工业化UASB处理阿维菌素废水厌氧颗粒污泥功能菌群研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产甲烷菌群、产氢产乙酸菌群、硫酸盐还原菌群和丝状菌群是厌氧颗粒污泥中重要的功能菌群。采用基于16S rRNA的FISH技术对工业化UASB处理阿维菌素废水不同形成时期(颗粒化前期、成长期、成熟期和衰老期)厌氧颗粒污泥中相应功能菌群进行分析,结果表明:各类功能菌群及其优势种属在颗粒污泥表面和内部剖面的分布形态相同,且各优势种属之间呈现交叉重叠分布;但功能菌群相对丰度存在差异,产甲烷菌群、产氢产乙酸菌群、硫酸盐还原菌群和丝状菌群在不同形成阶段颗粒污泥中相对丰度范围分别为25.50±8.63%-50.80±8.87%、10.08±0.81%-28.06±2.12%、10.35±2.33%-16.16±4.59%和16.69±2.51-23.93±4.62%。产甲烷菌群、产氢产乙酸菌群和硫酸盐还原菌群在颗粒污泥中的相对丰度随着颗粒污泥形成时间的延长而增大,成熟期最大。颗粒污泥表面产甲烷菌群的相对丰度小于内部,而颗粒污泥表面产氢产乙酸菌群大于其内部。与已报道研究结果比较,阿维菌素残留可能对颗粒污泥中功能菌群产生抑制作用。不同形成阶段的颗粒污泥最大比产甲烷活性范围为1.311-1.562 g·(g·d)-1,最大比产乙酸速率范围为0.912-1.145 g·(g·d)-1,且不同形成阶段的颗粒污泥产甲烷活性和产乙酸活性与颗粒污泥中产甲烷菌群和产氢产乙酸菌群的相对丰度变化趋势一致,表明颗粒污泥的产甲烷活性与产乙酸活性与产甲烷菌群和产氢产乙酸菌群的相对丰度密切相关。
     同时还采用了PCR-DGGE技术对颗粒污泥中微生物群落进行了分析,结果表明:颗粒污泥中占优势的古菌菌群主要是产甲烷菌群,其3个优势种属分别为产甲烷杆菌、产甲烷八叠球菌和产甲烷髦菌,其相对丰度分别为50.03%、39.22%和10.75%,这与FISH的分析结果一致。
Methanogens, syntrophic acetogenic bacteria, sulfate reducing bacteria and filamentous bacteria are considered to be important functional microbial population in anaerobic granular sludge. Fluorescence in situ hybridization(FISH) based on 16S rRNA was used to analyze the corresponding functional microbial populations of anaerobic granular sludge with different formation periods(initial period, developing period, mature period and aging period) in a full-scale UASB treating avermectin wastewater. The results indicated that the distribution forms of methanogens, syntrophic acetogenic bacteria, sulfate reducing bacteria and filamentous bacteria as well as their dominant species were identical on the surface and inner face of granular sludge samples with different formation periods, Inaddition, the dominant species showed overlap distribution. However, the relative abundances of these functional bacterial populations were different, the relative abundances of methanogens, syntrophic acetogenic bacteria, sulfate reducing bacteria and filamentous bacteria were 25.50±8.63% to 50.08±8.87%, 10.08±0.81% to 28.06±2.12%,10.35±2.33% to 16.16±4.59% and 16.69±2.51 to 23.93±4.62%, respectively. The relative abundances of methanogens, syntrophic acetogenic bacteria and sulfate reducing bacteria in mature granular sludge were maximum, The relative abundances of methanogens on the inner face were larger than those on the surface of granular sludge samples, on the contrary, the relative abundances of syntrophic acetogenic bacterias on the inner face were smaller than those on the surface of granular sludge samples. The avermectin residue in wastewater showed possible inhibition effect on functional microbial community, compared their relative abundances with reported cases. The maximum specific methanogenic activities of granular sludge samples ranged from 1.311 to 1.562g·(g·d)-1 and the maximum specific acetate rate ranged from 0.912-1.145g·(g·d)-1. The variation tendencies of maximum specific methanogenic activities and the maximum specific acetate rate of granular sludge samples were the same with the relative abundance of methanogens and syntrophic acetogenic bacteria, implying the strong correlation of methanogens and syntrophic acetogenic bacteria with bioactivity of granular sludge.
