智能电—气阀门定位器智能控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
调节阀在石油、化工、纺织、冶金、制药等大型过程控制领域具有广泛的应用,调节阀按照驱动方式可以分为电动阀门、气动阀门和液动阀门。气动调节阀由于其结构简单、操作方便、使用可靠、易于维护和防火防爆等优点,在工业中更是得到了广泛的应用。智能电-气阀门定位器是气动调节阀的核心控制附件,可以改善阀门特性、提高控制的精度、速度和增加控制的灵活性。
     在工业应用中,对流量控制方面的要求越来越高,相应的亦对智能电-气阀门定位器的性能提出了更高的要求。气动执行器作为智能电-气阀门定位器的控制对象具有非线性、时变性和滞后性等特性,而且多应用于工业的多干扰环境中,这使得电-气阀门定位器采用传统的控制算法很难达到更高的性能要求。
     为了提高智能电-气阀门定位器的控制性能,本文以智能控制为理论基础,以863项目(2006AA040303)“智能化通用仪器仪表的开发及产业化”为应用背景,针对气动执行器的非线性、时变性和滞后性等特性,研究了智能电-气阀门定位器的智能控制策略,本文主要做了以下工作:
     ①论文以气动执行机构为研究对象,分析了气动执行机构存在非线性、时变性与滞后性的原因。针对气动执行机构的特性分析了智能电-气阀门定位器采用模糊PD控制策略与仿人智能控制策略的可行性以及模糊控制策略需要解决的参数优化与控制精度的问题。
     ②针对模糊控制器参数与规则的优化设计问题,结合模糊推理、遗传算法和单纯形法,提出了一种改进的遗传算法——模糊自适应混合遗传算法。该遗传算法以模糊推理为基础,完成对遗传算法中的交叉、变异概率以及反馈式灾变个体数量的自适应调整,并通过单纯形法加强局部寻优能力。仿真结果表明,模糊自适应混合遗传算法较之于标准遗传算法与自适应交叉、变异算子的自适应遗传算法具有更快的收敛速度和更高的寻优精度。模糊自适应混合遗传算法用于对模糊控制器的量化因子与比例因子的寻优,以及对模糊控制器的隶属函数的优化。
     ③针对模糊控制器精度不高的问题,提出了一种CMAC网络与模糊并行控制器的设计方法以提高控制精度。该方法以模糊控制实现反馈控制,CMAC网络实现前馈控制,并采用模糊自适应混合遗传算法完成对模糊控制器中的量化因子与比例因子的寻优。仿真与实验测试结果表明了该并行控制器的有效性。
     ④研究了智能电-气阀门定位器的仿人智能控制策略。针对智能电-气阀门定位器采用的积分分离PID控制算法存在的问题,提出了一种仿人智能控制算法。该算法依据智能电-气阀门定位器的系统自检得到气动调节阀的动态信息和辨识得到的模型信息,查询基于专家经验的参数知识库,完成仿人智能控制器运行控制级参数的整定;依据运行过程中的误差相轨迹和滞后时间等特征信息,结合专家规则,完成仿人智能控制器参数校正级的设计。并对气体泄漏量采取补偿措施,以减少由气体泄漏造成的不利影响。应用测试结果表明,参数自整定的仿人智能控制算法较之原智能电-气阀门定位器采用的积分分离的PID控制算法在调节时间与超调量等性能方面,均有显著提高。
     通过上述工作,本文研究了CMAC网络与模糊并行控制和仿人智能控制作为基于喷嘴-挡板原理的压电线圈式智能电-气阀门定位器控制策略各自的特点以及实际用中需要解决的问题。实际的应用测试证明了本文所提出的智能控制策略的有效性。
Control valve is used extensively in large-scale process control such as petroleum, chemical, textile, metallurgy and pharmaceutical. Control valve can be divided into electric valves, pneumatic valves and hydraulic valves according to its drive mode. Pneumatic valve has been widely used because of its advantages of simple structure, convenient manipulation, reliable operation, easy maintenance, fireproof and explosion-proof. Intelligent valve positioner is the most important accessory of control valve. It can improve the character of valve, enhance the precision and speed of control and increase the flexibly of control.
