柑桔绿霉菌CYP51克隆表达及在DMIs类杀真菌剂筛选中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑桔青霉病(Penicillium italicum Wehmer)和绿霉病(Penicillium digitatum Sacc)是柑桔果实在贮运期发生最严重的病害。目前农业上广泛使用的甾醇生物合成抑制剂(sterolbiosynthesis inhibitors,SBIs)类杀菌剂主要为14α-脱甲基酶抑制剂(14α-demethylation inhibitors,DMIs)。羊毛甾醇14α-去甲基化酶(CYP51,P450_(14DM))是唯一广泛存在于细菌、真菌、植物和动物中的细胞色素P450家族成员,它被视为最古老的细胞色素P450家族成员,是氮唑类抗真菌药物作用靶标酶。CYP51是真菌细胞膜麦角甾醇生物合成过程中的一个关键酶,它催化甾醇的14α-去甲基化反应。抑制真菌甾醇14α-去甲基化酶将会阻碍真菌麦角甾醇的合成,而麦角甾醇是真菌细胞膜基本成份,它的缺乏将导致膜结构的破坏和功能消失,最终导致真菌死亡。目前农业上DMIs类杀菌剂即是通过抑制真菌甾醇14α-去甲基化酶而发挥杀菌抑菌的作用。
     本研究以我国南方重要经济作物柑桔的病原菌绿霉菌(P.digitatum Sacc)为实验材料,采用基因工程技术克隆了柑桔绿霉菌CYP51基因,进行了高效表达和功能研究。同时,建立了柑桔绿霉菌CYP51蛋白的三维空间结构模型,并利用结合光谱法对有机小分子化合物的活性进行了筛选。本文主要得到以下结果:
     1.从柑桔绿霉菌(P.digitatum Sacc)中克隆了氮唑类杀真菌剂的靶标酶CYP51(PdCYP51)。该基因与文献中报道的柑桔绿霉菌CYP51基因(No.AB030178)相比有四个核苷酸不同,分别为C1370→T,A1604→G,G1648→A和G1768→T,该基因序列已提交Genbank(登记号为DQ355161)。这四个不同的核苷酸相应地导致四个氨基酸的不同,分别是P345→L,E423→G,G438→R和V478→L。该基因编码的蛋白质由516个氨基酸组成,同源比对结果表明,该蛋白与柑桔绿霉菌PD5(BAB03658,Pd2)同源性为99%,与意大利青霉P450-14DM(Q12664,Pi)蛋白同源性为86%,与烟曲霉Aspergillus fumigatus(AAF32372,Af)和费希新萨托菌Neosartorya fischeri(XP_001267338,Nf)同源性为67%,含有CYP51家族蛋白的特征保守域SRS1(YxxF/LxxPxFGxxVxF/YD/a)和SRS4(GO/nht/sS)及P450家族保守域HBR(FxxGxxxCxG)。序列分析表明四个突变氨基酸位于PdCYP51的保守结构域之外,生测结果表明这四个突变氨基酸与该菌的抗性相关性不大。
     2.以结核分枝杆菌CYP51(Mycobacterium tuberculosis,MTCYP51)晶体结构为模板,利用SYBYL7.0软件包中的FUGUE模块成功地构建了柑桔绿霉菌CYP51蛋白的三维空间结构模型,PdCYP51蛋白三维空间模型与MTCYP51蛋白晶体结合叠合结果显示PdCYP51血红素辅基附近氨基酸具有很好重叠性。CYP51是一类跨膜蛋白,在真菌的麦角甾醇生物合成过程中起着非常重要的作的用。对其跨膜区分析表明,PdCYP51N端66个氨基酸跨膜两次。构建了重组表达质粒pET-PdCYP51并转化大肠杆菌,37℃下1mM IPTG诱导表达,得到了59kDa的特异性蛋白。超声破碎实验表明该重组蛋白主要以包涵体形式存在。重组蛋白经纯化浓缩后,注射家兔制得多克隆抗体。Western blot证明成功地制备了多克隆抗体,与表达的目的蛋白有特异性单一杂交带。优化pET-PdCYP51表达条件发现:在Rosetta(DE3)菌株中,30℃经1mM IPTG诱导获得了可溶性重组蛋白。根据柑桔绿霉菌CYP51跨膜结构的分析和三维空间结构的分析,重新构建了下列突变体,分别命名为pET-PdCYP51-18、pET-PdCYP51-66、pET-PdCYP51-244和p6P-PdCYP51-244,并在大肠杆菌中进行了表达。对pET-PdCYP51-18表达条件进行了优化,使其蛋白以可溶形式表达。同时构建了重组真核表达质粒pAUR-PdCYP51、p9K-PdCYP51和p9K-PdCYP51-244。
     3.根据CO差光谱法测定在Rosetta(DE3)中表达的PdCYP51重组蛋白活性。以柑桔绿霉菌微粒体和Rosetta(DE3)中表达的PdCYP51重组蛋白为材料,分析了商品化的烯唑醇、戊唑醇、三唑醇和三唑酮为代表的DMIs类杀真菌剂与CYP51的结合能力,分析了靶标酶活性、靶标酶纯度和靶标酶浓度对二者结合光谱的影响。结果表明,靶标酶活性和浓度是获得准确结合光谱的必要条件。根据米氏方程计算结合常数,计算得到烯唑醇、戊唑醇、三唑醇、三唑酮与靶标酶结合常数(Kd),分别为0.12μM、0.32μM、0.64μM和0.99μM。该结果与其对柑桔绿霉菌生长抑制率EC_(50)显著相关,证明结合光谱与生物活性测定相结合的方法可作为一种简便可靠的DMIs类杀真菌剂筛选方法。