     Polymerase chain reaction(PCR) and denaturing gradient gel electrophoresis(DGGE) were also used to analyze the microbial community in the anaerobic granular sludge. The result indicated that methanogens were the dominant archaea and their dominant species were Methanobacteriaceae, Methanosarcinaceae and Methanosaetaceae, and the relative abundances were 50.03%,39.22% and 10.75%, respectively. This was in accordance with the results of FISH analysis.
引文
[1] H.GAO, M.LIU, J.T.LIU, et al. Medium Optimization for the Production of Avermection B1a by Streptomyces Avermitilis 14-12A using Response Surface Methodlogy. Bioresource Technology, 2009(100): 4012-4016
    [2] P.YIN, Y.H.WANG, S.L.ZHANG, et al. Effect of Mycelia Morphology on Bioreactor Performance and Avermectin Production of Streptomyces Avermitilices in Submerged Cultivation. Journal of the Chinese Institute of Chemical Engineers, 2008(39):609-615
    [3] M.LI, Z.CHEN, X.P.LIN, et al. Engineering of Avermectin Biosynthetic Genes to Improve Production of Ivermectin in Streptomyces Avermitilis. Bioorganic & Medicinal Chemistry Letters, 2008(18): 5359-5363
    [4] J.A.LEMUS, G.BLANCO, B.ARROYO. Fatal Embryo Hondral Damage Associated with Fluoroquinolones in Eggs of Threatened Avian Scavengers. Ecnvironmental Pollution, 2009(157): 2421-2427
    [5] B.F.ARDELLI, L.E.STITT, J.B.TOMPKINS, et al. A Comparison of the Effect of Ivermectin and Moxidectin on the Nematode Caenorhabditis Elegans. Veterinary Parasitology, 2009(in press)
    [6] D.M.YATES, V.PORTILLO, A.J.WOLSTENHOLME. The Avermectin Receptors of Haemonchus Contortus and Caenorhabditis elegans. International Journal for Parasitology, 2003(33): 1183-1193
    [7] T.PITTERNA, J.CASSAYRE, O.F.HUTER, et al. New Ventures in the Chemistry of Avermectins. Bioorganic & Medicinal Chemistry, 2009(17): 4085-4095
    [8] K.G. KARTHIKEYAN, T MICHAEL. Meyer.Occurrence of Antibiotics in Wastewater Treatment Facilities in Wisconsin, USA.Science of the Total Environment, 361(2006): 196-207
    [9]李再兴,黄云龙,杨景亮,等. PSAF混凝剂预处理阿维菌素废水试验研究.河北科技大学学报, 2008, 12: 332-335
    [10]李再兴,杨景亮,邓晓丽,等.铁炭内电解预处理阿维菌素废水.化工环保, 2002, 12: 347-350
    [11]吕建伟,李春峰. UASB—水解酸化—接触氧化工艺处理阿维菌素废水.给水排水, 2005, 12: 54-55
    [12]李再兴,杨景亮,刘春,等.工业化UASB反应器污泥无载体颗粒化特性研究.南京理工大学学报(自然科学版), 2008, 10: 655-660
    [13]李再兴,杨景亮,刘春艳,等.阿维菌素对厌氧消化的影响研究.中国沼气, 2001, 19(1): 13-15
    [14] J.C.COSTA, M.M.ALVES, E.C.FERREIRA. A Chemometric Tool to Monitor High-rateAnaerobic Granular Sludge Reactors during load and Toxic Disturbances. Biochemical Engineering Journal, 2009(in press)
    [15] K.Y.PARK, K.H.AHN, S.K.MAENG, et al. Feasibility of Sludge Ozonation for Stabilization and Conditioning. Ozone Science&Engineering, 2003, 25(1): 73-80
    [16] MARIA, ALCINA, PEREIRA, et al. Molecular Monitoring of Microbial Diversity in Expanded Granular Sludge Bed(EGSB) Reactors Treating Oleic Acid. FEMS Microbiology Ecology, 2002, 41: 95-103
    [17] Y.LIU, H.L.XU, K.Y.SHOW, et al. Anaerobic Granulation Technology for Wastewater Treatment. World Journal of Microbiology & Biotechnology, 2002,18: 99-113
    [18] H.Q.YU, H.H.P FANG, J.H.TAY. Enhanced Sludge Granulation in Upflow Anaerobic Sludge Blanket(UASB) Reactors by Aluminum Chloride. Phemosphere, 2001, 44: 31-36
    [19] S.UEMURE, H HARADA. Effect of Temperature Elevation from 55℃to 65℃on the Performance of a Thermophilic UASB Reactor and Characteristics of Methanogenic Granular Sludge.Environ Technol,1993,14(10):897-901.