     In industrial applications, the requirement of control process is more and more strict; the request of performance towards intelligent electro-pneumatic valve positioner is higher and higher accordingly. The pneumatic actuator as the controlled object has the characteristics of nonlinear, time-variation and time delay and it is widely used in the industrial environment with multi-disturbance. So the electro-pneumatic valve positioner with the traditional control algorithm cannot achieve the higher request of performance.
     In order to improve the performance of the intelligent electro-pneumatic valve positioner, the dissertation based on the theory of intelligent control has study the intelligent control tactic of the intelligent electro-pneumatic valve positioner, which takes the national“863”project (2006AA040303)“Intelligent general instrumentation development and industrialization”as application background, aiming at the characteristics of nonlinear, time-variation and time delay of the pneumatic actuator.
     ①The dissertation takes the pneumatic actuator as the target, analyses the reason why the pneumatic actuator has the characteristics of nonlinear, time-variation and time delay. Aim at the characteristics of pneumatic actuator, analyses the feasibility of fuzzy control and human-simulated intelligent control tactic which are used in the intelligent electro-pneumatic valve positioner, and the problem of parameters optimization and control precision which should be solved in fuzzy control tactic.
     ②Aim at the problem of control parameters and rule optimization in fuzzy controller, the dissertation presents an improved genetic algorithm. The improved genetic algorithm based on fuzzy inference of genetic algorithm adjusts the crossover and mutation probability and the number of reckoning adaptively, and strengthens local search ability through the simplex method. Convergence performance and convergence rate of the improved genetic algorithm are analyzed and estimated. The simulate results shows that the fuzzy adaptive hybrid genetic algorithm has the better performance of convergence rate and preventing pre-maturity than the standard genetic algorithm and the adaptive genetic algorithm with the adaptive crossover operator and mutation operator. The fuzzy adaptive hybrid genetic algorithm finished the optimization of quantitative factors and proportion factors of fuzzy controller.
     ③Aim at the problem that the fuzzy controller has the low precision, the dissertation proposes CMAC network and fuzzy parallel controller in order to improve the control precision. The algorithm uses fuzzy control to realize the feedback control and CMAC network to realize the feedforword control and determines the quantizing factors of fuzzy control based on fuzzy adaptive hybrid genetic algorithm. The simulation reasults show that CMAC and fuzzy combined control is available.
     ④The human-simulated intelligent control tactic of the intelligent electro-pneumatic valve positioner is studied. Aim at the problem of the integral separation PID control algorithm used in intelligent electro-pneumatic valve positioner, a kind of human-simulated intelligent control algorithm is proposed. This algorithm based on self-test of intelligent electro-pneumatic valve positioner gets the dynamic information and identification model of pneumatic valve and inquires about the parameters knowledge based on expert experience to determine the parameters of operation control level. Human-simulated intelligent parameter-adjusting level is designed according to the running process error phase track, the time lag etc feature information, and the expert rules. Compensation measure for gas leakage is adopted to reduce the harmful effect caused by gas leakage. Application results show that, the parameter self-setting human-simulated intelligent control algorithm compared with the original integral separation PID control algorithm which is used in intelligent electric-pneumatic valve positioner has better performance in regulating time and overshoots.
     This dissertation studies respective characteristics of the CMAC network and fuzzy parallel control and human-simulated intelligent control as control strategy of piezoelectric-coil intelligent electric-pneumatic valve positioner based on the principle of nozzle–baffle, and the actual use of problems needed to be solved. The actual application test proved intelligent control strategy proposed by the dissertation is feasible.
引文
[1] Sarmad Aziz, Gary M. Bone. Automatic Tuning of an Accurate Position Controller for Pneumatic Actuators[C]. Intelligent Robots and Systems, 1998, 3:1782-1788.
