燃气流量可调的固体火箭冲压发动机控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃气流量调节是固体火箭冲压发动机的一项关键技术,燃气流量能否调节决定了固体火箭冲压发动机的性能好坏及能否安全工作。随着对固体火箭冲压发动机性能要求的不断提高,燃气流量调节成为国内国际研究的一个热点问题。本文围绕燃气流量可调的固体火箭发动机的燃气流量调节及发动机控制开展了相关研究工作。
     首先,对气动针阀型燃气流量调节阀的结构进行了设计,并分析了该种燃气调节阀的调节特性。围绕燃气调节阀的基本结构给出了初步设计方法和设计结果;选取了燃气调节阀所用的密封材料及压力控制阀;利用数值模拟方法分析了燃气流量调节阀的调节特性,给出了燃气流量调节特性的参数化表达式。
     其次,研究了燃气流量调节系统的建模及控制问题。建立了针阀型燃气流量调节系统的两种调节模式的动态模型;引入非线性测度对比分析了两种调节模式的特性,分析了燃气流量调节系统的变参数特性及负调特性,研究结果表明本文设计的燃气流量调节系统非线性较弱并且系统特性对推进剂等参数的摄动并不十分敏感;考虑到气动伺服系统具有较强的非线性及不确定性,引入PI反馈控制降低了非线性和不确定性的影响;为了实现燃气流量的稳定调节,对燃气流量调节系统的外回路进行了控制器设计;燃气流量调节系统具有摩擦力,为了降低摩擦力对燃气流量调节的影响,研究了基于自适应颤振的摩擦力补偿方法及基于准积分控制器的摩擦力补偿方法,通过仿真表明这两种方法对燃气流量调节系统均能很好地进行摩擦力补偿。
     然后,对燃气流量调节系统进行了冷态及热态试验研究。为了进行燃气流量调节试验,搭建了燃气流量调节系统的冷态和热态试验台;进行了基于颤振的燃气调节阀的摩擦力补偿试验和气动伺服系统的控制试验;针对燃气调节系统的耗气量及沉积进行了热态试验,通过试验分析了降低调节阀耗气量的方法及调节阀结构及阀体所用材料对沉积的影响;并多次进行了燃气流量调节试验,试验表明气动针阀型燃气流量调节阀能够有效地调节燃气流量,燃气流量控制系统具有良好的性能,最大燃气流量调节比达到了4.36:1,燃气流量调节阀连续工作时间超过100秒。
     最后,提出了燃气流量可调的固体火箭冲压发动机基本控制结构,研究了固体火箭冲压发动机的推力控制和进气道不起动保护控制。为了提高发动机的性能,提出固体火箭冲压发动机控制除了推力控制还应包括各种保护控制及控制回路的切换;建立了燃气流量可调的固体火箭冲压发动机动态模型,基于模型分析了固体火箭冲压发动机的变参数特性和负调特性;针对燃气流量负调使得固体火箭冲压发动机具有非最相位系统的特性,提出了基于频域信息融合的推力控制方法和进气道等裕度控制方法,分析了固体火箭冲压发动机进气道等裕度控制由于燃气流量负调带来的不同之处;最后提出固体火箭冲压发动机切换控制系统结构,分析推力控制回路和进气道不起动保护控制回路的切换过程及积分限幅对切换过程的影响。
The control of gas generator is a key technology for ducted rockets. With the improved performance of ducted rocteks, research on gas control of gas generator has been enhanced in resently years. The gas regulation and engine control for variable flow ducted rockets were investigated in the paper.
     Firstly, the structure of pneumatic needle-type gas control valve was deisigned, and the regulating property of gas control valve was analyzed. With respect to the basic structure of gas control valve, the design methods and design results were presented. The sealing material of gas control valve and pressure control valve were selected. The regulation property of gas control valve was analyzed through numerical simulation, and the parametric expression of regulating property for gas control valve was obtained.