    [20] L.B.CHU, F.L.YANG, X.W.ZHANG. Anaerobic Treatment of Domestic Wastewater in a Membrane-coupled Expended Granular Sludge Bed (EGSB) Reactor under Moderate to low Temperature. Process Biochemistry, 2005(40): 1063-1070
    [21] R.Y.GAO, J.L.WANG. Effects of pH and Temperature on Isotherm Parameters of Chlorophenols Biosorption to Anaerobic Granular Sludge. Journal of Hazardous Materials, 2007(145): 398-403
    [22] G.M.SINCLAIR, G.I.PATON, A.A.MEHARG, et al. Biosensor Assessment of pH Effects on Microbial Sorption and Toxicity of Chlorophenols. FEMS Microbiol. Lett, 1999(174): 73-278
    [23] A.A.ABREU, A.S.DANKO, J.C.COSTA, et al. Alves.Inoculum type Response to Different pHs on Biohydrogen Production from L- arabinose, a Component of Hemicellulosic Biopolymers. International Journal of Hydrogen Energy, 2009(34): 1744-1751
    [24] N.TIXIER, G.GUIBAUD, M.BAUDU. Effect of pH and Ionic Environment Changes on Interparticle Interactions Affecting Activated Sludge flocs: Arheological Approach. Environ Technol. 2003,24: 971-978
    [25] E.D.HULLEBUSCH, S.UTOMO, M.H.ZANDVOORT, et al. Comparison of three Sequential Extraction Procedures to Describe Metal Fractionation in Anaerobic Granular Sludges. Talanta, 2005(65): 549-558
    [26] X.L.HAO, M.H.ZHOU, H.Q.YU, et al. Effect of Sodium ion Concentration on Hydrogen Production from Sucrose by Anaerobic Hydrogen-Producing Granular Sludge. Chinese J. Chem. Eng, 2006, 14(4) : 511-517
    [27] M.PERNETTI, L.D.PALMA. Experimental Evaluation of Inhibition Effects of Saline Wastewateron Activated Sludge. Environ Technol, 2005, 26: 695-703
    [28] M.V.G VALLERO, J.SIPMA, G.LETTINGA, et al. High-rate Sulfate Reduction at high Salinity (up to 90mScm?1) in Mesophilic UASB Reactors. Biotechnol. Bioeng, 2004, 86 : 226-235
    [29] A.PEVERE, G.GUIBAUD, E.D.V.HULLEBUSCH, et al. Effect of Na+ and Ca2+ on the Aggregation Properties of Sieved Anaerobic Granular Sludge. Colloids and Surfaces, 2007, 306: 142-149
    [30] E.P.A.V.LANGERAK, H.RAMAEKERS, J.WIECHERS, et al. Impact of Location of CaCO3 Precipitation on the Development of Intact Anaerobic Sludge. Water Resch, 2000, 34: 437-446
    [31] F.G.FERMOSO, J.BARTACEK, S.JANSEN. Metal Supplementation to UASB Bioreactors from cell-metal Interactions to Full-scale Application. Science of taleal environment, 2009, 407: 3652-3667
    [32] E.D.V.HULLEBUSCH, J.GIETELING, W.V.DAELE, et al. Effect of Sulfate and Iron on Physic-Chemical Characteristics of Anaerobic Granular Sludge. Biochemical Engineering Journal, 2007, 33: 168-177
    [33] J.VIRKUTYTE, E.V.HULLEBUSCH, M.SILLANPAA, et al. Copper and Trace Element Fractionation in Electrokinetically Treated Methanogenic Anaerobic Granular Sludge. Environmental Pollution, 2005, 38: 517-528
    [34] E.D.V.HULLEBUSCH, A.PEERBOLTE, M.H.ZANDVOORT, et al. Sorption of Cobalt and Nickel on Anaerobic Granular Sludges: Isotherms and Sequential Extraction. Chemosphere, 2005,58: 493-505
    [35] R.LEPISO, J.RINTAL, A. Extreme Thermophilic (70°C) VFA-fed UASB Reactor Performance, Temperature Response load Potential and Comparison with 35 and 55°C UASB Reactors. Water Research, 1999, 33: 3162-3170.