    [2] Che-Hang Chan, Guangjun Liu. Actuator hysteresis identification and compensation using an adaptive search space based genetic algorithm[C]. American Control Conference, 2004,6:5760-5765.
    [3] Arkan Kayihan, Francis J. Friction compensation for a process control valve[J]. Control Engineering Practice,2000, 8:799-812.
    [4] Qiang Song, Fang Liu. Improved Control of a Pneumatic Actuator Pulsed with PWM[C]. Mechatronic and Embedded Systems and Application, 2006:1-4.
    [5] T. Kosaki, M. Sano. A Compliance Controller for a Pneumatic Actuator With Observer-BasedFriction Compensation[C]. Computational Engineering in Systems Application, 2006, 2:1144-1148.
    [6] Navneet Gulati, Eric J. Barth. Non-Linear Pressure Observer Design for Pneumatic Actuators[C]. Advanced Intelligent Mechatronics, 2005:783-788.
    [7] L.F.Mendonc, J.M.C.Sousa et al. An architecture for fault detection and isolation based on fuzzy methods[J]. Expert Systems with Applications,2009,36:1092–1104.
    [8] HaslindaZabiri YudiSamyudia. A hybrid formulation and design of model predictive control for systems under actuator saturation and backlash[J]. Journal of Process Control 2006,16:693–709.
    [9] Qiang Song, Fang Liu. The Direct Approach to Unified GPC Based on ARMAX/CARIMA/CARMA Model and Application for Pneumatic Actuator Control[C]. Innovative Computing, Information and Control, 2006, 1:336-339.
    [10] Guoming G. Zhu, Jia Ma, et al. An Iterative Algorithm for Model-Based Predictive Control of an Electro-Pneumatic Valve Actuator[C]. American Control Conference, 2009:2684-2689.
    [11] T.Nguyen, J.Leavitt, et al. Accurate Sliding-Mode Control of Pneumatic System Using Low-Cost Solenoid Valves[J]. Mechatronics, 2007,12:216-219
    [12]孙晓明,姜俊峰.九点控制器在智能阀门定位器上的应用[J].仪表技术,2009,1:7-9.
    [13]杨伟清.基于HART协议智能阀门定位器. [D].天津大学硕士学位论文. 2007.
    [14]冯卫星,樊泽明,王亮.智能阀门定位器PID参数自整定及控制算法设计[J].机床与液压,2009,37(11):143-147.
    [15] Di Zhou, Tie long Shen. Adaptive control of a pneumatic valve with unknown parameters anddisturbances[C]. SICE 2003 Annual Conference, 2003, 3:2703-2707.
    [16]白玫.智能控制综述[J].华北水利水电学院学报, 2002,23(1):58-62.
    [17]师黎,陈铁军等.智能控制理论及应用[M].北京:清华大学出版社,2009:6-12.
    [18]程伟良.广义专家系统[M].南京:东南大学出版社,1991.
    [19]蔡自兴.高级专家系统:原理、设计及应用[M].北京:科学出版社,2005.
    [20]武波,马玉祥.专家系统[M].北京:北京理工大学出版社,2001.
    [21]李昌春,左为恒.专家系统与专家控制系统[J].重庆工业管理学院学报,1996,10(4):35-40.
    [22] Breiman L. Bagging predictors[J]. Machine Learning,1996,24(2):123-140.
    [23] Innocent P R. Clinical diagnosis using FCM and fuzzy temporal reasoning in conference [J]. Proceedings of SCB99,490-496.
    [24] Linkens D A,Nyongesa H O. Learning systems in intelligent control:an appraisal of fuzzy,neural and genetic algorithm control applications[J]. IEE Proceedings-Conrol Theory and Applications,1996,143(4).
    [25] Fredric M Ham , Ivica Konstanic. Principles of Neurocomputing for Science & Engineering[M].北京:机械工业出版社,2003.
