花旗松素和落新妇苷体外转运和大鼠体内药物代谢动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花旗松素和落新妇苷同为二氢黄酮类化合物,是土茯苓、水红花子等中药的主要有效成分,同时两者也广泛存在于葡萄、柑橘等水果中。落新妇苷是花旗松素的鼠李糖苷。药理学研究表明花旗松素和落新妇苷具有显著的抗氧化、抗菌、抗病毒、抗肿瘤等作用,其中落新妇苷还具选择性免疫抑制作用。以落新妇苷为主要成分的土茯苓总苷提取物已被开发成为一种治疗免疫性疾病的新药。文献调研表明花旗松素和落新妇苷的药理作用已经非常明确,但两者的吸收、转运、分布、代谢和排泄(ADME)及动力学性质鲜有报道。本文采用体内外模型对花旗松素和落新妇苷的ADME及两者在大鼠体内的药物代谢动力学进行了研究,为两者的临床应用及其新药的研发提供理论和实验依据。
     1.花旗松素、落新妇苷在Caco-2细胞单层中的转运研究及对caco-2细胞中P-糖蛋白的影响采用Caco-2细胞单层作为模拟小肠药物吸收的体外模型,研究花旗松素和落新妇苷在小肠中可能的吸收和转运机制。花旗松素和落新妇苷在Caco-2细胞单层中的表观渗透系数均≤1×10~(-6)cm/s,提示两者口服后生物利用度较差。花旗松素和落新妇苷在Caco-2细胞单层中的转运存在显著的外排现象,花旗松素的外排可被多药耐药蛋白2(MRP2)抑制剂MK-571抑制,而落新妇苷的外排可被P-糖蛋白(P-gp)的经典抑制剂维拉帕米和GF 120918抑制,表明MRP2和P-gp分别参与落新妇苷和花旗松素在Caco-2细胞中的吸收和外排转运,提示外排转运蛋白可能是制约其口服生物利用的主要生理屏障因素之一。临床上同时服用MRP2或P-gp抑制剂时,可能会使花旗松素或落新妇苷的药物代谢动力学特征发生改变。
     采用Caco-2细胞作为研究药物在小肠吸收转运的体外模型,研究花旗松素、落新妇苷和转运蛋白P-glycoprotein(P-gp)之间的相互作用。以罗丹明123(R123)作为P-gp的探针底物,评价花旗松素和落新妇苷对P-gp转运功能的影响;采用WesternBlot、RT-PCR等分子生物学方法评价花旗松素和落新妇苷对Caco-2细胞中P-gp表达的影响。花旗松素和落新妇苷对Caco-2细胞单层中由P-gp介导的R123外排无影响,提示花旗松素和落新妇苷对P-gp无抑制作用。采用不同浓度的花旗松素和落新妇苷对Caco-2细胞进行药物处理24或36h,发现Caco-2细胞中P-gp在蛋白水平和mRNA水平的表达量均有所升高,提示花旗松素和落新妇苷对P-gp的表达有诱导作用,10μmol/L落新妇苷或100μmol/L花旗松素处理细胞36 h对P-gp表达的诱导作用最显著,且这种诱导作用的机制不是通过PXR通路的调节而实现的。P-gp蛋白的表达上调可能是机体限制外源物进入、保护机体不受损伤的一种调节机制。
     2.花旗松素在Caco-2细胞中的代谢
     采用HPLC和UPLC-MS研究花旗松素在Caco-2细胞中的主要代谢物,揭示花旗松素在小肠上皮细胞中可能发生的代谢过程。实验结果表明花旗松素经Caco-2细胞代谢后可生成4种主要代谢物,采用质谱、核磁共振等技术对代谢物进行鉴定,发现3'-O-甲基化花旗松素为花旗松素在Caco-2细胞中的主要代谢物,一种代谢物为木犀草素的同分异构体,还有两种分别为花旗松素和3'-O-甲基化花旗松素的同分异构体/差向异构体。
     3.花旗松素大鼠体内药物代谢动力学研究
     建立花旗松素及3'-O-甲基化花旗松素在大鼠血浆和尿中的UPLC-MS测定方法,测定大鼠口服与静脉注射花旗松素后血中药物代谢动力学及口服花旗松素后尿中花旗松素的排泄,同时还测定了血中、尿中的3'-O-甲基化花旗松素,并对尿中的其他可能存在的代谢物进行检测。花旗松素在大鼠体内的药物代谢动力学参数通过DAS 2.0软件计算获得。花旗松素口服吸收较差,在大鼠体内的绝对生物利用度仅为0.17%。口服给药组药物代谢动力学符合一室模型,静脉注射组药物代谢动力学符合三室模型。花旗松素口服后吸收较为迅速,在6~10 min即达T_(max),提示其吸收发生在胃和小肠上部。口服给药后大鼠体内的药物代谢动力学为典型的非线性动力学过程,与花旗松素在体内发生代谢或生物转化相关的酶代谢过程饱和,或与药物吸收、排泄有关的载体转运过程饱和有关。研究发现,花旗松素在大鼠体内可以很快的发生Ⅱ相代谢。口服或尾静脉给药后3 min即可在血液中检测到3'-O-甲基化花旗松素,且3'-O-甲基化花旗松素的AUC趋势与花旗松素的AUC趋势相似,均在相同时间达到血药浓度峰值,首过效应非常明显,提示花旗松素在体内的生物转化速度非常快,甲基化反应主要在肝脏中发生。大鼠口服100mg/kg花旗松素后,花旗松素最大的尿排泄量发生在0~2h时间段内,而3'-O-甲基化花旗松素最大尿排泄量发生在7~10h时间段内,尿中花旗松素原型的排泄率为给药量的0.24%,以3'-O-甲基化代谢物形式排泄的花旗松素为给药量的0.32%。此外,尿中还检测到花旗松素和3'-O-甲基化花旗松素葡萄糖醛酸结合产物,未检测到硫酸酯结合物。
     4.落新妇苷大鼠体内药物代谢动力学研究
     目前落新妇苷体内外代谢的研究已有报道,大鼠口服落新妇苷后在尿中可检测到3'-O-甲基化落新妇苷。本实验建立了大鼠血浆中落新妇苷的UPLC-MS的测定方法,并用于研究落新妇苷在大鼠体内的药物代谢动力学过程,测定大鼠口服与静脉注射落新妇苷后的血中药物代谢动力学及考察同时给予P-gp抑制剂维拉帕米后落新妇苷的血药动力学的改变,并对大鼠血中可能存在的Ⅱ相代谢物进行检测。研究表明:落新妇苷在大鼠体内的绝对生物利用度仅为0.066%,属于口服吸收较差的化合物,与Caco-2细胞模型预测结果相符。大鼠口服给予不同剂量的落新妇苷后,体内药物代谢动力学均符合二室模型,达峰时间约为20 min,口服5和100 mg/kg落新妇苷的吸收半衰期约4 min,提示落新妇苷口服吸收发生在胃肠道上部,且吸收迅速;5mg/kg口服剂量给药时落新妇苷的吸收和消除均较为迅速;100 mg/kg口服剂量给药时落新妇苷吸收快但消除慢。同时口服维拉帕米后,落新妇苷的AUC增加2.57倍。实验结果提示维拉帕米对组织中P-gp外排功能的抑制可能是落新妇苷在大鼠体内“蓄积”而引起AUC增加的主要原因。大鼠静脉给予5mg/kg落新妇苷后,其药物代谢动力学行为符合二室模型。落新妇苷在大鼠体内的代谢物主要是3'-O-甲基化落新妇苷,与文献报道一致。试验中未发现相应的苷元或葡萄糖醛酸结合物等Ⅱ相代谢物。
Flavonoids are polyphenolic compounds present in many fruits,vegetables,and beverages.They have been strongly implicated as protectors in coronary heart disease and stroke as well as cancer.Astilbin and its aglycone,taxifolin,were isolated from many Chinese herbs,such as the rhizome of Smilax glabra,a Liliaceae plant, Dimorphandra mollis and Hypericum perforatum,and also have been found in many citrus fruits,especially grapefruit and orange.It has been reported that taxifolin and astilbin have many activities in anti-bacteria,anti-oxidative,anti-inflammation,as well as hepato-protection.Although astilbin and taxifolin provide many benefits to human health,the knowledge about the absorption,transport,metabolism,the interactions with drug-transporters in vivo and in vitro,and other pharmacokinetics profiles are still limited.The aims of this present study were to understand the drug metabolism and pharmacokinetic profiles of astilbin and taxifolin using in vivo and in vitro models.
     1.The transport of taxifolin and astilbin across the Caco-2 cell monolayers and the effects on the P-gp expressed in Caco-2 cells