    [36] J.B.V.LIER, J.L.S.MARTIN, G.LETTINGA. Effect of Temperature on the Anaerobic Thermophilic Conversion of Volatile Fatty Acids by Dispersed and Granular Sludge. Water Research, 1996,30: 199-207
    [37] S.REBAC, S.GERBENS, P.LENS, et al. Kinetics of Fatty Acid Degradation by Psychrophilically Grown Anaerobic Granular Sludge. Bioresource Technology, 1999, 69: 241-248.
    [38] S.K.HAN, S.H.KIM, H.S.SHIN. UASB Treatment of Wastewater with VFA and Alcohol Generated during Hydrogen Fermentation of Food Waste. Process Biochemistry, 2005, 40: 2897-2905
    [39] P.N.L.LENS, M.C.V.D.BOSCH, L.W.POL, et al. Effect of Staging on Volatile Fatty Acid Degradation in a Sulfidogenic Granular Sludge Reactor. Water Research, 1998, 32: 1178-1192
    [40]胡纪萃.废水厌氧生物处理理论与技术.北京.中国建筑工业出版社, 2002: 140-141, 155-159,37-39
    [41] U.UPADHYAY, P.KUMAR, I.MEHROTRA. Anaerobic Degradation of Benzoate: Batch studies. Bioresource Technology, 2008,99: 6861-6865.
    [42] D.PUYOL, A.F.MOHEDANO, J.L.SANZ, et al. Comparison of UASB and EGSB Performance on the Anaerobic Biodegradation of 2,4-Dichlorophenol. Chemosphere, 2009, 76: 1192-1198
    [43] X.W.LIU, R.HE, D.S.SHEN. Studies on the Toxic Effects of Pentachlorophenol on the Biological Activity of Anaerobic Granular Sludge. Journal of Environmental Management, 2008, 88: 939-946
    [44] T.NOZOE. Efects of Methanogenesis and Sulfate-Reduction on Acetogenetic Oxidation of Propionate and Further Decomposition of Acetate in Paddy Soil. Soil Sci. Plant Nutr, 1997, 43: 1-10
    [45] D.T.SPONZA, C.CIGAL. Relationships between Anaerobic Consortia and Removal Efficiencies in an UASB Reactor Degrading 2,4-Dichlorophenol (DCP). Journal of Environmental Management, 2008, 87: 177-192
    [46] R.CONRAD, M.KLOSE. Selective Inhibition of Reactions Involved in Methanogenesis and Fatty Acid Production on Rice Roots. FFMS Microbiology Ecology, 2000, 34: 27-34
    [47] O.A.ARIKAN, L.J.SIKORA, W.MULBRY, et al. The Fate and Effect of Oxytetracycline during the Anaerobic Digestion of Manure from Therapeutically Treated Calves. Process Biochemistry, 2006,41:1637-1643
    [48] D.I.MASSE, D.LU, L.MASSE. Effect of Antibiotics on Psychrophilic Anaerobic Digestion of Swine Manure Slurry in Sequencing Batch Reactors. Bioresource Technology , 2000, 75: 205-211
    [49] Z.QIANG, J.J.MACAULEY, M.R.MORMILE, et al. Treatment of Antibiotics and Antibiotic Resistant Bacteria in Swine Wastewater with free Chlorine. Journal of Agricultural and Food Chemistry, 2006, 54: 8144-8154
    [50]裘湛. UASB反应器内污泥颗粒化过程加速的研究.合肥:合肥工业大学, 2002
    [51] J.H.TAY, H.L.XU, K.C.TEO. Molecular Mechanism of Granulation. I: H Super (+) Translocation Dehydration theory. Journal of Environmental Engineering, 2000, 3: 403-410.