    [26] Martin T Hagan,Howard B Demuth,Mark Beale. Neural Network Design[M].北京:机械工业出版社,2003.
    [27] Widrow B,Stearns S D. Adaptive Signal Processing[M]. Englewood Cliffs,NJ:Prentice-Hall,1985.
    [28] Windrow B,Lehr M A. 30 years of adaptive neural networks:Perceptron,madaline and backpropagation[J]. Proceedings of the IEEE,1990,78(9):1415-1442.
    [29]张丽娟,涂亚庆.小车二级倒立摆系统的仿人智能控制策略和算法[J].自动化与仪器仪表,2006,5:1-5.
    [30] Park D,Kandel A Langholz G. Genetic-based new fuzzy reasoning models with application to fuzzy control[J]. IEEE Transactions on Systems, Man and Cybernetics, Jan 1994,24(1):39-47.
    [31]黄华,李爱平等.基于免疫遗传算法优化的模糊控制方法及应用[J].计算机应用,2007,7:1737-1740.
    [32]周尹强,徐炼新,姜玉宪.航天器精确节能模糊脉冲调宽控制器的设计[J].北京航空航天大学学报,2008,34(5):555-559.
    [33] Khanian, M.; Fakharian, A.; An intelligent fuzzy controller based on genetic algorithms[C]. Computational Intelligence in Robotics and Automation (CIRA), 2009:486-491.
    [34] Won-Seok Oh,Young-Tae Kim,Chang-sun Kim et al.Speed control of induction motor usinggenetic algorithm based fuzzy controller[C]. IEEE Industrial Electronics Society Conference,1999.
    [35]夏长亮,郭培健.基于模糊遗传算法的无刷直流电机自适应控制[J].中国电机工程学报,2005,25(11):129-133.
    [36] Boesack, C.D., Marwala, T. Application of GA-Fuzzy Controller design to Automatic Generation Control[C]. Advanced Computational Intelligence (IWACI), 2010:227-232.
    [37]臧利林,贾磊基于改进GA的城市交通模糊控制研究[J].系统工程理论与实践,2006,10:113-118.
    [38]张兴华.基于递阶遗传算法的模糊控制器的规则生成和参数整定[J].信息与控制,2006,6,35(3):304-309.
    [39] Lee M, Takagi H. Dynamic control of genetic algorithms using fuzzy logic techniques[C]. Proc. 5th Intern. Conf. On Genetic Algorithms, CA:Morgan Kaufmann, 1993, 76-83.
    [40] Xu H, Vukovich G. Fuzzy evolutionary algorithms and automatic robot trajectory generation[C]. Proc. 1st IEEE Conf. On Evolutionary Computation,1994:595-600.
    [41]张东波,马晓红.采用神经网络优化调整因子的模糊温度控制器[J].电气自动化,2004,26(1):8-10.
    [42]唐巍,李殿璞.模糊控制器的混沌优化方法[J].哈尔滨工程大学学报,2000,21(2):6-9.
    [43]吴晓刚,王旭东.基于粒子群优化的电磁离合器模糊控制研究[J]. 2010,9:1072-1076.
    [44]罗安.大时滞系统模糊控制[J].工业加热,1996(2):30-33.
    [45]胡泽新,邵惠鹤等.两种新型模糊控制器及应用[J].自动化仪表,1991(5):7-9.
    [46] Song Niannian,Yang Guangwen. Application of intelligent switch and intelligent fuzzy controller in reheated steem temperatures system of power plants[J]. Proceeding of the 3rd World Congress on Intelligent Control and Automation, 2000:449-452.
    [47]张曾科.一种提高模糊控制器控制精度的方法[J].清华大学学报(自然科学版),1998(3):58-61.
    [48]李洪兴. Fuzzy控制本质与一类高精度Fuzzy控制器的设计[J].控制理论与应用,1997(6):868-872.
