42V汽车爪极同步发电机系统无测量传感器的磁场定向控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着汽车用电设备的日益增多,汽车用电量迅速增长。然而,目前还被广泛使用的传统14V汽车发电系统因固有设计局限无法满足未来汽车对高效、高输出功率发电系统的需求,为此本文提出一种新型42V汽车爪极同步发电机系统,将发电机与PWM整流器串联,并采用磁场定向控制方法,保证直流侧输出电压稳定在42V。
     文中给出包括爪极发电机、PWM整流器和蓄电池在内的一系列设备模型,其中爪极发电机是在αβ坐标系下按照发电机惯例建立,并采用交流电势控制和直流稳压控制两种电压控制策略。采用励磁单闭环来调节交流电势,当转速变化时,通过调节励磁电流保证定子电势保持恒定。与此同时,采用相电流╱直流电压双闭环直流调压系统,其中相电流环作为内环,直流电压环作为外环,当负载变化时能够保证输出的直流电压迅速稳定在42V。
     文中系统并未采用传统速度传感器和交流电压传感器,而是通过直流侧输出电压和PWM整流器开关信号计算交流电压和发电机机械转速,系统动态性能可以与采用速度和交流电压传感器时的动态性能相匹敌,从而在一定程度上降低了系统成本,所提出的控制方法也已在实时仿真实验中获得了验证。
In recent years,the electrical demand in automobiles has been increasing steadily with the introduction of more and more electrical devices.However, traditional 14-V automobile power generation system,which is still widely used nowadays,is not able to meet the foreseeable future power requirements due to its inherent design limitations.A new high-power,high-efficiency 42-V claw-pole synchronous generator system,therefore,is proposed in this thesis.A PWM rectifier is directly connected to the generator,and field-oriented control principle is also introduced to ensure the DC output voltage stabilized at 42-V.
     The models of the claw-pole generator,the PWM rectifier and the battery are presented.The claw-pole generator is modeled based onαβcoordinates in the generating direction and two different voltage control strategies are also proposed in order to control the AC electromotive force of the generator and the DC output voltage of the rectifier.The field current loop is regulated with varying speed. Meanwhile,a double closed-loop system including phase current and DC voltage is also introduced.Among them,the phase current loop is used as inner loop,and the DC voltage loop is used as outer loop to ensure the DC output voltage stabilize at 42-V with loads changing.
     To reduce the cost of the system,the control system without speed and AC voltage sensors is presented.The speed of the generator and the terminal AC voltage of the generator are calculated based on the DC output voltage of the rectifier and the switching signals of the PWM rectifier.The dynamic response of the system is as the same as the system with speed and AC voltage sensors used.The proposed approaches have already been evaluated by the real-time simulation experimental results.
引文
[1]Vahe Caliskan.A Dual/High-Voltage Automotive Electrical Power System with Superior Transient Performance.Department of Electrical Engineering and Computer Science,Massachusetts Institute of Technology,2000.
    [2]Mihai Comanescu,Ali Keyhani,Min Dai,Design and Analysis of 42-V Permanent-Magnet Generator for Automotive Applications.IEEE Trans.on Energy Conversion,2003,18(1):107-112
    [3]王群京,倪有源,朱卫国,鲍晓华.新型汽车用爪极发电机系统效率计算.系统仿真学报.2006年6月,第18卷第6期:1609-1611.
    [4]王群京,鲍晓华,倪有源,李争.基于支持向量机和遗传算法的爪极同步发电机建模及参数优化.电工技术学报.2006年4月,第21卷第4期:57-61.
    [5]鲍晓华,王群京,倪有源,钱喆.爪极发电机建模及参数优化设计.中国电机工程学报.2006年11月,第26卷第21期:138-142.
    [6]李光友.提高汽车发电机系统输出功率和效率的新方法.微特电机.2002年第4期:16-18。
    [7]黄文新,胡育文.用于航空高压直流屯源系统的笼型异步发电机控制策略的研究.航空学报.2002年7月,第23卷第4期:377-380.
    [8]黄文新,胡育文.笼型异步发电机的直接转矩控制策略的研究.电工技术学报.2002年10月,第17卷第5期:30-34。
    [9]张兰红,胡言文,黄文新.异步电机起动/发电系统起动向发电的转换研究.航空学报.2005,26(3):356-361.
    [10]许家群,朱建光,邢伟,唐任远.电动汽车用永磁同步电动机直接转矩控制系统.微特电机.2005年第11期:28-29,40.
    [11]高景德,王祥珩,李发海.交流电机及其系统的分析(第二版).清华大学出版社,北京,2005
    [12]Marek Jasinski.Direct Power and Torque Control of AC/DC/AC Converter-Fed Induction Motor Drives.Faculty of Electrical Engineering,Warsaw University of Technology,2005.
    [13]Byoung-Kuk Lee,Mehrdad Ehsani.A Simplified Functional Simulation Model for Three-Phase Voltage-Source Inverter Using Switching Function Concept.IEEE Transactions on Industrial Electronics,Vol.48,No 2,2001:309-321.
    [14]张崇巍,李汉强.运动控制系统.武汉理工大学出版社,武汉,2002.
    [15]阮毅,陈维钧.运动控制系统.清华大学出版社,北京,2006.
    [16]Werner Leonhard,Control of Electrical Drives(3rd Edition),Springer-Verlag,Berlin,Germany,2001.