    [52] K.C.TEO, H.L.XU, J.H.TAY. Molecular Mechanism of Granulation. II: Proton Translocating Activity . Journal of Environmental Engineering, 2000, 3: 411-418
    [53] Y. LIU, H.L. XU, S.F.YANG, etal. Mechanisms and Models for Anaerobic Granulation in Upflow Anaerobic Sludge Blanket Reactor. Water Research, 2003,37: 661-673
    [54]秦明华,朱明军,梁世中.分子生物学在生物强化处理环境污染物中的应用.上海环境科学, 2003, 22(6): 435-438
    [55]邓小宽.现代生物技术在分子微生物生态学中的应用.国外医药抗生素分册, 2006, 27(4):164-170
    [56] I.M.HEAD, J.R.SAUNDERS, R.W.PICKUP. Microbial Evolution, Diversity and Ecology: Adecade of Ribosomal RNA Analysis of Uncultivated Rnicroorganisms .MicrobEcology, 1998, 35: l-21
    [57]宋琳玲,曾光明,陈耀宁,等.荧光原位杂交技术及其在环境微生物生态学中的应用研究.微生物学杂志, 2007.1: 40-44
    [58]孙颖,王洪振.荧光原位杂交技术在染色体生物学中的应用.吉林师范大学学报(自然科学版), 2005. 2: 70-72
    [59] T.BOUVIER, P.A.D.GIORGIO. Factors Influencing the Detection of Bacterial Cells using Fluorescence in Situ Hybridization (FISH): A quantitative Review of Published Reports. FEMS Microbiology Ecology, 2003, 44(1): 3-15
    [60] A.K.RAAP. Advances in Fluorescence in Situ Hybridization. Mutation Research,1998, 400: 287-298
    [61] A.MOTER, U.B.GOBLE. Fluorescence in Situ hybridization (FISH) for Direct Visualization of Microorganisms. Journal of Microbiological Methods, 2000, 41: 85-112
    [62]陈成忠,于洪芹.荧光原位杂交技术及其应用.生物学教学, 2007, 1: 2-3
    [63] J.L.STEPHENS, S.E.BROWN, N.L.V.LAPITAN, et al. Physical Mapping of Barley genes using an Ultrasensitive Fluorescence in Situ Hybridization Technique. Genome, 2004, 47: 179-189
    [64]余利岩,徐平,姚天爵,等.新型Actinobacteria荧光原位杂交(FISH)探针的设计和应用.中国抗生素杂志, 2000, 25(6): 401-406
    [65]李璇,忽伟军,李常宝.基因组原位杂交中探针长度的优化.中央民族大学学报(自然科学版) , 2002, 11(1): 63-66
    [66] D.DEERE, G.VESEY, N.ASHBOLT, et al. Evaluation of Fluorochromes for Flow Cytometric Detection of Cryptosporidium Parvum Oocysts Labelled by Fluorescent in Situ Hybridization. Applied Microbiology, 1998, 27: 352-356
    [67]傅山岗,李宗义.厌氧颗粒污泥的超微结构分析.生物技术, 2004, 14(4): 69-71
    [68] A.PEVERE, G.GUIBAUD, E.HULLEBUSCH, et al. Viscosity Evolution of Anaerobic Granular Sludge. Biochemical Engineering Journal, 2006 (27): 315-322
    [69]张晓君,冯清平,白玲.分子生态学方法在微生物多样性研究中的应用.微生物学通报, 1996, 26(1): 68-69
    [70]乐毅全,顾国维. 16SrRNA基因技术在环境科学领域中的应用.四川环境, 2003, 22(6): 1-2
    [71] W.T.LIU, O.C.CHAN, H.H.P.FANG. Microbial Community Dynamics during star-up of Acidogenic Anaerobic Reactors. Water Research, 2002(36): 3203-3210
    [72]夏北成, J.Z.ZHOU, J.M.TIEDJE.分子生物学方法在微生物生态学中的应用.中山大学学报(自然科学版), 1998, 37(3): 97-101
    [73] T.ZHANG, H.P.FANG. Digitization of DGGE (Denaturant Gradient Gel Electrophoresis) Profile and Cluster Analysis of Microbial Communities. Biotechnology Letters, 2000, 22: 399-405
    [74] G.MUYZER, E.C.WAAL, A.G.UITTERLINDEN. Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction Amplified Genes Encoding for 16SrRNA. Appl Environ Microbiol, 1993, 59:695-700