     Secondly, the modeling and control system of gas regualtion system were studied. The dynamic models of two regulating modes of gas regulation system were established, and the characteristic of these two modes were compared by introducting nonlinearity measure. The parameter varying characteristic and negative modulation were analyzed. Studies show that the nonlinearity of the pressure-balanced mode is weaker and the output is less sensitive to parameter uncertainty. The introduction of high-gain feedback suppresses the effects of nonlinearity and uncertainties of the pneumatic servo system and a proportional-integral (PI) controller for gas regulating system was designed. Two friction compensation methods were studied in the paper, one method is based on the adaptive dither signals, and the other is based on the quasi-integral controller. Simulations show that these two methods can compensate the friction in gas regulation system.
     Then, cold experiments and hot experiments of gas regulation system were conducted. Firstly, cold test-bed and hot test-bed were designed. The cold experiments of friction compensation based on dither signals and control of pneumatic servo system were conducted. And the hot experiments of gas depositon and gas consumption in gas regulation systm were controducted. The method of reducing gas consumption and the fluence of structure and material of control valve to gas depositon were analyzed. Extensive closed-loop control experiments were conducted, and the results of experiment show that pneumatic needle-type gas control valve can effectively control the pressure in gas generator, and gas control system has good performance. The turndown ratio of mass flow is up to 4.36:1, and the time of gas regulation is greater than 100 seconds.
     Finally, the basic control structure of variable flow ducted rockets was proposed, and the control system of ducted rockets was investigated. A dynamic model of varlable flow ducted rockets was established. Based on the model, the parameter varying characteristic and negative regulation were analyzed. According to the characteristic of non-minimum phase system extised in variable flow ducted rockets, a thrust contol method based on data fusion in frequency domain and the unstart margin control of hypersonic inlets were proposed for preventing inlet unstart. The defference of inlet unstart margin control was discussed because of negative regulation in ducted rockets. And switch system of ducted rockets was investigated, the switch process of thrust control loop and inlet unstart control loop was analyzed, and the fluence of integration limits in thrust loop and inlet margin loop to switch process was discussed.
引文
1 C. R. Limage. Solid fuel ducted rockets for ramjet/scramjet missile applicat-ions. AIAA 1996-2916, 1996
    2何洪庆,陈旭扬,孙贵宁,虞健.固冲发动机的流量调节技术—流量调节系统设计.战术导弹技术. 2009, 2: 36~40
    3闫大庆,单建胜.固体火箭冲压发动机技术进展.中国宇航学会固体火箭推进专业委员会2001年年会.西安, 2001: 1~10
    4王起飞,苗永强.流星空空导弹战术技术性能分析.航空兵器. 2004, 5: 5~8
    5申法义,吕希诚.固体燃料流量调节地面试验系统.中国宇航学会结构强度与环境工程专业委员会2003年度技术信息交流会.北京, 2003: 55~62