     4.利用建立的结合光谱法对合成的不同结构类型的化合物(XF系列、WJ系列和ZST系列)进行了结合光谱测定,结合生物测定的结果筛选出了一批结合能力强和杀菌效果好的新型抗真菌化合物。这些化合物均为含氮化合物,并且在直链的不同位置、咪唑环或三唑环上以卤素原子来取代。在XF系列化合物中,XF-22、XF50、XF-78、XF-100、XF-113、XF118和XF169与PdCYP51和PdCYP51-18的结合能力较强,同时生物活性测定效果较好。在WJ系列的化合物中,WJ7、WJ10、WJ11、WJ12、WJ15、WJ21、WJ22、WJ25和WJ26与PdCYP51的结合能力较强,结合常数均小于0.2μM;对柑桔绿霉菌的抑制率均为100%,有些化合物甚至在25mg/ml的浓度时其抑菌率仍在80%以上。ZST系列中的ZST1、ZST5和ZST9与PdCYP51的结合能力较强,抑制率与结合常数一致。
     5.利用计算机辅助设计手段(采用FLexX软件)将含氮的新型有机化合物与PdCYP51的活性中心卟啉基上的铁离子对接,通过模拟计算得知含氮化合物与PdCYP51活性中心最大的作用距离为3(?),为设计高效、专一性强的新型抗真菌化合物提供了一种有效的手段。
Green mold of citrus,caused by Penicillium digitatum Sacc,is the most serious postharvest disease of citrus.P.digitatum is the most harmful citrus fruit pathogen and infects the fruit during harvesting and processing.Up to date,14α-demethylation inhibitors(DMIs)are an important group of sterol biosynthesis inhibitors(SBIs)widely used in agriculture.
     Sterol 14α-demethylase(CYP51)is the only family of P450s,which is widely distributed in different biological kingdoms,found in animals,plants,fungi,yeast,lower eukaryotes and bacteria and considered to be the most ancient member of the superfamily.Cytochrome P450 14α-sterol demethylases are essential enzymes in sterol biosynthesis in eukaryotes.It removes the 14α-methyl group from sterol precursors such as lanosterol,obtusifoliol,dihydrolanosterol,and 24(28)-methylene-24,25-dihydrolanosterol.Inhibitors of CYP51 include triazole antifungal agents,such as fluconazole and itraconazole,drugs used in treatment of topical and systemic mycoses.Sterol biosynthesis is one of the general metabolic pathways present in the majority of eukaryotic cells and organisms.It leads to production of cholesterol in animals,ergosterol in fungi,and a variety of phytosterols in plants.The biosynthesis of sterol will lead to the damage or loss of structure and function of membrane via the inhibitation of 14α-demethylase,which will lead to the death of eukaryotes at last.