    [75] M.A.TANNER, B.M.GOEBEL, M.A.DOJKA, et al. Specific Ribosomal DNA Sequence from Diverse Environmental Settings Correlate with Experimental Contaminant. Applied and Environmental Microbiology, 1998, 8: 3110-3113
    [76] M.KEYSER, R.C.WITTHUHN, C.LAMPRECHT, et al. PCR-based DGGE Fingerprinting and Identification of Methanogens Detected in three Different types of UASB Granules. Systematic and Applied Microbiology, 2006, 29: 77-84
    [77]张彤,方汉平.微生物分子生态技术:16SrRNA/DNA方法.微生物学通报, 2003, 30(2): 96-101
    [78]周群英,王士芬.环境工程微生物学.第3版.北京:高等教育出版社, 2007: 315-318
    [79] METCALF, EDDY. Wastewater Engineering Treatment and Reuse. Fourth edition.北京:清华大学出版社, 2002: 1005-1007
    [80]高廷耀,顾国维,周琪.水污染控制工程(下册).第3版.北京:高等教育出版社, 2006: 274-277
    [81]周群英,高廷耀.环境工程微生物学.第2版.北京:高等教育出版社, 1999: 240-243
    [82]孙寓姣.厌氧产甲烷颗粒污泥微生态学的研究现状.中国沼气, 2007, 25(4): 5-9
    [83] M. A.TANNER, B. M. GOEBE, M. A. DOJKA. Specific Ribosomal DNA Sequence from Diverse Environmental Settings Correlate with Experimental Contaminant. Applied and Environmental Microbiology, 1998, 64: 790-803
    [84] J. GEETS, B. BORREMANS, L. DIELS, etal. DsrB Gene-based DGGE for Community and Diversity Surveys of Sulfate-reducing Bacteria. Journal of Microbiological methods, 2006, 66: 194-205
    [85] M.KEYSER, R.C.WITTUHN, C.LAMPRECHT. PCR-based DGGE Fingerprinting and Identification of Methanogens Detected in Three Different Types of UASB Granules. Systematic and Applied Microbiology, 2006, 29: 77-84
    [86] M..H.NICOLAISEN, N.R..PETERSEN. Nitrification–Denitrification Dynamics and Community Structure of Ammonia Oxidizing Bacteria in A High Yield Irrigated Philippine Rice Field. FEMS Microbiology Ecology, 2004, 4(49): 359-369
    [87]杨洋,王力. UASB反应器中厌氧氨氧化污泥的种群结构.中国环境科学, 2006, 26(1): 52-56
    [88]吴卿,赵新华.应用PCR-DGGE研究饮用水微生物的多样性.南开大学学报, 2007, 40(3):92-96
    [89]刘敏,朱开玲,李洪波,等.应用DGGE技术分析黄海冷水团海域的细菌群落组成.环境科学, 2008, 29(4): 31-42
    [90]殷峻,陈英旭,刘和,等.应用PCR-DGGE技术研究处理含氨废气的生物滤塔中微生物多样性,环境科学, 2006, 6(2): 11-15
    [91]肖勇,杨朝辉,曾光明,等. PCR-DGGE研究处理垃圾渗滤液序批式生物膜反应器(SBBR)中的细菌多样性.环境科学, 2007 ,5(10): 1095-1101
    [92] W.T.LIU, O.C.CHAN, H.H.P.FANG. Characterization of Microbial Community in Granular Sludge Treating Brewery Wastewater . Water Reasearch, 2002, 36: 1767-1775
    [93] W.JUPRAPUTTASRI, N.BOONAPATCHAROEN, S.CHEEVADHANARAK, et al. Use of an Alternative Archaea Specific Probe for Methanogen Detection. Journal of Microbiological Methods, 2005, 61: 95-104
    [94] K.KUBOTA, H.IMACHI, S.KAWAKAMI, et al. Evaluation of Enzymatic cell treatments for application of CARD-FISH to methanogens. Journal of Microbiological Methods, 2008, 72: 54-59
    [95] E.E.DIAZ, A.J.M.STAMS, R.AMILS, et al. Phenotypic Properties and Microbial Diversity of Methanogenic Granules from a Full-Scale Upflow Anaerobic Sludge Bed Reactor Treating Brewery Wastewater. Applied and Environmental Microbiology, 2006, 7: 4942-4949
    [96] K W XU, H LIU, G C DU, etal. Real-time PCR AssaysTtargeting Formyltetrahydrofolate synthetase Gene to Enumerate Acetogens in Natural and Engineered Environments. Ecology/Environmental Microbiology, 2009, 3: 1-10