    6周建军.固体火箭冲压发动机燃气流量调节技术与实验研究.弹箭与制导学报. 2005, 25(4): 558~560
    7夏智勋,张炜,方丁酉等.非壅塞固体火箭冲压发动机研究进展.中国宇航学会固体火箭推进专业委员会2001年年会.西安, 2001: 79~81
    8 F. S. Ronald. A century of ramjet propulsion technology evolution. Journal of propulsion and power. 2004, 20(1): 27~58
    9 R. Wilson, C. Limage, P. Hewitt. The evolution of ramjet missile propulsion in the U.S. and where we are. AIAA 1996-3148, 1996
    10盛德林.丛林狼超声速掠海飞行靶弹.飞航导弹. 2006, 12: 2~5
    11 J. L. P. A. Moerel, W. H. C. Halswijk, R. M. vander Horst , R. Stowe, M. Lauzon. Performance simulations of a rocket and a ramjet air-to-air missils. AIAA 2001-4412, 2001
    12 M. Lauzon, R. A. Stowe, R. Lestage, A. E. H. J. Mayer, et al. Missile propulsion performance modeling in a visual simulation environment. AIAA 2001-4413, 2001
    13 A. E. H. J. Mayer, W. H. C. Halswijk, H.J.Komduur, et al. A modular ducted rocket missile model for threat and performance assessment. AIAA 2005-6013, 2005
    14何洪庆,黄生洪.整体式固体火箭冲压发动机与导弹一体化优化设计专家系统.宇航学报. 2000, 21(增刊): 69~76
    15张家骅,胡顺楠.整体式固体火箭冲压发动机研制.推进技术. 1998, 19(2): 9~13
    16孙娜,吴虎,郑书娥,王起飞.壅塞可调固体火箭冲压发动机性能计算.科学技术与工程. 2008, 8(11): 2893~2897
    17付秀文,鲍福廷.固体火箭冲压发动机设计计算一体化.计算机仿真. 2008, 25(9): 62~65
    18郭颜红.无喷管助推发动机研究.中国宇航学会固体火箭推进专业委员会2001年年会.西安, 2001: 140~145
    19霍东兴,陈林泉,严利民.双燃速串装药无喷管助推器性能分析.航空兵器. 2008, 4: 40~43
    20 Z. X. Xia, J. X. Hu, J. Guo, W. Zhang. Combustion Study of the Boron Particle in the Secondary Chamber of Ducted Rocket. AIAA 2006-4445, 2006
    21胡建新.含硼推进剂固体火箭冲压发动机补燃室工作过程研究.国防科技大学博士论文. 2006: 83~118
    22胡建新,夏智勋,张龙等.固体火箭冲压发动机补燃室燃烧过程显示.推进技术. 2007, 28(4): 337~341
    23胡春波,韩新波,何洪庆等.固体火箭冲压发动机补燃室冷态流场实验研究.推进技术. 2004, 25(2): 111~113
    24周宏民.固体火箭冲压发动机试验技术研究.中国宇航学会固体火箭推进专业委员会第二十一届年会.上海, 2004: 380~392
    25郑凯斌,陈林泉,张胜勇.中心进气式固体火箭冲压发动机试验研究.固体火箭技术. 2007, 30(2): 124~127
    26顾炎武.整体式固体火箭冲压发动机飞行试验.推进技术. 2008, 29(1): 75~78
    27王利军,孙翔宇,李学军等.提高含硼富燃料推进剂能量的技术途径.火炸药学报. 2006, 26(9): 54~57
    28范红杰,王宁飞,樊学忠,关大林.含硼富燃推进剂点火特性.推进技术. 2008, 29(1): 102~104
    29孙冰,刘小勇等.固体火箭冲压发动机燃烧室热防护层烧蚀计算.推进技术. 2002, 23(5): 375~378
    30刘亚东,孙振华,周磊,王希亮.固体火箭冲压发动机补燃室梯度热防护体系研究.弹箭与制导学报. 2009, 29(2): 166~168
    31周建军,马迺堂,董家峰.固体火箭冲压发动机燃气流量调节技术.中国宇航学会固体火箭推进专业委员会第二十一届年会.上海, 2004: 362~366
    32 H. L. Besser. History of ducted rocket development at Bayern-Chemie. AIAA 2008-5261, 2008
    33 P. W. Hewitt. Status of ramjet programs in the United States. AIAA 2008-5262, 2008
    34 V. Sosounov. Research and development of ramjets/ramrockets. part 1: Integral solid propellant ramrockets. AGARD-94-29291, 1994
    35 A. Davenas. History of the development of solid rocket propellant in France. Journal of propulsion and power. 1995, 11(2): 285~291
    36曹军伟,王虎干,蔡选义,孙振华.整体式固体火箭冲压发动机在中远程空空导弹上的应用.航空兵器. 2002, 4: 31~34
    37 R. F. Calzone. Integral rocket ramjet. AD-A285135, 1994
    38毛成立,李葆萱,李逢春,胡松启等.燃气发生器流量调节方案的比较.固体火箭技术. 2000, 23(4): 16~17
    39 B. Natan, A. Gany, H. Wolff. Thrust modulation of solid propellant rockets by means of a fluidic vortex valve with secondary combustion. Acta Astronsutica. 1982, 9(12): 703~711