     In this study,sterol 14α-demethylase gene from P.digitatum was cloned and expressed,and the expressed product of the gene and the preliminary function were analyzed.Meanwhile,the 3D model was built and the fungicidal activities of some chemical entitles were screened according to the spectrophotometric method.The results are listed as follows:
     1.The P.digitatum CYP51 gene(PdCYP51)was cloned.Compared with the DNA sequence of P. digitatum strain PD5(accession no.AB030178),there were four nucleotide changed(C1370→T, A1604→G,G1648→A and G1768→T)resulting in four different amino acids(P345L,E423G, G438R,V478L).The cDNA sequence was registered in Genbank(accession no.DQ355161). When compared to other amino acid sequences of CYP51 in Genbank,it indicated that PdCYP51 (ABC87815,Pd1)had 99%identities to that of P.digitatum strain PD5(BAB03658,Pd2),86%to P.italicum(Q12664,Pi),67%to Aspergillus fumigatus(AAF32372,Af)and Neosartorya fischeri (XP_001267338,Nf).All of the sequences contains SRS1(YxxF/LxxPxFGxxVxF/YD/a),SRS4 (GQ/Hht/sS)and heine-binding protein sequence(FxxGxxxCxG)and four mutated amino acids all located outside the conserved regions.The four mutated amino acids have little relation with drug resistance according to the bioassay.
     2.The three-dimensional(3D)model of PdCYP51 was built based on the structure template of le9x.pdb(Mycobacterium tuberculosis,MTCYP51)using FUGUE module of SYBYL7.0 program.The conserved amino acids of the activity cave were superimposed with the template. CYP51 is a kind of trans-membrane protein,displaying key roll in the biosynthesis of sterol. According to the analysis of hydrophobicity,signal peptide and transmembrane domain of PdCYP51,the N-terminus has 66 amino acids which stride across membrane twice,and the hydrophobic domain is mainly located in the transmembrane domain and the catalytic cave of the protein.The recombinant plasmid pET-PdCYP51 was constructed,and the 59kDa protein (PdCYP51)was obtained when induced by IPTG in E.coli BL21(DE3)strain at 37℃. Antibodies against purified PdCYP51 recombinant protein were raised in rabbit and western blotting was performed.It was indicated that the purified PdCYP51 had immunologic activity.
     3.The expressions of PdCYP51 were optimized under various conditions,and the soluble recombinant protein PdCYP51 was obtained in E.coli BL21(DE3)Rosetta at 25-30℃at last. According to the analysis of the transmemebrane structure and the homology modeling,various mutanted recombinant plasmids of pET-PdCYP51-18,pET-PdCYP51-66,pET-PdCYP51-244, p6P-PdCYP51-244 and p9K-PdCYP51-244.PdCYP51 were constructed and expressed in E.coli BL21(DE3).The recombinant eukaryotic expression vector of pAUR-PdCYP51,p9K-PdCYP51 and p9K-PdCYP51-244 were also constructed.
     4.The activity of the soluble recombinant protein PdCYP51 was detected according to the CO difference spectra.The binding effect of the PdCYP51 with the representable antifungal agents, such as diniconazole,tebuconazole,triadimenol and triadimefon,were investigated through the binding spectra under various enzyme activity,enzyme purity and concentration.When compared with bioassay results,the binding spectra showed that the activity and proper concentration of the enzyme were necessary for obtaining accurate binding spectra.According to Michaelis-Menten equation,The Kd values of diniconazole,tebuconazole,triadimenol and triadimefon were 0.12μM、0.32μM、0.64μM and 0.99μM respectively,which significantly correlated to their EC_(50) values on the growth of P.digitatum.These results indicated that the binding spectra of fungicide with sterol 14α-demethylase can serve as a reliable and quick method for the screening of novel fungicides.
     5.The activity of heterogenetic expressed PdCYP51 were investigated to build a binding-spectra method in screening the fungicidal activities of novel chemical entitles(serials XF、serials WJ and serials ZST).According to the binding-spectra data and the bioassay results,some novel compounds with high activity were found,such as XF-22、XF-50、XF-78、XF-100、XF-113、 XF118 and XF169 of serials XF,and WJ7、WJ10、WJ11、WJ12、WJ15、WJ21、WJ22、WJ25 and WJ26 of serials WJ and ZST1、ZST5 and ZST9 of serials ZST.The Kd of WJ7、WJ10、WJ11、WJ12、WJ15、WJ21、WJ22、WJ25 and WJ26 were all less than 0.2μM,and the inhibition ratio all arrived at 100%on the growth of P.digitatum.Some chemical compounds even arrived at 80%at the concentration of 25mg/ml.