    [97] A.B.LEAPHART, C.R.LOVELL. Recovery and Analysis of Formyltetrahydrofolate Synthetase Gene Sequences from Natural Populations of Acetogenic Bacteria. Applied and Enyironmental Microbiology, 2001, 5: 1392-1395
    [98] A.B.LEAPHART, M.J.FRIEZ, C R LOVELL. Formyltetrahydrofolate Synthetase Sequences from Salt Marsh Plant Roots Reveal a Diversity of Acetogenic Bacteria and Other Bacterial Functional Groups. Applied and Enyironmental Microbiology, 2003, 6: 693-696
    [99] N.FERNANDEZ, R.S.ALVAREZ, J.A.FIELD, et al. Microbial Community Dynamics in a Chemolithothotrophic Denitrification Reactor Inoculated with Methanogenic Granular Sludge . Chemosphere, 2008, 70: 462-474
    [100] Y.YOUNGSEOB, L.CHANGSOO, K.JAAI, et al. Group Specific Primer and Probe sets to Detect Methanogenic Communities using Quantitative real time Polymerase Chain Reaction. Biotechnology and bioengineering. 2005, 89(6): 670-679
    [101] H.HARRMSEN, M.P.HARRY, D.L.ANTOON, et al. Detection and Localization of Syntrophic Propionate-Oxidizing Bacteria in Granular Sludge by In Situ Hybridization Using 16S rRNA-BasedOligonucleotide Probes. Applied and Enyironmental Microbiology, 1996, 5: 1656-1663
    [102] H.HARRMSEN, A.AKKERMANS, A.STAMS, et al. Population Dynamics of Propionate- Oxidizing Bacteria under Methanogenic and Sulfidogenic Conditions in Anaerobic Granular Sludge. Applied and Enyironmental Microbiology. 1996, 6: 2163-2168
    [103] K.HANSEN, B.K.AHRING, L.RASKIN. Quantification of Syntrophic Fatty Acid-b-Oxidizing Bacteria in a Mesophilic Biogas Reactor by Oligonucleotide Probe Hybridization. Applied and Enyironmental Microbiology. 1999, 11: 4767-4774
    [104] R.I.AMANN, W.LUDWIG, K.H.SCHLEIFER. Phylogenetic Identification and in Situ Detection of Individual Microbial Cells without Cultivation. Microbiol rev, 1995, 59: 143-169
    [105] D.B.OERTHER, F.L.D.L.REYES, M.F.D.L.REYES. Quantifying Filamentous Microorganisms in Activated Sludge before, during, and after an Incident of Foaming by Oligonucleotide Probe Hybridizations and Antibody Staining. Water Research. 2001, 35: 3325-3336
    [106] G.WALLNER, R.AMANN, W.BEIKER. Optimizing Fluorescent in Situ Hybridization with rRNA-targeted Oligonucleotide Probes for Flow Cytometric Identification of Microorganisms. Cytometry, 1993, 14: 136-143
    [107]张苏,刘春,杨景亮,等.工业化废水处理反应器污泥总DNA提取方法.微生物学通报, 2008, 35(10): 1659-1663
    [108]邢德峰,任南琪,宫曼丽. PCR-DGGE技术解析生物制氢反应器微生物多样性.环境科学, 2005, 26 (2): 172-177
    [109] M.SONG, S.G.SHIN, S.HWANG. Methanogenic Population Dynamics Assessed by Real- time Quantitative PCR in Sludge Granule in Upflow Anaerobic Sludge Blanket Treating Swine Wasterwater . Bioresource Technology, 2010. 101: 523-528
    [110]田沈,赵军,曹亚莉,等.产甲烷菌固定化新方法及其甲烷化特性.太阳能学报, 2002. 12: 778-781
    [111]李艳娜.产氢产乙酸细菌在厌氧产酸体系中的微生态机理分析.无锡:江南大学,2008.