    [49] Erenturk K. Hybrid Control of a Mechatronic System: Fuzzy Logic and Grey System Modeling Approach[J]. IEEE Transactions on Mechatronics, Dec. 2007, 12(6):703-710
    [50] CARDUCCI G, GIANNOCCARO N I, MESSINA A, et al. Identification of viscous friction coefficients for a pneumatic system model using optimization methods[J]. Mathematics and Computers in Simulation, 2006, 71(4):385-394.
    [51] SHEN X R, ZHANG J L, BARTH E J, et al. Nonlinear Averaging Applied to the Control of Pulse Width Modulated (PWM) Pneumatic Systems[C]. Proceeding of the 2004, AmericanControl Conference, 2004: 4444-4448.
    [52]李伟,孙宝元.薄膜式电-气转换器控制系统研究[J].自动化与仪表,2004(2):47-50
    [53] Wang L X. Modeling and control of hierarchical systems with fuzzy system[J]. Automatica,1997 , 33 (6):1041-1053.
    [54] Zhang E Q , Shi S J , Gao W H. Recent researches and development s on fuzzy control system [J]. Control Theory and Applications ,2001 ,18 (1) :7-11.
    [55]李惠峰,王健.基于遗传算法的高速飞行器模糊飞控一体化[J].北京航空航天大学学报, 2009,35(1):44-47.
    [56]何金保,郭帅等.基于遗传优化的张力模糊控制[J].控制理论与应用,2009,3(3):243-248.
    [57]王海军,陈一民等.一种基于遗传算法优化的模糊控制器研究[J].微计算机信息,2006,22(10):20-22.
    [58]基于自适应模糊PID控制的气动微型机器人系统[J].仪器仪表学报,2007,9(9)1543-1547.
    [59] YI S Z,LIN Y L. Optimal design for fuzzy controllers by genetic algorithms [J]. IEEE Transactions on Industry Application. 2000, 36(1):93-97.
    [60] MING D W. CHUEN T S. Comments on constraining the optimization of a fuzzy logic controller[J]. IEEE Transaction on Systems. Man and Cybernetics, 2001, 31(4):663-666.
    [61]王晶,李玉兰等.基于遗传算法的模糊系统优化设计方法[J].控制理论与应用,1999,16(5):699-704.
    [62] Fraser A S. Simulation of genetic systems[J]. J. of Theor. Biol.,1962,2:329-346.
    [63] Bremermann H J, Rogson M, et al. Search by evolution[M]. in Biophysics and Cybernetic System. Maxfield M, Callahan A, Fogel L J(eds). Washington DC:Spartan Books, 1965:157-167.
    [64] Reed J, Tooms R, et al. Simulation of biological evolution and machine learning[J]. Journal of Theoretical Biology, 1967, 17:319-342
    [65] Holland J H. Adaptation in natural and artificial systems[M]. Ann Arbor: University of Michigan Press, 1975
    [66] Schwefel H P. kybernetische evolution als strategie der experimentellen forschung in der strmung stechnik[D]. Diploma thesis,Technical Univ. of Berlin,1965.
    [67] Rechenberg I. Evolutions strategie:Optimierung technischer systeme nach prinzipien der biolgischen evolution[M]. Stuttgart:Frommann-Holzboog Verlag,1973.
    [68] Fogel L J. Autonomous automata[J]. Industrial Research,1962,4:14-19.
    [69] Fogel L J. On the organization of intellect[D]. Doctoral dissertation,UCLA,1964.
    [70] Fogel D B. Evolving behaviors in the iterated prisoner’s dilemma[J]. Evolutionary Computation,1993,1(1):77-97.
    [71] Goldberg D E. Computer aided gas pipeline operation using genetic algorithms and rule learning[D]. University of Michigan,1983.
    [72] Eric J,Paul R,Nilanjan D,et al. Genetic algorithm wavelet design for signal classification[J]. IEEE trans on pattern analysis and machine intelligence. 2001,23(8):890-895.