    40 D. F. Walsh, W. S. Lewellen, D. B. Stickler. A solid propellant rocket motor modulated by a fluidic vortex valve. Journal of spacecraft and rocket. 1971, 8(1): 77~79
    41 A. Gany, B. Natan. Optimal fluidic vortex valve and solid propellant combination for variable thrust solid and ducted rockets. Collection of papers of 24th Israel Conf. on Aviation and Astronautics, Israel. 1982: 238~240
    42 A. Osherov, B. Natan, A. Gany. Analytical modeling of the gas generator frequency response in large hybrid rocket boosters. IAF paper 94-S.2.430, 1994: 9~14
    43 C. Goldman, A. Gany. Thrust modulation of ram-rockets by a vortex valve. AIAA 1996-2624, 1996
    44 W. Miller, W. Burkes, S. Mcclendon. Design approaches for variable flow ducted rockets. AIAA 1981-1489, 1981
    45 H. L. Besser. Development testing of throttleable ducted rockets. Airbreathing Propulsion for Missiles and Projectiles, 1992: 1~13
    46 L. S. Yanovskiy.Theory and Desinging for solid fueled ramjets and ducted rockets. Academkniga, Moscow. 2006: 136~142
    47 V. N. Komova, V. F. Ivanov, L.S. Yanovskiy. Integrated approaches of chemical analysis for solid fuel. Comprehensive progress of science and technology. 1997, 1: 33~35
    48В. K. Vyekhoimov, G. K. Omyenkov, V. N. Komova, YE. V. Surikov, L. S. Yanovskiy. Performance characteristics of solid fuel forsolid fueld ramjets and ducted rockets. Proceedings of CIAM. 2002, 1317: 16~17
    49 M. Salita. Dificiencies and requirements in modeling of slag generation in solid rocket motors. Journal of Propulsion and Powerm. 1995, 11(1): 10~23
    50 P. Liaw, Y. S. Chen. Numerical investigation of the slag behavior in aft-end cavity of solid rocket motors. AIAA 1995-0815, 1995
    51 L. Jia. An analytical and experimental investigation of nozzle deposition heat transfer in Aluminized solid rocket motors. AIAA 1987-2232,1987
    52何洪庆,周旭.固体火箭发动机燃烧室中的颗粒轨迹.推进技术. 1999, 20(5): 25~29
    53向红军,方国尧.固体火箭发动机熔渣沉积数值模拟.推进技术. 2002, 23(5): 366~369
    54陈军,王政时,董师颜.钨渗铜材料喷管在长时间巡航下的沉积特性.兵工学报. 2001, 22(3): 426~428
    55魏超,侯晓.潜入喷管背壁区熔渣沉积的机理分析与数值模拟.航空动力学报. 2006, 21(6): 1109~1115
    56贺征,顾璇,郜冶,李洪江. SRM两相内流场模型计算.推进技术. 2007, 28(6): 595~598
    57 D. Morrow, P.V. Mcallister, R. M. Evans. High-performance graphite thruster valve system using a 4500 deg solid propellant gas generator. AIAA 1973-1234, 1973
    58 M. Berdoyes. Thrust vector control by injection of hot gas bled from the chamber hot gas valve. AIAA 1989-2867, 1989
    59 D. Mittendorf. Economical erosion-resistant rhenium coating on carbon substrates. AIAA 2000-3559, 2000
    60 J. L. Bergmans, R.I. Myers. Throttle valves for air turbo-rocket engine control. AIAA 1997-3188, 1997
    61 F. S. Wilkerson, J. T. Lucac. Variable flow solid propellant gas generator for missile control systems. AIAA 1981-1464, 1981
    62 D. Thomaier. Speed control of a missile with throttleable ducted rocket propulsion. Advances in Air-Launched Weapon Guidance and Control, N88-19553: 12~15
    63 H. G. Hurrel. Experitmental investigation of dynamic relations in a 48-inchram-jet engine. NACA-E56F28, 1957
    64 C. B. Wentworth, W. R. Dunbar, R. J. Crowl. Altitude free-jet investigation of dynamics of a 28-inch-diameter ram-jet engine. NACA-528E6Fb, 1957