     6.The novel chemical entitles were docked to heme atom of the catalysis core of PdCYP51 by FLexX.In the binding model,the distance between N atom of chemical entitles and heme atom of the catalysis core of PdCYP51 was 3(?)obtained by computer aided design(CAD).The typeⅡdifference spectral results also confirmed the reliability of the homology model,and showed that the selection criteria for the binding model of the compound were reliable,which provide an effective strategy to design novel compounds with high affectivity and specificity.
引文
1.曹安民,施畅,廖明阳。唑类抗真菌药物的药理学和毒理学研究进展。毒理学杂志,2006,202:128-130。
    2.程婕,杨凌。细胞色素P450氧化还原酶的研究进展。中国药理学通报,2006,22(2):129-33。
    3.冯小黎。重组包涵体蛋白质的折叠复性。生物化学与生物物理进展,2001,28(4):22-28。
    4.顾万君,马建民。不同结构的蛋白编码基因的密码子偏性研究。生物物理学报,2002,18(001):81-86。
    5.盛春泉,张万年,季海涛,等。抗真菌药物的创新设计研究。中国新药杂志,2004,13(2):97-101。
    6.季海涛,张万年,周有骏。抗真菌药物作用靶标酶羊毛甾醇14α-去甲基化酶研究。生物化学与生物物理进展,1999b,26(2):108-113。
    7.冷欣夫,邱星辉。细胞色素P450酶系的结构、功能与应用前景。北京:科学出版社,2001。
    8.李红叶,朱国念,朱金文,谢青云。丝状真菌对甾醇生物合成抑制剂的抗性分子机制。菌物系统,2002,21(2):293-300。
    9.刘德立,张山,赵莉。细胞色素P450与农药相互作用及其机理研究。华中师范大学学报(自然科学版),2005,39(4):518-524。
    10.沙家骏,张敏恒,姜雅君。国外新农药品种手册。化学工业出版社,1992,252。
    11.唐除痴,李煜昶,陈彬,杨华铮,金桂玉。农药化学。南开大学出版社,1998,417-421。
    12.徐锡权。抗真菌药物研究进展。中国新药杂志,1994,3(6):10。
    13.徐铮,曹水兵,姜远英。麦角甾醇生物合成途径中的抗真菌药作用靶标酶。国外医药抗生索分册,2001,22(5):193-197。
    14.杨光富,杨华铮。麦角甾醇生物合成抑制剂分子设计的研究进展。农药译丛,1996,18(001):21-29。
    15.Akakkal R,Debien D,Lanen C et al.Inheritance and mechanisms of resistance to tebuconazole,a sterol Cl4demethylation inhibitor,in nectria haematococca,Pestic.Biochem.Physiol.,1998,60:147-166.
    16.Anderson IE,Herring A J,Jones GE,Low JC,Greig A.Development and evaluation of an indirect ELISA to detect antibodies to abortion strains of Chlamydia psittaci in sheep sera,Vet.Microbiol.,1995,12:1-12.
    17.Andre,B.An overview of membrane transport proteins in Saccharomyces cerevisiae,Yeast,1995,11:1575-1611.
    18.Aoyama Y,et al.Metabolism of 32-hydroxy-24,25-dihydrolanosterol by purified cytochrome P-45014DM from yeast.Evidence for contribution of the cytochrome to whole process of lanosterol 14 alpha-demethylation.J.Biol.Chem.,1987,262(3):1239-1243.
    19.Aoyama Y,Horiuchi T,Gotoh O,Noshiro M,Yoshida Y.CYP51-like gene of Mycobacterium tuberculosis actually encodes a P450 similar to eukaryotic CYP51,J.Biochem.(Tokyo),1998,124:694-696.
    20.Aoyama Y,Yoshida Y,Sonoda Y,Sato Y,et al.7-oxo-24,25-dihydrolanosterol:a novel lanosterol 14 alpha-demethylase(P-45014DM)inhibitor which blocks electron transfer to the oxyferro intermediate,Biochim.Biophys.Acta,1987,922:270-277.