    [73] Patricia Teixeira Leite,Adriano Alber de Franca Mendes Carneiro. Energetic Operation Planning Using Genetic Algorithms[J]. IEEE Trans on Power Systems. 2002,2(1):1325-1339.
    [74]蔡鹤皋.工业机器人的发展趋势[J].黑龙江自动化技术与应用,1994,13(2):3-6.
    [75] De Castro et al,Artificial Immune Systems:Part I– Basic Theory and Applications[J]. Technical Report– RT DCA 01/99,1999.
    [76] CZ Janikow,Michalewicz. An experimental comparison of binary and floating Point representations in genetic algorithms,In Proc of the 4th hitemational Confereneeon Genetic Algorithms[J]. SanMateo,CA:Morgan Kauf man,1991:31-36.
    [77] Snyers D,Petillot Y. Image processing optimization by genetic algorithm with a new coding scheme[J]. Pattern Recognition Letters. 1995,16(8):843-848.
    [78] Bessaou M,Siarry P. A genetic algorithm with real-value coding to optimize multimodal continuous functions[J]. Structural and Multidisciplinary Optimization. 2001,23(1):63-74.
    [79] Deb K,Goyal M. A Flexible Optimization Procedure for Mechanical Component Design Based on Genetic Adaptive Search[J]. Journal of Mechanichal Design,1998,120(6):162-164.
    [80]闻新超,周琳霞等.一种基于混合编码的遗传算法[J].电子技术. 2003,1:60-63.
    [81] Deb K, An A, JoshiD. A computationally efficient evolutionary Algorithm for real-parameter evolution,Evolutionary Computation Joumal[J]. 2002, 10(4):371-395.
    [82] Dirk Thierens. Adaptive mutation rate control schemes in genetic algorithms[J]. Trans.CEC, 2001:980-985.
    [83] CW Lee, KS Leung. A Genetic algorithm Based on Mutation and Crossover with Adaptive Probabilities[J]. Trans.CEC, 2002:768-775.
    [84]金聪.模糊自适应遗传算法及其性能分析[J].小型微型计算机系统,2001,22(9):1080-1082.
    [85]李擎,郑德玲等.一种新的模糊遗传算法[J].北京科技大学学报,2001,23(1):85-89.
    [86] Chia-Feng Juang,Chun-Feng Lu.Fuzzy Controller Design by Hybrid Evolutionary Leaming Algorithms[J]. The 14th IEEE International Conference on Fuzzy Systems,2005, May 2005:525-529.
    [87] Grefenstette J J. Incorporating problem specific knowledge into Genetic Algorithm[J]. Davis L Ed. Genetic Algorithm and Simulated Annealing,Pitman.1987:42-60.
    [88] Orvosh D,Davis L. Using a Genetical gorithm to optimize problem with Feasibilityconstraints[J]. Proc.of 1st IEEE Conf. on Evolutionary computation. 1994:548-553.
    [89] Chen H,Elann N S.Parallel Simulated Annealing and Genetic Algorithm, A space of hybrid method[J]. Parallel problem Solving from Nature3. Springer-verlag, 1994:428-38.
    [90]郭嗣琮,陈刚.信息科学中的软计算方法[M].沈阳:东北大学出版社,2001:263-279.
    [91]王凌.智能优化方法[M].北京:清华大学出版社,2000:36-58.
    [92]陈伦军,罗延科等.机械优化设计遗传算法[M].北京:机械工业出版社,2005:34-120.
    [93]玄光男,程润伟.遗传算法与工程设计[M].北京:科学出版社,2000:1-3
    [94] Davis L. Handbook of Genetic Algorithms[M]. New York:Van Nostrand Reinhold,1991.
    [95] Whitley D. The genetic algorithm and selection pressure: Why rank-based allocation reproduction trials is best[C]. Proc of the 3rd Int Conf on Genetic Algorithms. Los Altos: Morgan Kaufmann Publishers, 1989:116-121.