    65 H.G. Hurrel. Simplified theory for dynamic relation of ramjet pressures and fuel flow. NACA-E57I13, 1957
    66钱柏顺,曾庆福.冲压发动机线性动力学.航空动力学报. 1990, 5(2): 179~181
    67吴达章.超音速冲压发动机动态数学模型研究.中国国防科学技术报告. GF-A0017349G, 1996
    68 C. Tournes, D. B. Landrum, Y. Shtessel, C. W. Hawk. Ramjet powered reusable launch vehicle control by sliding modes. Journal of Guidance, Control and Dynamics, 1998, 21(3): 409~415
    69 C. Tournes, C. D. Johnson. Ramjet-powered reusable launch vehicle control by subspace stabilization. AIAA 1998-4151, 1998
    70 B. A. Otsap, G. A. Yankura. A fluidic fuel control system for an advanced ramjet engine. AIAA 1967-497, 1967
    71刘兴洲.飞航导弹动力装置(上册).宇航出版社,北京, 1992: 338~344
    72韩捷初.某型号燃油调节系统.推进技术. 1998, 19(2): 23~26
    73 K. I. Harner, J. P. Patrick. Control symtems requirements for advanced ramjet engines. AIAA 1978-1056, 1978
    74 S. C. Himmel. Some control considerations for ram-jet engines. NACA-E52F10, 1952
    75 G. Vasu, F.A. Wilcox, S.C. Himmel. Preliminary report of experimental investigation of ram-jet controls and engine dynamic. NACA-E54H10, 1954
    76 G. Hurrell,G.Vasu, W. R. Dunbar. Experimental study of shock-positioning method of ram-jet-engine control. NACA-E55J12, 1955
    77 G. Vasu, C.E. Hart, W.R. Dunbar. Preliminary report of experimental investigation of engine dynamic and controls for a 48-inch ram-jet engine. NACA-E55J12, 1952
    78 D. W. Chapin, L. E. Scheer, B. E. Waldon. A fluidic fuel control for advanced ramjet engines. AIAA 1980-1122, 1980
    79 Bruce Lehtinen, R. Z. John. Application of quadratic optimization to supersonic inlet control. NASA TM X-67905, 1972
    80 R. John, B. Lehtinen, C. G. Lucille. Analytical and experimental performanceof optimal controller designs for a supersonic inlet. NASA TND-7188, 1973
    81 J. B. Robert, G. B. Peter, C. J. Daniele. Terminal-shock and restart control of a Mach 2.5 mixed-compression inlet coupled to a turbofan engine. NASA TM X-3104, 1974
    82 G. M. Douglas. Dynamics and control of shock motion in a near-isentropic Inlet. AIAA 2002-2943, 2002
    83 A. Umair, A. Merchant, D. P. James,. Design of an actively stabilized near-isentropic supersonic inlet. AIAA 2003-4096, 2003
    84 A. Umair, A. Merchant, D. P. James, M. Drela. Design of a near-isentropic supersonic inlet using active control. Journal of Propulsion and Powe. 2005, 21(2): 292~299
    85聂恰耶夫著.单风桐,程振海译.航空动力装置控制规律与特性.国防工业出版社,北京, 1992: 165~205
    86 T. Kojima. Experimental study on restart control of a supersonic air-breathing engine. Journal of Propulsion and Power. 2004, 20(2): 273~279
    87 D. Soreide, R. K. Bogue, L. J. Ehernberger. The use of a lidar forward-looking turbulence sensor for mixed-compression inlet unstart avoidance and gross weight reduction on a high speed civil transport. NASA Technical Memorandum 104332, 1999
    88常军涛.高超声速进气道起动/不起动模式分类及控制.哈尔滨工业大学博士论文. 2007: 98~105
    89刘晓锋.航空发动机调节保护系统多目标控制问题研究.哈尔滨工业大学博士论文. 2008: 36~89