    [112] F.J.SANSONE, C.S.MARTENS. Determination of Volatile Fatty Acid turnover rates in Organic-rich Marine Sediments. Marine Chemistry. 1981, 10: 233-247
    [113]陈艺阳,刘和,堵国成,等. 2-溴乙烷磺酸盐对污泥厌氧发酵过程中乙酸累积及细菌种群的影响.应用与环境生物学报. 2007, 13(1) : 108-111
    [114] Y.J.CHANG, N.NISHIO, S.NAGAI. Characteristics of Granular Methanogenic Sludge Grown on Phenol Synthetic Medium and Methanogenic Fermentation of Phenolic Wastewater in a UASB Reactor . Journal of Fermentation and Bioengineering, 1995, 79(4): 348-353
    [115] S.FUKUZAKI, N.NISHIO, S.NAGAI. High rate Performance and Characterization of Granular Methanogenic Sludges in Upflow Anaerobic Sludge Blanket Rreactors fed with various Defined Dubstrates. Journal of Fermentation and Bioengineering. 1995, 79(4): 354-359
    [116] A.T.AKARSUBASI, O.INCE, N.A.OZ, et al. Evaluation of Performance, Acetoclastic Methanogenic Activity and Archaeal Composition of Full-scale UASB Reactors Treating Alcohol Sistillery Wastewaters . Process Biochemistry, 2006, 41: 28-35
    [117] T.SHIGEMATSU, Y.Q.TANG, Y.MIZUNO, et al. Microbial Diversity of Mesophilic Methanogenic Monsortium that can Degrade Long-chain Fatty Acids in Chemostat Cultivation . Journal of Bioscience and Bioengineering, 2006, 102(6): 535-544
    [118] G.CROCETTI, M.MURTO, L.BJORNSSON. An update and Optimisation of Oligonucleotide Probes Targeting Methanogenic Archaea for use in Fluorescence in Ssitu Hybridisation (FISH) . Journal of Microbiological Methods, 2006, 65: 194-201
    [119] Y.SAIKI, C.IWABUCHI, A.KATAMI, et al. Microbial Analyses by Fluorescence in Situ Hybridization of Well-settled Granular Sludge in Brewery Wastewater Treatment Plants. Journal of Bioscience and Bioengineering, 2002, 93(6): 601-606
    [120] Y.SAIKI, A.KATAMI, Y.KITAGAWA. Factual Analysis of Ggranule Flotation in Brewery Wastewater Treatment Plants by the Fluorescence in Situ Hybridization Method. Journal of Bioscience and Bioengineering, 2003, 95(2): 188-191
    [121] B.MONTERO, J.L.GARCIA-MORALES, D.SALES, et al. Analysis of Methanogenic Activity in a Thermophilic-dry Anaerobic Reactor: Use of Fluorescent in Situ Hybridization. Waste Management, 2009, 29: 1144-1151
    [122] Y.Q.TANG, Y.FUJIMURA, T.SHIGEMATSU. Anaerobic Ttreatment Performance and Microbial Ppopulation of Thermophilic Upflow Anaerobic Filter Reactor Treating Awamori Distillery Wastewater. Journal of Bioscience and Bioengineering, 2007, 104(4): 281-287
    [123] W.JUPRAPUTTASRI, N.BOONAPATCHAROEN, S.CHEEVADHANARK, et al. Use of an Alternative Archaeaspecific Probe for Methanogen Detection. Journal of Microbiological Methods, 2005, 61: 95-104
    [124] T.SHIGEMATSU, Y.Q.TANG, H KAWAGUCHI, et al. Effect of Dilution rate on Structure of a Mesophilic Acetate-Degrading Methanogenic Community during Continuous Cultivation. Journal of Bioscience and Bioengineering, 2003, 96(6): 547-558
    [125] C.L.CHEN, J.H.WU, W.T.LIU. Identification of Important Microbial Populations in the Mesophilic and Thermophilic Phenol-Degrading Methanogenic Consortia . Water Research, 2008, 42: 1963-1976
    [126]李再兴,宋存义,杨景亮,等.高效液相色谱法测定废水中阿维菌素的含量.中国环境监测, 2007, 23(3): 7-9
    [127] Y.Y.LI, S.LAM, H.H.FANG. Interaction between Methanogenic Sulfate-Reducing and Syntrophic Acetogenic Bacteria in Anaerobic Degradation of Bbenzoate. Water Reasearch, 1996, 30: 1555-1562
    [128] A.B.LEAPHART, M.J.FRIEZ, C.R.LOVELL. Formyltetrahydrofolate Synthetase Sequences from Salt Marsh PlantRoots Reveal a Diversity of Acetogenic Bacteria and Other Bacterial Functional Groups .Applied and Enyironmental Microbiology, 2003, 1: 693-696
    [129] F.DEBOK, C.M.PLUGGE, A.J.M.STAMS. Interspecies Electron Transfer in Methanogenic Propionate Degrading Consortia. Water Reasearch, 2004, 38: 1368-1375
    [130] D.J.BATSTONE, C.PICIOREANU, M.C.M.LOOSDRECHT. Multidimensional Mmodelling to Investigate Interspecies Hydrogen Transfer in Anaerobic Biofilms. Water Reasearch, 2006, 40: 3099-3108
    [131]李艳娜,许科伟,堵国成,等.厌氧生境体系中产氢产乙酸细菌的FISH定量解析.微生物学报,2007, 47(6): 1038-1043

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700