    [96] Thomas B?ck , Martin Schütz. Intelligent mutation rate control in canonical genetic algorithms[J]. In Foundations of Intelligent Systems.1996:158-167.
    [97] Jim Smith, T.C.Fogarty. Self adaptation of mutation rates in a steady state genetic algorithm. In Proceedings of the third IEEE Conference on Evolutionary Computation[J]. IEEE Press,1996:318-323.
    [98] Davis L. Handbook of Genetic Algorithms[M]. New York:Van Nostrand Reinhold,1991.
    [99] Scrinvas M,Patnaik L M. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms[J]. IEEE Trans SMC, 1994, 24(4):656.
    [100]李擎,张伟等.一种新的调节交叉和变异概率的自适应算法[J].控制与决策,2008,23(1):79-83.
    [101]邓莉,鲁瑞华.一种改进的抑制早熟收敛的模糊遗传算法[J].计算机科学,2007,34(11):150-153.
    [102]徐宗本,李国.解全局优化问题的仿生算法(I)—模拟演化算法.运筹学杂志[J]. 1995,14(2):1-13.
    [103]张讲社,徐宗本等.遗传算法的整体退火选择及其收敛充要条件[J].中国科学(E),1997,27(2):154-164.
    [104]徐宗本,高勇.遗传算法过早收敛现象的特征分析及其预防[J].中国科学(E),1996,26(4):364-375.
    [105]王丽薇,洪勇等.遗传算法收敛性研究[J].计算机学报, 1996,19(10):794-797.
    [106] He,J.,Kang,L. S. On the convergence rates of genetic algorithms[J]. Theoretical Computer Science 1999, 229:23-39.
    [107]徐宗本,陈志平等.遗传算法基础理论研究的新近发展[J].数学进展,2000,29(2):97-113.
    [108]徐宗本等.关于遗传算法公理化模型的进一步结果[J].工程数学学报,2001,18(1):1-11.
    [109] Rudolph J. Convergence analysis of canonical genetic algorithms[J]. IEEE Trans on Neural Networks,1994,5(1):96-101.
    [110]李敏强,寇纪淞等.遗传算法的基本理论与应用[M].科学出版社,2002,82-83.
    [111]戴晓明等.并行遗传算法收敛性分析及优化运算[J].计算机工程,2002,6,28(6):92-95.
    [112]岳盼想,陈金梅,李法朝.带混合算子的自适应遗传算法的收敛性研究[J].河北科技大学学报,2006,27(4):272-276.
    [113]刘铁男,段玉波等.一种混合遗传算法及收敛性分析[J].自动化技术与应用,2003,22(10):4-6.
    [114] Rudolph G. Convergence Analysis of Canonical Genetic Algorithms[J].IEEE Trans Neural Network,1994,5(1):96-101.
    [115]程国胜.遗传算法的收敛速度估计[J].高等学校计算数学学报,2004,26(4):306-313.
    [116]徐宗本,聂赞坎,张文修.遗传算法的几乎必然强收敛性-秧方法[J].计算机学报,2002,25(8):785-793.
    [117]王霞,周国标.遗传算法收敛率的下秧分析[J].应用数学,2003,16(4):130-135.
    [118]何琳,王科俊等.遗传算法的收敛速度估计[J].系统工程理论方法应用,1999,8(3):22-26.
    [119]王昌,李天石等.基于智能积分的多模协调控制交流伺服系统研究[J].电工电能新技术,2004,4:47-48.
    [120]韩兵欣,刘利贤等.模糊-积分控制系统的研究及其应用[J].河北科技大学学报,2005,26(93):241-244.
    [121]李伟.航空发动机的CMAC与PID并行控制[J].弹箭与制导学报,2006,26(3):95-97.
    [122]侯世英,时文飞,万江.基于CMAC-PID控制的柴油发电机组的建模与仿真[J].系统仿真学报,2007,19(13):3052-3063.