    90 T. Ohshima, K. Kanbe, H. Kimura, K. Fujiwara,etc. Control of the intake shock-position in the test rig for ramjet engine. AIAA 1997-2885, 1997
    91 A. S. Boksenbom, D. Novik. Control requirements and control parameters for a ram jet with variable-area exhaust nozzle. NACA-E8H24, 1948
    92 D. K. Schmidt. Dynamics and control of hypersonic aeropulsive/aeroelastic vehicles. AIAA 1992-4326, 1992
    93 R. E. Fennell. Integrated airframe propulsion control. AIAA 1983-2563, 1983
    94 S. Grag, D. L. Mattern, R. E. Bullard. Integrated flight/propulsion control system design. AIAA 1989-3520, 1989
    95 S. Grag, D. L. Mattern, R. E. Bullard. Integrated flight/propulsion control system design based on a centralized approach. Journal of Guidance, Controland Dynamics.1991, 14(1): 107~116
    96黄伟,王振国.一体化高超声速飞行器气动特性数值仿真.航空动力学报. 2009, 6(24): 1351~1356
    97姚征,陈康民. CFD通用软件综述.上海理工大学学报. 2002, 24(2): 137~144
    98 C. A. Desoer, Y. T. Wang. Foundations of feedback theory for nonlinear dynamical system. IEEE Transactions on Circuit and System. 1980, 27(2): 104~123
    99 A. J. Stack, F. J. DoyleШ. A measure for control relevant nonlinearity. American Control Conference, Seattle, 1995: 2200~2204
    100 A. J. Stack, F. J. DoyleШ. Application of a control-law nonlinearity measure to the chemical reactor analysis. Process Systems Engineering. 1997, 43(2): 425~439
    101 F. Allgower. Definition and computation of a nonlinearity measure. Proc. 37th IEEE Conf. Decision Control, Tampa, FL, 1998: 1434~1439
    102 B. A. Ogunnaike, R. K. Pearson, and F. J. DoyleШ. Chemical process characterization: with application in the rational selection of control strategies. 2nd European Control conference, Groningen, The Netherlans, 1993: 1067~1071
    103 A. K. El-Sakkary. The gap metric: robustness of stabilization of feedback systems. IEEE Transactions on Automatic Control. 1985, AC-30: 240~247
    104 T. Georgiou, and M. C. Smith. Optimal robustness in the gap metric. IEEE Transactions on Automatic Control. 1990, 35: 673~686
    105 W. Tan, H. J. Marquez, C. Chen, J. Z. Liu. Analysis and control of a nonlinear boiler-turbine unit. Journal of Process Control. 2005, 15: 883~891
    106 K. Tojo, N. Ikegawa, N. Maeda, S. Machida, M. Shiibayashi, and N. Uchikawa. Computer modeling of scroll compressor with self adjusting back pressure mechanism. Proceedings of the International Compressor Engineering Conference, Purdue, 1986: 872~86
    107 H. S. Black. Stablized feedback amplifers. Bell System Technical Journal. 1934, 13: 1~18
    108丛爽.神经网络、模糊系统及其在运动控制中的应用.合肥:中国科学技术出版社, 2001, 5~12
    109黄进,叶尚辉.基于CMAC网络的摩擦补偿研究.中国机械工程. 1999,10(3): 269~272
    110程俊兰.液压伺服系统的摩擦力分析及补偿研究.燕山大学硕士论文. 2004: 12~13
    111 B. Annstrong, D.Neel, T.Kusik. New result in PID control: tracking, integral control, friction compensation and experimental results. IEEE Transactions on Control Systems Technology, 2001, 9(2): 399~406
    112 M. R. Popovic, D. M. Gorinevsky, A. A. Goldenberg. High precision positioning of a mechanism with nonlinear friction using a fuzzy logic pulse controller. IEEE Transactions on Control Systems Technology. 2000, 8(l): 151~158