     The aim of this study was to explore the potential absorption and transport mechanism of flavanonols astilbin and taxifolin across the Caco-2 cell monolayers,a model of human intestinal epithelial membrane.In the Caco-2 cells,these two flavanonols showed a low absorption.The apparent permeability coefficient(P_(app)) values of apical to basolateral direction for astilbin and taxifolin were less than 1×10~(-6) cm/s.The efflux ratios of both compounds were much higher than 2.0.The efflux of taxifolin can be abolished in the presence of MK-571,the inhibitor of the multidrug resistance proterin 2(MRP2),and the efflux of astilbin can be abolished in the presence of P-glycoprotein(P-gp) inhibitors verapamil and GF 120918.Those findings indicated that astilbin and taxifolin were transported by P-gp and MRP2,respectively.Astilbin and taxifolin may have low bioavailability after oral administration because the two efflux transporters participating in the absorption of the tow flavanonols.The drug-drug interactions should be considered when astilbin or taxifolin is co-administrated with the inhibitors of P-gp or MRP2 in the clinic.
     Using Rhodamine 123(R123) as the substrate probe of P-gp,we studied the effects of astilbin and taxifolin on the P-gp,the most important transporter in the intestine. Astilbin and taxifolin had no significant inhibition effects on the P-gp-mediated transport of R123 across the Caco-2 cell monolayers.Caco-2 cells exposed to astilbin or taxiolin for 36 h exhibited higher P-gp activity through up-regulating P-gp expression at protein and mRNA levels.These results indicated that astilbin and taxifolin may have effects on the regulation the expression of P-gp.The increased expression of P-gp in Caco-2 cells may serve as an adaptation and defense mechanism in limiting the entry of xenobiotics into the body.
     2.The metabolism of taxifolin in Caco-2 cells
     The aim of this study was to find out the possible metabolism of taxifolin in human intestine using Caco-2 cells in vitro.After adding the taxifolin into the culture medium and incubating with Caco-2 cells for 48 h,we found four new compounds in the culture medium and Ml was the main metabolite.Using HPLC,MS and NMR,we prepared the metabolites and identified the structure of Mlas 3'-O-methyltaxifolin.
     3.The pharmacokinetic studies of taxifolin in rats
     In this study,a sensitive ultra performance liquid chromatography-mass spectrometry (UPLC-MS) method has been developed and validated for the quantification of taxifolin and 3'-O-methyltaxifolin in rat plasma and urine.The present methods were successfully applied to the estimation of the pharmacokinetic parameters of taxifolin following intravenous and oral administration to rats.The absolute bioavailability of taxifolin was 0.17%.And the possible metabolites in rat plasma and urine were detected, especially 3'-O-methyltaxifolin,the main metabolite in rat plasma.
     Using DAS 2.0 software,it was found that the best fit pharmacokinetic model was single compartment model with weight of 1/C~2 for oral administration,and three compartments model with weight of 1/C for intravenous administration.The area under the curve(AUC) and C_(max) were non-proportional to the dose of oral administration ranged from 10 mg/kg to 100 mg/kg.T_(max) and t_(1/2) were depended on the doses of oral administration.Those results indicated the absorption of taxifolin in rat by oral administration was a typical non-linear process.The biotransformation of taxifolin in rat was so fast that the metabolites can be detected at the first sampling time for both oral administration and intravenous administration.The results were helpful for studying the kinetics of taxifolin,and allowed us to make better understanding of the metabolism mechanism of taxifolin in human.