    [123]焦嵩鸣,韩璞,董泽等.带有干扰观测器的PID-CMAC控制系统设计[J].系统仿真学报,2007,19(22):5226-5233.
    [124]蒋志明.一种基于CMAC的自学习控制器[J].自动化学报,2000,26 (4):542-545.
    [125]金波.一种自适应CMAC神经元网络控制器及其在水轮机调速器中的应用[J].控制理论与应用,2002,19 (6):905-908.
    [126]李辉.一种自适应CMAC在交流励磁水轮发电系统中仿真研究[J].控制与决策,2005,20(7):778-781.
    [127] H.C.Lu, T.Tao. The Treatment of Image Boundary Effects in CMAC Net-works[C]. Proceedings of the International Joint Conference on Neural Works,Budapast,Hungary,2004,7(2):867-872.
    [128] Sang-soon Ku,Gary Larsen,Sabri Cetinkunt Fast Tool Servo Control for Ultra-precision Machining at Extremely Low Feed Rates[J]. Mechatronics, 1998, 8(4):381-393.
    [129] Albus J S. A New Approach to Manipulator Control: the Cerebellar Model Articulation Controller(CMAC)[J]. Journal of Dynamic Systems, Measurement, and Control,1975,97:220~227.
    [130] Gabor Horvath, Tamas Szabo. CMAC Neural Network with Improved Generalization Property for System Modeling[C]. In: IEEE Instrumentation and Measurement Technology Conference, USA,2002:1603~1608.
    [131] Chin-Pao Hung,Mang-Hui Wang,Chin-Hsing Cheng,Wen-Lang Lin.Fault diagnosis of steam turbine-generator using CMAC neural network approach[C]. Proceedings of the International Joint Conference on Neural Networks.2003, (4):2988~2993.
    [132] C T Chiang,C S Lin.CMAC with General Basis Functions[J]. Neural Networks, 1996,9(7):1199-1211.
    [133]周妹春. CMAC学习性能及泛化性能研究综述[J].计算机仿真,2005,22(6):5-7.
    [134]罗忠,谢永斌,朱重光. CMAC学习过程收敛性的研究[J].自动化学报,1997,23(4):455-461.
    [135]苏小红,张明杰,马培军等. CMAC神经网络碰撞问题解决方法的研究[J].计算机研究与发展,2006,43(5):862-866.
    [136] Wong Y F,et al. Learning convergence in the cerebella model articulation controller[J]. IEEE Trans Neural networks, 1992(3):115-121.
    [137] Moody J,Darken C. Learning with localized receptive fields[C]. Proc.1998 Connectionist Models Summer School,San Mateo,CA,Carnegie-Mellon University,Morgan Kaufmann,1998.
    [138] Sang-soon Ku,Gary Larsen,Sabri Cetinkunt Fast Tool Servo Control for Ultra-precision Machining at Extremely Low Feed Rates[J]. Mechatronics (S0957-4158),1998,8(4):381-393.
    [139]刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2004.
    [140]白瑞林,王建等.基于FPGA的CMAC-PID控制器的研究[J].计算机工程,2007,33(7):240-242,271.
    [141]谢宋和,甘勇.单片机模糊控制系统设计与应用实例[M].北京:电子工业出版社,1999.
    [142]陆培文.调节阀实用技术[M].北京:机械工业出版社,2006:245-246.
    [143]王伟,张晶涛,柴天佑. PID参数先进整定方法综述[J].自动化学报,2000,26(3):347-353.
    [144]李祖枢,涂亚庆.仿人智能控制[M].北京:国防工业出版社,2003.
    [145]蔡自兴.智能控制原理与应用[M].北京:清华大学出版社,2007.
    [146]吴国熙.调节阀使用与维修[M].北京:化学工业出版社,1999.
    [147]何衍庆.控制阀工程设计与应用[M].北京:化学工业出版社,2005.
    [148]陆培文.调节阀实用技术[M].北京:机械工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700