    21.Aoyama Y.Recent progress in the CYP51 research focusing on its unique evolutionary and functional characteristics as a diversozyme P450,Front.Biosci.,2005,10:1546-1557.
    22.Aoyama Y,Noshiro M,Gotoh O,Imaoka S,Funae Y,urosawa N,Horiuchi T,Yoshida Y.Sterol 14demethylase P450(P450_(14DM))is one of the most ancient and conserved P450 species,J.Biochem.(Tokyo),1996,119:926-933.
    23.Appleby AC.A soluble haemoprotein P 450 from nitrogen-fixing Rhizobium bacteroids,Biochim.Biophys.Acta,1967,147(2):399-402.
    24.Araujo MS,Martins-Filho OA,Pereira ME,et al.A combination of benznidazole and ketoconazole enhances efficacy of chemotherapy of experimental Chagas' disease,J.Antimicrob.Chemother.,2000,45:819-824.
    25.Asai K,Tsuchimori N,Okonogi K,Perfect JR,Gotoh O,Yoshida Y,Formation of azole-resistant Candida albicans by mutation of sterol 14demethylase P450,Antimicrob.Agents Ch.,1999,43:1163-1169.
    26.Backes WL,et al.Relationship between hydrocarbon structure and induction of P450:effects on protein levels and enzyme activities,Xenobiotica,1993,23(12):1353-66.
    27.Ballard SA,Kelly SL,Ellis SW,Troke PF.Interaction of microsomal cytochrome P450 isolated from Aspergillus fumigatus with fluconazole and itraconazole,J.Med.Vet.Mycol.,1990,28:327-334.
    28.Baneyx F.Recombinant protein expression in Escherichia coli.Curr.Opin.Biotechnol.,1999,10(5):411-421.
    29.Barbara DA,John RP.Antifungal resistance trends towards the year 2000,Drugs,1997,54(5):657.
    30.Bellamine A,et al,Characterization and catalytic properties of the sterol 14alpha-demethylase from Mycobacterium tuberculosis,P.Natl.Acad.Sci.U.S.A.,1999,96(16):8937-8942.
    31.Bellamine A,Lepesheva GI,Waterman MR.Fluconazole binding and sterol demethylation in three CYP51 isoforms indicate differences in active site topology,J.Lipid.Res.,2004,45:2000-2007.
    32.Bellamine A,Mangla AT,Nes WD,Waterman MR.Characterization and catalytic properties of the sterol 14alpha-demethylase from Mycobacterium tuberculosis,P.Natl.Acad.Sci.U.S.A.,1999,96:8937-8942.
    33.Berriman M,Ghedin E,Hertz-Fowler C,et al.The Genome of the African Trypanosome Trypanosoma brucei,Science,2005,309:416-422.
    34.Bossche HV,Dromer FI,Lozano-Chiu M,et al.Antifungal drug resistance in pathogenic fungi,Meal.Mycol.,1998,36(Suppl 1):119-128.
    35.Bossche HV,Marichal P,Gorrens J.Bellens D,Moereels H,Janssen PAJ,Mutation in cytochrome P-450-dependent 14α-demethylase results in decreased affinity for azole antifungals,Biochem.Soc.Trans.,1990,18:56-59.
    36.Bradford,MM.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,Anal.Biochem.,1976,72:248-250.
    37.Brown JKM,Jessop AC,Thomas S,et al.Genetics control of the response of Erysiphe graminis f.sp.hordei to ethirimol and triadimenol,Plant Pathol.,1992,41:126-135.
    38.Brun S,Berges T,Mechanisms of azole resistance in petite mutants of Candida glabrata,Antimicrob.Agents Ch.,2004,48:1788-1796.
    39.Buckner F,Yokoyama K,Lockman J,Aikenhead K,Ohkanda J,Sadilek M,Sebfi S,Van Voorhis W,Hamilton A,Gelb MH,A class of sterol 14demethylase inhibitors as anti-Trypanosoma cruzi agents,P.Natl.Acad.Sci.U.S.A.,2003,100:15149-15153.
