiol.2005,45(11):1748-1752
    [100]. Guagliumi G, Farb A, Musumeci G, et al. Images in cardiovascular medicine.Sirolimus-eluting stent implanted in human coronary artery for 16 months:pathological fmdings. Circulation. 2003,107(9):1340-1341
    [101]. Eisenstein EL, Anstrom KJ, Kong DF, et al. Clopidogrel use and long-term clinical outcomes after drug-eluting stent implantation. JAMA. 2007,297(2):159-168.
    [102]. Grines CL, Bonow RO, Casey DE Jr, et al. Prevention of premature discontinuation of dual antiplatelet therapy in patients with coronary artery stents:a science advisory from the American Heart Association, American College of Cardiology, Society for Cardiovascular Angiography and Interventions, American College of Surgeons, and American Dental Association, with representation from the American College of Physicians. Circulation, 2007, 115(6):813-818
    [103]. Henderson D, Gunalingam B. Very late [corrected] thrombosis of a sirolimus-eluting stent. Catheter Cardiovasc Interv, 2006, 68(3):406-408
    [104]. Steinhubl SR, Berger PB, Mann JT, et al. Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial. JAMA, 2002,288(19):2411-2420.
    [105]. Bhatt DL, Fox KA, Hacke W, et al. Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events. N Engl J Med. 2006,354(16):1706-1717
    [106]. Stone GW, Ellis SG, Colombo A, et al. Offsetting impact of thrombosis and restenosis on the occurrence of death and myocardial infarction after paclitaxel-eluting and bare metal stent implantation. Circulation, 2007,115(22):2842-2847
    [107]. Farb A, Boam AB. Stent thrombosis redux--the FDA perspective. N Engl J Med. 2007, 356(10):984-987
    
    [108]. Aoki J, Serruys PW, van Beusekom H, et al. Endothelial progenitor cell capture by stents coated with antibody against CD34: the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry. J Am Coll Cardiol, 2005,45(10):1574-1579.o
    
    [109]. Blindt R, Vogt F, Astafieva I, Fach C, et al. A novel drug-eluting stent coated with an integrin-binding cyclic Arg-Gly-Asp peptide inhibits neointimal hyperplasia by recruiting endothelial progenitor cells. J Am Coll Cardiol. 2006,47(9): 1786-1795
    
    [110]. Joner M, Farb A, Cheng Q, Finn AV, et al. Pioglitazone inhibits in-stent restenosis in atherosclerotic rabbits by targeting transforming growth factor-beta and MCP-1. Arterioscler Thromb Vasc Biol. 2007, 27(1): 182-189
    
    [111]. Camici GG, Steffel J, Akhmedov A, et al. Dimethyl sulfoxide inhibits tissue factor expression, thrombus formation, and vascular smooth muscle cell activation: a potential treatment strategy for drug-eluting stents. Circulation. 2006,114(14):1512-1521

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700