     4.The pharmacokinetic studies of astilbin in rats
     In this study,a sensitive UPLC-MS method has been developed and validated for the quantification of astilbin in rat plasma and was successfully applied to the estimation of the pharmacokinetic parameters of astilbin following intravenous and oral administration to rats.Using DAS 2.0 software,it was found that the best fit pharmacokinetic model was two compartments model with weight of 1/C~2 for both oral administration and intravenous administration.The absolute bioavailability of astilbin was 0.066%indicating that the oral absorption of astilbin in vivo may be poor.The AUC of astilbin in the rats with co-administration with verapamil was increased 2.57 times indicating that the P-gp plays an important role in the pharmacokinetics of astilbin in rats.
引文
[1]张元桐,翟延君,康廷国等.HPLC测定不同地区水红花子中花旗松素含量.中国中药杂志.2007;20:2190-2191.
    [2]袁久志,窦德强,陈英杰等.土茯苓二氢黄酮醇类成分研究.中国中药杂志.2004:9:867-870.
    [3]Jeong SJ,Jun KY,Kang TH,et al.Flavonoids from the fruits of Opuntia ficus-indica var.saboten.Kor J Pharmacogn,1999;30:84-97.
    [4]Landraul N,Larronde F,Delaunay JC,et al.Levels of stilbene oligomers and astilbin in French varietal wines and in grapes during noble rot development.J Agric Food Chem,2002;50:2046-2052.
    [5]Pew JC.A Flavonone from Douglas-Fir Heartwood.J Am Chem Soc,1948;70:3031-3034.
    [6]Wei Y,Chen XQ,Jiang XY,et al.Determination of taxifolin in Polygonum orientale and study on its antioxidant activity.J Food Compost Anal,2009;22:154-157.
    [7]Potapovich AI,Kostyuk VA.Comparative study of antioxidant properties and cytoprotective activity of flavonoids.Biochemistry(Mosc),2003;68:514-519.
    [8]Fedosova NF,Alisievich SV,Lyadov KV,et al.Mechanisms underlying diquertin-mediated regulation of neutrophil function in patients with non-insulin-dependent diabetes mellitus.Bull Exp Biol Med,2004;137:143-146.
    [9]Kravchenko LV,Morozov SV,Tutel'yan VA.Effects of flavonoids on the resistance of microsomes to lipid peroxidation in vitro and ex vivo.Bull Exp Biol Med,2003;136:572-575.
    [10]Kostyuk VA,Kraemer T,Sies H,et al.Myeloperoxidase/nitrite-mediated lipid peroxidation of low-density lipoprotein as modulated by flavonoids.FEBS Lett,2003;27:146-150.
    [11]Wang YH,Wang WY,Chang CC,et al.Taxifolin ameliorates cerebral ischemia-reperfusion injury in rats through its antioxidative effect and modulation of NF-kappa B activation.J Biomed Sci,2006;13:127-141.
    [12]Teselkin YO,Babenkova IV,Tjukavkina NA,et al.Influence of dihydroquercetin on the lipid peroxidation of mice during post-radiation period.Phytother Res,1998;12:517-519.
    [13]Wang YH,Wang WY,Liao JF,et al.Prevention of macrophage adhesion molecule-1(Mac-Independent neutrophil firm adhesion by taxifolin through impairment of protein kinase-dependent NADPH oxidase activation and antagonism of G proteinmediated calcium influx.Biochem Pharmacol,2004;67:2251-2262.
    [14]Dok-Go H,Lee KH,Kim HJ,et al.Neuroprotective effects of antioxidative flavonoids,quercetin,(+)-dihydroquercetin and quercetin 3-methyl ether,isolated from Opuntia ficus-indica var.saboten.Brain Res,2003;965:130-136.
    [15]Pu JX,Yang LM,Xiao WL,et al.Compounds from Kadsura heteroclita and related anti-HIV activity.Phytochemistry,2008;69:1266-1272.
    [16]Kandaswami C,Perkins E,Drzewiecki G,et al.Differential inhibition ofproliferation of human squamous cell carcinoma,gliosarcoma,and embryonic fibroblast-like lung cells in culture by plant flavonoids.Anticancer Drugs,1992;3:525-530.
    [17]Chu SC,Hsieh YS,Lin JY Inhibitory Effects of Flavonoids on Moloney Murine Leukemia Virus Reverse Transcriptase Activity.J Nat Prod,1992;55:179-183.
    [18]Makena PS,Pierce SC,Chung KT,et al.Comparative Mutagenic Effects of Structurally Similar FlavonoidsQuercetin and Taxifolin on Tester Strains Salmonella typhimuriumTA102 and Escherichia coli WP-2 uvrA.Environ Mol Mutagen,2009;26.[Epub ahead of print]
    [19]Lee EB,Hyun JE,Li DW,et al.Effects of Opuntiaficus-indica var.Saboten stem on gastric damages in rats.Arch Pharm Res,2002;25:67-70.
    [20]Biziagos E,Crance JM,Passagot J,et al.Effect of antiviral substances on hepatitis A virus replication in vitro.J Med Virol,1987;22:57-66.
    [21]Kolhir VK,Tyukavkina NA,Bykov VA,et al,Diquertin-new antioxidant and vasoprotector.Chem-Farm Jornal,1995;9:61.
    [22]Iluchenok TY,Homenko AI,Frigidova LM,et al.Pharmacological and radioprotective properties of some gammapyrone derivatives(flavonons and flavonols).Pharmacol Toxicol,1975;38(5):607.
    [23]Kolhir VK,Bykov VA,Baginskaya AI,et al.Antioxidant activity of a dihydroquercetin isolated from Larix gmelinii.Rupr.wood.Phytother Res,1996;10:478-482.
    [24]Jurado J,Alejandre-Duran E,Alonso-Moraga A,et al.Study on the mutagenic activity of 13 bioflavonoids with the Salmonella Ara test.Mutagenesis,1991;6:289-295.
    [25]Solimani R.Quercetin and DNA in solution:analysis of the dynamics of their interaction with a linear dichroism study.Int J Biol Macromol,1996;18:287-295.
    [26]Bjeldanes LF,Chang GW.Mutagenic activity of quercetin and related compounds.Science,1977;197:577-578.