    113 K. C. Lin. Observer-based tension feedback control with friction and inertia compensation. IEEE Transactions on Control systems Technology. 2003, 11(1): 109~118
    114刘强,尔联洁,刘金混.参数不确定机械伺服系统的鲁棒非线性摩擦补偿控制.自动化学报. 2003, 29(4): 625~632
    115 B. Armstrong, P. Dupont, abd Wit C. Canudas de. A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica. 1994 , 30(7): 1083~1138
    116 D. Karnopp. Computer simulation of stick-slip friction in mechanical dynamic systems. ASME Journal of Dynamic Systems, Measurement, and Control. 1985, 107: 100~103
    117 D. A. Haessig, B. Friedland. On the modeling and simulation of friction. ASME Journal of Dynamic Systems, Measurement, and Control. 1991, 113: 354~362
    118 P. A. Bliman, M. Sorine. Easy-to-use realistic dry friction models for automatic control. In Proceedings of 3th European Control Conference , Rome, 1995: 3788~3794
    119 D. W. C. Canudas. A new model for control of systems with friction. IEEE Tran. on Automatic Control. 1995, 40(3): 419~425
    120 J. Swevers, F. Al-Bender, C. Ganseman, T. Prajogo. An integrated friction model structure with improved presliding behaviour for accurate friction compensation. IEEE Tran. on Automatic Control. 2000, 45(4): 675~686
    121 P. Lischinsky, C. Canudas de Wit. Friction compensation for an industrial hydraulic robot. IEEE Control Systems. 1999, 2: 25~32
    122 R. M. Hirschorn, G. Miller. Control of nonlinear systems with friction. IEEE Trans. on Control Systems Technology. 1999, 7(5): 588~595
    123克晶,苏宝库,曾鸣.一种直流力矩电机系统的自适应摩擦补偿方法.哈尔滨工业大学学报. 2003, 35(5): 536~540
    124王永富,柴天佑.一种补偿动态摩擦的自适应模糊控制方法.中国电机工程学报. 2005, 25(2): 139~143
    125黄进,叶尚辉.基于CMAC网络的摩擦补偿研究.中国机械工程. 1999, 10(3): 269~272
    126贾媛媛,王志胜. CAMC神经网络在电动伺服结构摩擦补偿中的应用.火力与指挥控制. 2005, 30(2): 100~103
    127于达仁,徐基豫.用附加输入信号改变非线性环节传递特性.哈尔滨工业大学学报. 1993, 25(5): 16~21
    128于达仁,汽轮机调节系统卡涩故障机理及监测方法研究.哈尔滨工业大学博士论文. 1996: 45~46
    129孔祥臻.气动比例系统的动态特性与控制研究.山东大学博士论文. 2007: 75~76
    130朱彩虹,于达仁,徐基豫.自适应颤振式电液转换器的研究.汽轮机技术. 2003, 45(2): 94~98
    131朱齐丹,张丽珂,原新等.动态系统的反馈控制.北京:电子工业出版社, 2004: 45~47
    132朱志安,王文馨.由阶跃响应曲线辨识传递函数的图解方法.山东科技大学学报. 2003, 22(1): 61~63
    133 H. Berg, M. Ivantysynova. Design and testing of a robust linear controller for secondary controlled hydraulic drive. Proc. Instn Mech Engrs. 1999, 213 (1): 375~386
    134王晓东,华清,焦宗夏,王少萍.负载模拟器中的摩擦力及其补偿控制.中国机械工程. 2003, 14(6): 511~514
    135聂加耶夫,费多洛夫,姜树明(译).航空燃气涡轮发动机原理.北京:国防工业出版社, 1984: 105~107
    136 H. G. Hurrel. Analysis of shock motion in ducts during disturbances in downstream pressure. NACA-4090, 1957
    137 L. C. Luo, M. G. Kay. Multisensor integration and fusion for intelligent machines and systems. US: Abbex Publishing Corporation, 1995: 321~456
    138 L. Wald. An european proposal for terms of reference in data fusion.International Archives of Photogrammetry and Remote Sensing. 1998, XXXII(7): 651~654
    139潘泉,于昕.信息融合理论的基本方法与进展.自动化学报. 2003, 29(4): 599-615
    140李圣怡,吴学忠,范大鹏.多传感器融合理论及在智能制造系统中的应用.长沙:国防科技大学出版社, 1998: 95~102
    141范轶.超临界机组控制中的频域信息融合方法研究.哈尔滨工业大学博士论文, 2005: 40~80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700