    [17]陈伯时.交流调速系统.机械工业出版社,北京,2005.
    [18]Malakondaiah Naidu,James Waiters.A 4-kW 42-V Induction Machine-Based Automotive Power Generation System With a Diode Bridge Rectifier and a PWM Inverter.IEEE Trans on Industry Applications,2003,39(5):1287-1292.
    [19]Mariusz Malinowski,Marian P.Kazmierkowski,Andrzej M.Trzynadiowski.A Comparative Study of Control Techniques for PWM Rectifiers in AC Adjustable Speed Drives.IEEE Trans on Power Electronics,2003:1390-1396.
    [2O]Amit Kumar Jain,Shashidahar Mathapati.Integrated Starter Generator for 42-V Powernet Using Induction Machine and Direct Torque Control Technique.IEEE Trans.on Power Electronics,2006,21(3):701-709.
    [21]Tarek Ahmed,Katsumi Nishida,Mutsuo Naokaoka.Advanced control of PWM converter with variable-speed induction generator.IEEE Transactions on Industry Applications,2006,42(4):934-945.
    [22]Hadian Amrei S R,徐殿国,郎永强.一种PWM整流器直接功率控制方法.中国电机工程学报,2007年9月,第27卷第25期:78-84.
    [23]Wootaik Lee,Daeho Choi,Myoungho Sunwoo.Modelling and simulation of vehicle electric power system.Journal of Power Sources 109(2002):58-66.
    [24]Dong-Choon Lee,Dae-Sik Lim.AC Voltage and Current Sensorless Control of Three-Phase PWM Rectifiers.IEEE Trans on Power Electronics,Vol.17,No.6,2002:883-890.
    [25]Yang Ye,Mehrdad Kazerani,Victor H.Quintana.Modeling,Control and Implementation of Three-Phase PWM Converters.IEEE Trans on Power Electronics,Vol.18,No.3,2003:857-864.
    [26]Tzann-Shin Leea,Chih-Hong Lin,Faa-Jeng Lin.An adaptive H_∞ controller design for permanent magnet synchronous motor drives.Control Engineering Practice 13(2005)425-439.
    [27]Toshihiko Noguchi,Hiroaki Tomiki,Seiji Kondo,Isao Takahashi.Direct Power Control of PWM Converter Without Power-Source Voltage Sensors.IEEE Trans.on Industry Applications.1998,Vol.34,No.3:473-479.
    [28]Tolga Sügevil,Eyü Akpmar.Modelling of a 5-kW wind energy conversion system with induction generator and comparison with experimental results.Renewable Energy 30(2005):913-929.
    [29]Thomas A.Keim.Systems for 42 V mass-market automobiles.Journal of Power Sources 127(2004):16-26.
    [30]Ion.Boldea,Starter/alternator systems for HEV and their control:a review.KIEE International Transactions on EMECS,Vol.4-B,No.4,2004:157-169.
    [31]Shaotang Chen,Bruno Lequesne,Rassem R.Henry,Yanhong Xue,Jeffrey J.Ronning.Design and Testing of a Belt-Driven Induction Starter-Generator.IEEE Transactions on Industry Applications,Vol.38,No.6,2002:1525-1533.
    [32]William F.Powers,Paul R.Nicastri.Automotive Vehicle Control Challenges in the 21st Century.Control Engineering Practice 8(2000):605-618.
    [33]Juinne-Ching Liao,Sheng-Nian Yeh.A Novel Instantaneous Power Control Strategy and Analytic Model for Integrated Rectifier/Inverter Systems.IEEE Trans on Power Electronics,Vol.15,No.6,2000:996-1006.
    [34]卢子广,柴建云,王祥珩,苏鹏生.电力驱动系统实时控制虚拟实验平台.中国电机工程学报,2003年4月,第23卷第4期:119-123.
    [35]卢子广,柴建云,王祥珩.永磁同步电机驱动系统实时虚拟测试.电工技术杂志.2003年第5期:31-33.
    [36]潘峰,薛定宇,徐心和.基于dSPACE半实物仿真技术的伺服控制研究与应用.系统仿真学报.2004年5月第5期:936-939
    [37]夏娟,周治平,纪志成.基于dSPACE电气传动控制系统的在线仿真.微特电机.2005年第5期:27-30.
    [38]辜承林,韦忠朝.对转子交流励磁电流实行欠量控制的变速恒频发电机.中国电机工程学报,1996,16(2):119-124.
    [39]贾洪平,贺益康.永磁同步电机滑模变结构直接转矩控制.电工技术学报.2006,21(1):1-6.
    [40]宫明玉,廖晓钟,冬雷.无速度传感器异步电机按定子磁链定向的矢量控制系统.电气传动.2005年,第35卷第7期:20-23.
    [41]李健,李华德.双馈感应变速恒频风力发电机控制系统研究.电气传动.2004年第4期:16-18.
    [42]陈先锋,舒志兵,赵英凯.基于矢量控制的PMSM位置伺服系统电流滞环控制仿真分析.电气传动.2006,36(6):19-22
    [43]黄守道,陈继华,张铁军.电压型PWM整流器负载电流前馈控制策略研究.电力电子技术.2005,39(4):53-55
    [44]郎永强,徐殿国,HADIANAMREISR,马洪飞.二相电压型PWM整流器的一种改进前馈控制策略.电机与控制学报.2006,10(2):160-163

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700