    [27]Gurinovich SV,Lisin KV,Potipayeva NN.Preparation for increasing storage life of meat products.Myasnaya Industriya,2005;2:31-33.
    [28]Plotnikov MB,Aliev OI,Maslov MJ,et al.Correction of Haemorheological Disturbances in Myocardial Infarction by Diquertin and Ascorbic Acid.Phytother Res,2003;17:86-88.
    [29]Booth AN,Deeds F.The toxicity and metabolism of dihydroquercetin.J Am Pharm Assoc Am Pharm Assoc(Baltim.),1958;47:183-184.
    [30]Brown S,Griffiths LA.New metabolites of the naturally-occurring mutagen,quercetin,the pro-mutagen,rutin and of taxifolin.Experientia,1983;39:198-200.
    [31]Nielsen SE,Breinholt V,Justesenoe U.In vitro biotransformation of favonoids by rat liver microsomes.Xenobiotica,1998;28:389-401.
    [32]Kim BG,Lee Y,Hur HG,et al.Flavonoid 3'-O-methyltransferase from rice:cDNA cloning,characterization and functional expression.Phytochemistry,2006;67:387-394.
    [33]Schoefer L,Mohan R,Schwiertz A,et al.Anaerobic degradation of flavonoids by Clostridium orbiscindens.Appl Environ Microbiol,2003;69:892-896.
    [34]Blaut M,Schoefer L,Braune A.Transformation of flavonoids by intestinal microorganisms.Int J Vitam Nutr Res,2003;73:79-87.
    [35]Duweler KG,Rohdewald P.Urunary metabolites of Grench maritime pine bark extract in humans.Pharmazie,2000;55:364-368.
    [36]Grimm T,Skrabala R,Chovanova Z,et al.Single and multiple dose pharmacokinetics of maritime pine bark extract(pycngenol) after oral admin- istration to healthy volunteers.BMC Clin Pharmacol,2006;6:4.
    [37]Pozharitskaya ON,Karlina MV,Shikov AN,et al.Determination and pharmacokinetic study of taxifolin in rabbit plasma by high-performance liquid chromatography.Phytomedicine,2009;16:244-251.
    [38]姚毅,周翔,陈婷.高效液相色谱法测定罗汉茶中落新妇苷的含量.中国现代应用药学杂志.2006;9:920-921.
    [39]尚小雅,李帅,王映红等.红绒毛羊蹄甲中的二氢黄酮醇苷和黄烷酮类成分.中国中药杂志.2007;9:815-818.
    [40]Tschesche R,Delhvi S,Sepulveda S,et al.Eucryphin,a new chromone rhamnoside from the bark of Eucryphia cordifolia.Phytochemistry,1979;18:867-869.
    [41]Eugene K,Singleton TVL.Astilbin engeletin in grapes and wine.Phytochemistry,1983;22:619-620.
    [42]Mizutani K,Masuda K,Kanbara T,et al.Active oxygen scavengers for therapeutical and cosmetic uses.Heisei,1994;9:1-9.
    [43]Closa D,Torres M,Hotter G,et al.Prostanoids and free radicals in CI4Cinduced hepatotoxicity in rats:effect of astilbin.Prostaglandins Leukot Essent Fatty Acids,1997;56:331-334.
    [44]Zhang QF,Zhang ZR,Cheung HY.Anti-oxidant activity of Rhizoma Smilacis Glabrae extracts and its key constituent astilbin.Food Chemistry,2009;115:297-303.
    [45]Moulari B,Pellequer Y,Lboutounne H,et at.Isolation and in vitro antibacterial activity of astilbin,the bioactive flavanone from the leaves of Harungana madagascariensis Lam.ex Poir.(Hypericaceae).J Ethnopharmacol,2006;106:272-278.
    [46]Yan R,Xu Q.Astilbin selectively facilitates the apoptosis of interleukin-2-dependent phytohemagglutinin-activated jurkat cells.Pharmacol Res,2001;44:135-139.
    [47]Cai Y,Chen T,Xu Q.Astilbin suppresses collagen-induced arthritis via the dysfunction of lymphocytes.Inflamm Res,2003;52:334-340.
    [48]Fei MJ,Wu XF,Xu Q.Astilbin inhibits contact hypersensitivity through negative cytokine regulation distinct from cyclosporin A.J Allergy Clin Immunol,2005;116:1350-1356.
    [49]Yang XL,Sun Y,Xu Q,et al.Synthesis and immunosuppressive activity of L-rhamnopyranosyl flavonoids.Org Biomol Chem,2006;4:2483-2491.
    [50]Yi HW,Lu XM,Fang F.Astilbin inhibits the adhesion of T lymphocytes via decreasing TNF-a and its associated MMP-9 activity and CD44 expression.Int Immunopharrnacol,2008;8:1467-1474.
    [51]Guo JM,Xu Q,Chen T.Quantitative determination of astilbin in rabbit plasma by liquid chromatography.J Chromatogra B,2004;805:357-360.
    [52]Guo JM,Qian F,Li JX,et al.Identification of a new metabolite of astilbin,3'-O-methylastilbin,and its immunosuppressive activity against contact dermatitis.Clinical Chemistry,2007;53:465-471.
    [53]Lipinski CA,Lombardo F,Dominy B W,et al.Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings,Adv Drug Deliv Rev,1997;23:3-25.
    [54]Matter H,Baringhaus KH,Naumann T,et al.Computational approaches towards the rational design of drug-like compound libraries,Comb.Chem.High Throughput Screen,2001;4:453-475.
    [55]Fogh JD,Fogh JM,Orfeo T.One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude nice.J Natl Cancer Inst,1977;59:221-226.
    [56]Artursson P,Karlsson J.Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial(Caco-2)cells.Biochem Biophys Res Commun,1991;175:880-885.
    [57]Kim DC,Burton PS,Borchardt RT.A correlation between the permeability characteristics of a series of peptides using an in vitro cell culture model(Caco-2)and those using an in situ perfused rat ileum model of the intestinal mucosa.Pharm Res,1993;10:1710-1714.
    [58]Stewart BH,Chan OH,Lu RH,et al.Comparison of intestinal permeabilities determined in multiple in vitro and in situ models:relationship to absorption in humans.Pharm Res,1995;12:693-699.
    [59]Yee S.In vitro permeability across Caco-2 cells(colonic)can predict in vivo(small intestinal)absorption in man-fact or myth.Pharm Res,1997;14:763-766.
    [60]Chun OK,Chung SJ,Song,WO.Estimated dietary flavonoid intake and Major Food Sources of U.S.Adults.J Nutr,2007;137:1244-1252.
    [61]Erlund I,Silaste ML,Alfthan G,et al.Plasma concentrations of the flavonoids hesperetin,naringenin and quercetin in human subjects following their habitual diets,and diets high or low in fruit and vegetables.Eur J Clin Nutr,2002;56:891-898.
    [62]Rasmussen SE,Breinholt VM.Non-nutritive bioactive food constituents of plants:bioavailability of flavonoids.Int J Vitam Nutr Res,2003;73:101-111.
    [63]Kris-Etherton PM,Hecker KD,Bonanome A,et al.Bioactive compounds in foods:their role in the prevention of cardiovascular disease and cancer.Am J Med,2002;113:71S-88S.
    [64]Manthey JA,Grohmann K,Guthrie N.Biological properties of citrus flavonoids pertaining to cancer and inflammation.Curr Med Chem,2001;8:135-153.
    [65]Middleton EJ,Kandaswami C,Theoharides TC.The effects of plant flavonoids on mammalian cells:Implications for inflammation,heart disease,and cancer.Pharmacol Rev,2000;52:673-751.
    [66]Morris ME,Zhang S.Flavonoid-drug interactions:effects of flavonoids on ABC transporters.Life Sci,2006;78:2116-2130.
    [67]Liu Z,Hu M.Natural polyphenol disposition via coupled metabolic pathways.Exp Opin Drug Metab Toxicol,2007;3:389-406.
    [68]Lee JS,Paull K,Alvarez M,et al.Rhodamine efflux patterns predict P-glycoprotein substrates in the National Cancer Institute drug screen.J Pharmacol Exp Ther,1994;46:627.
    [69]Manach C,Scalbert A,Morand C,et al.Polyphenols:food sources and bioavailability.Am J Clin Nutr,2004;79:727-747.
    [70]Zhang S,Morris ME.Effect of the flavonoids biochanin A and silymarin on the P-glycoprotein-mediated transport of digoxin and vinblastine in human intestinal Caco-2 cells.Pharm Res,2003;20:1184-1191.
    [71]Romiti N,Tramonti G,Donati A,et al.Effects of grapefruit juice on the multidrug transporter P-gylcoprotein in the human proximal tubular cell line HK-2.Life Sci,2004;76:293-302.
    [72]Chung SY,Sung MK,Kim NH,et al.Inhibition of P-glycoprotein by natural products in human breast cancer cells.Arch Pharm Res,2005;28:823-828.
    [73]Kitagawa S,Nabekura T,Kamiyama S.Inhibition of P-glycoprotein function by tea catechins in KB-C2 cells.J Pharm Pharmacol,2004;56:1001-1005.
    [74]Kitagawa S,Nabekura T,Takahashi T,et al.Structure-activity relationships of the inhibitory effects of flavonoids on P-glycoprotein-mediated transport in KB-C2 cells.Biol Pharm Bull,2005;28:2274-2278.
    [75]Ofer M,Wolffram S,Koggel A,et al.Midulation of drug transport by selected flavonoids:involvement of P-gp and OCT? Eur J Pharm Sci,2005;25:263-271.
    [76]Walgren RA,Karnaky KJJ,Lindenmayer GE,et al.Efflux of dietary flavonoid quercetin-4'-glucoside across human intestinal Caco-2 cell monolayers by apical multidrug resistance-associated protein-2.J Pharmaco Exp Ther,2000;294:830-836.
    [77]Zhang S,Morris ME.Effects of the flavonoids biochanin A,morin,phloretin,and silymarin on P-glycoprotein-mediated transport.J Pharmacol Exp Ther,2003;304:1258-1267.
    [78]Leslie EM,Mao Q,Oleschuk CJ,et al.Modulation of multidrug resistance protein 1(MRP1/ABCC1)transport and ATPase activities by interaction with dietary flavonoids.Mol Pharmacol,2001;59:1171-1180.
    [79]Van Zanden JJ,De Mul A,Wortelboer HM,et al.Reversal of in vitro cellular MRP 1 and MRP2 mediated vincristine resistance by the flavonoid myricetin.Biochem Pharmacol,2005;69:1657-1665.
    [80]Van Zanden JJ,Wortelboer HM,Bijlsma S,et al.Quantitative structure activity relationship studies on the flavonoid mediaed inhibition of multidrug resistance proteins 1 and 2.Biochem Pharmacol,2005;69:699-708.
    [81]Lania-Pietrzak B,Michalak K,Hendrich AB,et al.Modulation of MRP 1 protein transport by plant,and synthetically modified flavonoids.Life Sci,2005;77:1879-1891.
    [82]Nguyen H,Zhang S,Morris ME.Effect of falvonoids on MRP 1-mediated transport in Panc-1 cells.J Pharm Sci,2003;92:250-257.
    [83]Wu CP,Calcagno AM,Hladky SB,et al.Modulatory effects of plant phenols on human multidrug-resistance proteins 1,4 and 5(ABCC1,4 and 5).FEBS J,2005;272:4725-4740.
    [84]Zhang S,Wang X,Sagawa K,et al.Flavonoids shrysin and benzoflavone,potent breast cancer resistance protein inhibitors,have no significant effect on topotecan pharmacokinetics in rats or mdrla/b(-/-)mice.Durg Metab Dispo,2005;33:341-348.
    [85]Zhang S,Yang X,Morris ME.Combined effects of multiple flavonoids on breast cancer resistance protein(ABCG2)mediated transport.Pharm Res,2004;21:1263-1273.
    [86]Zhang S,Yang X,Morris ME.Flavonoids are inhibitors of breast cancer resistance protein(ABCG2)mediated transport.Mol Pharmaco,2004;65:1208-1216.
    [87]Imai Y,Tsukahara S,Asada S,et al.Phytoestrogens/flavonoids reverse breast cancer protein/ABCG2-mediated multidrug resistance.Cancer Res,2004;64:4346-4352.
    [88]Ahmed-Belkacem A,Pozza A,Munoz-Martinez F,et al.Flavonoid structure-activity studies identify 6-prenylchrsin and tectochysin as potent and specific inhibitors of breast cancer resistance protein ABCG2.Cancer Res,2005;65:4852-4860.
    [89]Cooray HC,Janvilisri T,Van Veen HW,et al.Interaction of the breast cancer resistance protein with plant polyphenols.Biochem Biophys Res Commun,2004;317:269-275.
    [90]Wang Y,Cao J,Zeng S.Involvement of P-glycoprotein in regulating cellular levels of Ginkgo flavonols:quercetin,kaempferol,and isorhamnetin.J Pharm Pharmacol,2005;57:751-758.
    [91]He Y,Zeng S.Transport characteristics of rutin deca(H-)sulfonate sodium across Caco-2 cell monolayers.J Pharm Pharmacol,2005;57:1297-1303.
    [92]Mills E,Montori V,Perri D.,et al.Natural health product-HIV drug interactions:a systematic review.Int J STD ATDS,2005;16:181-186.
    [93]Fugh-Berman A,Ernst E.Herb-drug interactions:review and assessment of report reliability.Br J Clin Pharmacol,2001;52:587-595.
    [94]Saruwatari J,Nakagawa K,Shindo J,et al.The in-vivo effects of sho-saiko-to,a traditional Chinese herbal medicine,on two cytochrome P450 enzymes(1A2 and 3 A)and xanthine oxidase in man.J Pharm Pharmacol,2003;55:1553-1559.
    [95]Anderson GD,Rosito G,Mohustsy MA,et al.Drug nteractionpotential of soy extract and Panax ginseng.J Clin Pharmacol,2003;43:643-648.
    [96]Scalbert A,Manach C,Morand C,et al.Dietary polyphenols and the prevention of diseases.Crit Rev Food Sci Nutr,2005;45:287-306.
    [97]Graf BA,Milbury PE,Blumberg JB.Flavonols,Flavones,Flavanones,and Human Health:Epidemiological Evidence.J Medic Food,2005;3:281-290.
    [98]Gurley BJ,Gardner SF,Hubbard MA,et al.Clinical assessment of effects of botanical supplementation on cytochrome P450 phenotypes in the elderly:St John's wort,garlic oil,Panax ginseng and Ginkgo biloba.Drugs Aging,2005;22:525-539.
    [99]Bailey DG,Arnold JM,Munoz C,et al.Grapefruit juicefelodipine interaction:mechanism,predictability,and effect of naringin.Clin Pharmacol Ther,1993;53:637-642.
    [100]Fuhr U,Maier-Bruggemann A,Blume H,et al.Grapefruit juice increases oral nimodipine bioavailability.Int J Clin Pharmacol Ther,1998;36:126-132.
    [101]Ducharme MP,Warbasse LH,Edwards DJ.Disposition of intravenous and oral cyclosporine after administration with grapefruit juice.Clin Pharmacol Ther,1995;57:485-491.
    [102]Kupferschmidt HH,Fattinger KE,Ha HR,et al.Grapefruit juice enhances the bioavailability of the HIV protease inhibitor saquinavir in man.Bri J Clin Pharmacol,1998;45:355-359.
    [103]Dresser GK,Bailey DG,Leake BF,et al.Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine.Clin Pharmacol Ther,2002;71:11-20.
    [104]Rajnarayana K,Reddy MS,Vidyasagar J,et al.Study on the influence of silymarin pretreatment on metabolism and disposition of metronidazole.Arzneimittelforschung,2004;54:109-113.
    [105]Zhang H,Wong CW,Coville PF,et al.Effect of the grapefruit flavonoid naringin on pharmacokinetics of quinine in rats.Drug Metabol and Drug Interact,2000;17: 351-363.
    [106]Lai MY,Hsiu SL,Hou YC,et al.Significant decrease of cyclosporine bioavailability in rats caused by a decoction of the roots of Scutellaria baicalensis.Planta Medica,2004;70:132-137.
    [107]Choi JS,Choi HK,Shin SC.Enhanced bioavailability of paclitaxel after oral coadministration with flavone in rats.Inter J Pharmaceutics,2004;275:165-170.
    [108]Choi JS,Jo BW,Kim YC.Enhanced paclitaxel bioavailability after oral administration of paclitaxel or prodrug to rats pretreated with quercetin.Eur J Pharm Biopharm,2004;57:313-318.
    [109]Phang JM,Poore CM,Lopaczynska J,et al.Flavonolstimulated efflux of 7,12-dimethylbenz(a)anthracene in multidrug-resistant breast cancer cells.Cancer Res,1993;53:5977-5981.
    [110]Versantvoort CH,Schuurhuis GJ,Pinedo HM,et al.Genistein modulates the decreased drug accumulation in non-P-glycoprotein mediated multidrug resistant tumour cells.Br J Cancer,1993;68:939-946.
    [111]Aller SG,Yu JD,Ward A,et al.Structure of P-Glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding.Science,2009;323:1718-1722.
    [112]Wang EJ,Barecki-Roach M,Johnson WW.Elevation of P-glycoprotein function by a catechin in green tea.Biochem Biophys Res Commun,2002;297:412-418.
    [113]Hou XL,Takahashi K,Tanaka Ken,et al.Curcuma drugs and curcumin regulate the expression and function of P-gp in Caco-2 cells in completely opposite ways.Inter J Pharm,2008;358:224-229.
    [114]Han Y,Tan TMC,Lim LY.Effects of capsaicin on P-gp function and expression in Caco-2 cells.Biochem Pharmacol,2006;71:1727-1734.
    [115]Han Y,Tan TMC,Lim LY.In vitro and in vivo evaluation of the effects of piperine on P-gp function and expression.Toxicol Appl Pharmacol,2008;230:283-289.
    [116]Lohner K,Schn(?)bele K,Daniel H,et al.Flavonoids alter P-gp expression in intestinal epithelial cells in vitro and in vivo.Mol Nutr Food Res,2007;51:293-300.
    [117]Zhang Z,Wu JY,Hait WN,et al.Regulation of the stability of P-glycoprotein by ubiquitination.Mol Pharmacol,2004;66:395-403.
    [118]Chen RF,Li ZH,Kong XH,et al.Effect of mutated IkappaBalpha transfection on multidrug resistance in hilar cholangiocarcinoma cell lines.World J Gastroenterol,2005;11:726-728.
    [119]Daschner PJ,Ciolino HP,Plouzek CA,et al.Increased AP-1 activity in drug resistant human breast cancer MCF-7 cells.Breast Cancer Res Treat,1999;53:229-240.
    [120]Thevenond F,Frienmann JM,Katsen AD,et al.Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-kappa B activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis.J Biol Chem,2000;275:1887-1896.
    [121]Nwaozuzo OM,Sellers LA,Barrand MA.Signalling pathways influencing basal and H(2)O(2)-induced P-glycoprotein expression in endothelial cells derived from the blood-brain barrier.J Neurochem,2003;14:37-43.
    [122]Geick A,Eichelbaum M,Burk O.Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin.J Biol Chem,2001;276:14581-14587.
    [123]Mitin T,Von Moltke LL,Court M,et al.Levothyroxine up-regulates P-glycoprotein independent of the Pregnane X receptor.Drug Metab Dispos,2004;32:779-782.
    [124]Vaidyanathan JB,Walle T.Transport and metabolism of the tea flavonoid (-)-epicatechin by the human intestinal cell line Caco-2.Pharm Res,2001;18:1420-1425.
    [125]Murota K,Shimizu S,Chujo H,et al.Efficiency of absorption and metabolic conversion of quercetin and its glucosides in human intestinal cell line Caco-2.Arch Biochem Biophys,2000;384:391-397.
    [126]乔华,谢鋆,张晓云.花旗松素的生物活性及其应用.中草药.2003;8:附 5-6.
    [127]Tiukavkina NA,Rulenko IA,Kolesnik IA.Natural flavonoids as dietary antioxidants and biologically active additives.Vopr Pitan,1996;2:33-38.
    [128]Tiukavkina NA,Rulenko I A,Kolesnik IA.Dihydro-quercetin a new antioxdant and biologically active food additive.Vopr Pitan,1997;6:12-15.
    [129]Plotnikov MB,Plotnikov DM,Aliev 01,et al.Hemorheological and antioxidant effects of Ascovertin in patients with sclerosis of cerebral arteries.Clin Hemorheo Microcir,2004;30:449-452.
    [130]Brand W,Schutte ME,Williamson G,et al.Flavonoid-mediated inhibition of intestinal ABC transporters may affect the oral bioavailability of drugs,food-borne toxic compounds and bioactive ingredients.Biomed Pharmacother,2006;60:508-519.
    [131]Van Zanden JJ,Van der Woude H,Vaessen J,et al.The effect of quercetin phase Ⅱ metabolism on its MRP1 and MRP2 inhibiting potential.Biochem Pharmacol,2007;74:345-351.
    [1]Lwashina T.The structure and distribution of the flavonoids in plants.J Plant Res,2000;113:287-299.
    [2]Bird AE,Marshall AC.Structure of chlorflavonin.J Chem SOC C,1969;2418-2420.
    [3]Marchelli R,Vining LC.The biosynthetic origin of chlorflavonin,a flavonoid antibiotic from Aspergillus candidus.Canad J Biochem,1973;51:1624-1629.
    [4]Wollenweber E.Flavones and flavonols.In:Harborne JB(Ed.),The flavonoids:advances in research since 1986,Chapman and Hall,London,1994;259-335.
    [5]Hayashi Y,Ohara S,Takahashi T.Isolation of new 3-hydroxylated flavonoid C-glucosides from the heartwood of Zelkova serrata Makino and other Zelkova species.Mokuzai Gakkaishi,1987;33:511-552.
    [6]Bezuidenhoudt BCB,Brandt EV,Ferreira D.Flavonoid analogues from Pterocarpus species.Phytochem,1987;26:531-535.
    [7]Hillis WE,Horn DHS.The structure of keyakinin.Austral J Chem,1966;19:705-708.
    [8]Jay M.C-Glycosylflavonoids.In J.B.Harborne,ed.,The flavonoids:advances in research since 1986.Chapman and Hall,London,1994;57-93.
    [9]Milane HA,Al AA,Naitchabane M,et al.Transport of quercetin disodium salt in the human intestinal epithelial Caco-2 cell monolayer.Eur J Drug Metab Pharmacokinet,2007;32:139-147.
    [10]Walgren RA,Walle UK,Walle T.Transport of quercetin and its glucosides across human intestinal epithelial Caco-2 cells.Biochem Pharmacol,1998;55:1721-1727.
    [11]Walgren RA,Karnaky KJ,Lindenmayer GE,et al.Efflux of dietary flavonoid quercetin 4'-beta-glucoside across human intestinal Caco-2 cell monolayers by apical multidrug resistance-associated protein-2.J Pharmacol Exp Ther,2000;294:830-836.
    [12]He Y,Zeng S.Transport characteristics of rutin deca(H-) sulfonate sodium across Caco-2 cell monolayers.J Pharm Pharmacol,2005;57:1297-1303.
    [13]Walle T,Otake Y,Walle UK,et al.Quercetin glucosides are completely hydrolyzed in ileostomy patients before absorption.J Nutr,2000;130:2658-2661.
    [14]Crespy V,Morand C,Besson C,et al.Quercetin,butnotits glycosides,is absorbed from the rat's tomach.J Agric Food Chem,2002;50:618-621.
    [15]Noteborn HPJM,Jansen E,Benito S,et al.Oral absorption and metabolism of quercetin and sugar-conjugated derivatives in specific transport system.Cancer Lett,1997;114:175-177.
    [16]Spencer JP,Chowrinootoo G,Choudhury R,et al.The small intestine can both absorb and glucuronidate luminal flavonoids.FEBS Lett,1999;458:224-230.
    [17]Hollman PC,Bijsman MN,Van Gameren Y,et al.The sugar moiety is a major determination of the absorption of dietary flavonoid glycosides in man.Free Radic Res,1999;31:569-573.
    [18]Arts IC,Sesink AL,Faassen-Peters M,et al.The type of sugar moiety is a major determinant of the small intestinal uptake and subsequent biliary excretion of dietary quercetin glycosides.Br J Nutr,2004;91:841-847.
    [19]Tian XJ,Yang XD,Wang K,et al.The efflux of flavonoids morin,isorhamnetin-3-O-rutinoside and diosmetin-7-O-P-d-xylopyranosyl-(1-6)-P-d-glucopyranoside in the human intestinal cell line Caco-2.Pharma Res,2006;8:1721-1728.
    [20]Zuo Z,Zhang L,Zhou L,et al.Intestinal absorption of hawthorn flavonoids - in vitro,in situ and in vivo correlations.Life Sci,2006;79:2455-2462.
    [21]叶丽卡,陈济民,刘四海等.淫羊藿苷在大鼠体内的药代动力学.中国临床药 学杂志.1999;34:33-36.
    [22]栾立标,赵暖.水飞蓟宾在大鼠小肠中的吸收特性.药学学报.2006;41:138-141.
    [23]Li W,Gao J,Zhao HZ,et al.Development of a HPLC-UV assay for silybin-phosphatidylcholine complex(silybinin capsules) and its pharmacokinetic study in healthy male Chinese volunteers.Eur J Drug Metab Pharmacokinet,2006;31:265-270.
    [24]Bieger J,Cermak R,Blank R,et al.Tissue distribution of quercetin in pigs after long-term dietary supplementation.J Nutr,2008;138:1417-1420.
    [25]郭顺根,贲长思,杨美娟.~3H-淫羊藿苷定量分布与淫羊藿苷归经关系研究.北京中医药大学学报.1997;20:40-42.
    [26]Kottová N,Vagera Z,Ve(?)e(?)a R,et al.Pharmacokinetic study of iodine-labeled silibinins in rat.Pharmacoll Res,2001;44:247-253.
    [27]Chen Y,Xie S,Chen S,et al.Glucuronidation of flavonoids by recombinant UGT1A3 and UGT1A9.Biochem Pharmacol,2008;76:416-425.
    [28]Otake Y,Walle T,Oxidation of the flavonoids galangin and kaempferide by human liver microsomes and CYP1A1,CYP1A2,and CYP2C9.Drug Metab Dispo,2002;30:103-105.
    [29]Liu J,Lou YJ.Determination of icariin and metabolites in rat serum by capillary zone electrophoresis:rat pharmacokinetic studies after administration of icariin.J Pharm Biome Anal,2004;36:365-370.
    [30]Sawai Y,Kohsaka K,Nishiyama Y,et al.Serum concentrations of rutoside metabolites after oral administration of a rutoside formulation to human.Drug Res,1987;37:729-732.
    [31]Gross M,Pfeiffer M,Martini M,et al.The quantitation of metabolites of quercetin flavonolls in human urine.Cancer Epidemiol Biomarkers Prev,1996;5:711-720.
    [32]刘诗平.槲皮素及其衍生物的生物活性研究进展.中草药.1991;22:192-194.
    [33]张士善.槲皮素的体内代谢与效应的关系.中华医学杂志.1978;9:553-555.
    [34]Zhang YS,Que S,Yang XW,et al.Isolation and identification of metabolites from dihydromyricetin.Magn Reson Chem,2007;45:909-916.
    [35]Nielsen SE,Breinholt V,Justesenoe U.In vitro biotransformation of favonoids by rat liver microsomes.Xenobiotica,1998;28:389-401.
    [36]Guo JM,Qian F,Li JX,et al.Identification of a new metabolite of astilbin,3'-O-Methylastilbin,and its immunosuppressive activity against contact dermatitis.Clinical Chemistry,2007;53:465-471.
    [37]Kim BG,Lee Y,Hur HG,et al.Flavonoid 3'-O-methyltransferase from rice:cDNA cloning,characterization and functional expression.Phytochem,2006;67:387-394.
    [38]Ueno I,Nakano N,Hirono I.Metabolic fate of[~(14)C]-quercetin in the ACI rat.J Exp Med,1983;53:41-50.
    [39]Walle T,Walle UK,Halushka PV.Carbon dioxide is the major metabolite of quercetin in human.J Nutr,2001;131:2648-2652.
    [40]Chang Q,Zou Z,Ho EK,et al.Comparison of the pharmacokinetics of hawthorn phenolics in extract versus individual pure compound.J Clin Pharmacol,2005;45:106-112.
    [41]王向军.十取代芦丁硫酸钠的质量控制和药物代谢动力学研究.浙江大学2006年博士论文.
    [42]Chang Q,Zuo Z,Chow MS,et al.Difference in absorption of the two structurally similar flavonoid glycosides,hyperoside and isoquercitrinin rats.Eur J Pharm Biopharm,2005;59:549-555.
    [43]刘铁汉,王毅,王本祥等.淫羊藿苷的肠道菌代谢研究1.肠内菌对淫羊藿苷的代谢转化.中草药.2000;31:834-837.
    [44]Griffiths LA,Smith GE.Metabolism of apigenin and related compounds in the rat metabolite formation in vivo and by the intestinal microflora in vitro.Biochem J,1972;128:901-909.
    [45]Griffiths LA,Smith GE.Metabolism of myricetin and related compounds in the rat metabolite formation in vivo and by the intestinal microflora in vitro.Biochem J,1972;130:141-151.
    [46]Blaut M,Schoefer,L,Braune A.Transfofrmation of flavonoids by intestinal microorganisms.Int J Vitam Nutr Res 2003;73:79-87.
    [47]Schoefer L,Mohan R,Schwiertz A,et al.Anaerobic degradation of flavonoids by Clostridium orbiscindens.Appl Environ Microbiol,2003;69:5849-5854.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700