    40.Burton PM,Swinney DC,Heller R,Dunlap B,Chiou M,Malonzo E,Haller J,Walker KM,Salad A,Murakami S,Mendizabal G.Azalanstat LT.a lanosterol 14 alpha-demethylase inhibitor with cholesterol-lowering activityAzalanstat,Biochem.Pharmacol.,1995,50:529-544.
    41.Byskov AG.Andersen CY,Nordholm L,Thogersen H,Xia G.Wassmann O,Andersen JV,Guddal E,Roed T.Chemical structure of sterols that activate oocyte meiosis,Nature,1995,6522:559-562.
    42.Cabello-Hurtado F,Taton M,Forthoffer N,Kahn R,Bak S,Rahier A,Werck-Reichhart D.Optimized expression and catalytic properties of a wheat obtusifoliol 14alpha-demethylase (CYP51)expressed in yeast.Complementafion of erg11Delta yeast mutants by plant CYP51,Eur.J.Biochem.,1999,262:435-446.
    43.Cao YB(曹永兵),Jing YY(姜远英),YinM(殷明),et al.Effect offluconazole on ergosterol biosynthesis in fungi by TLC.A cad.J.Sec.Mil.Med.Univ.(第二军医大学学报),1999,20(5):312-315.
    44.Cereghino JL,Cregg JM.Heterologous protein expression in the methylotrophic yeast Pichia pastoris,FEMS micrrobiol.Rev.,2001,24:45-48.
    45.Cole ST,Brosch R,Parkhill J.Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence,Nature,1998,393:537-544.
    46.Cooper AB,Wright IJ,GangulyAK,Desai J,Loebenberg D,Parmegiani R,Feingold DS,Sud IJ,Synthesis and antifungal properties of 14aminomethyl-substituted lanosterol derivatives,J.Chem.Soc.Chem.Co.,1989,12:898-900.
    47.Cotman M,Jezek D,Tacer KF,Frangez R,Rozman D.A functional cytochrome P450 lanosterol 14 alpha-demethylase CYP51 enzyme in the acrosome:transport through the Golgi and synthesis of meiosis-activating sterols,Endocrinology,2004,145(3):1419-1426.
    48.David CL,Diane EK,Nigel JM,Derek WH,Steven LK.Expression,purification,reconstitution and inhibition of Ustilago maydis sterol 14 a -demethylase(CYP51;P450_(14DM)).FEMS Microbiol.Lett.,1998,169:369-373.
    49.David CL,Daine EK,Nigel JM,et al.Purification,Re-constitution,and Inhibition of CytochromeP-450 Sterol △22-Desaturase from the Pathogenic Fungus Candida glabrata,Antimicrob.Agents Ch.,1999,43(7):1725-1728.
    50.de Groot MJ.Designing better drugs:predicting cytochrome P450 metabolism,Drug Discov.Today,2006,11:601-606.
    51.de Montellano PRO,Correia MA,Inhibition of cytochrome P450 enzymes,in:P.R.Ortiz de Montellano(Ed.),Cytochrome P450:Structure,Mechanism,and Biochemistry,2nd ed.,Plenum Publishing Corp.,New York,1995,305-364.
    52.De Waard M A,van Nistelrooy J G M,Langeveld C R et al.Mut ildrug resistance in filamentous fungi.In:Lyr H,Russell PE,Sisler HD(eds),Modern Fungicides and Antifungal Compounds.Intercep,Andover,Hampshire,UK,1996,293-299.
    53.Délye C,Bousset L,Codo-Costet MF.PCR cloning and detection of point mutations in the eburicol 14a-demethylase(CYP51)gene from Erysiphe graminis f.sp.hordei,a" recalcitrant"fungus,Curt.Genet.,1998,34(5):399-403.
    54.Delye C,Laigret F,Corio-Costet M-F.A mutation in the 14á-demethylase gene of Uncinula necator that correlates with resistance to a sterol biosynthesis inhibitor,Appl.Environ.Microbiol.,1997,63:2966-2970.
    55.Eckert JW,Sievert JR,Ratnayake M.Reduction of imazalil effectiveness against citrus green mold in Colifomia pachagehouse by resistant biotypes of Penicillium digitatum, Plant Dis., 1994, 78: 971-974.
    
    56. Edlind TD, Henry KW, Metera KA, et al. Aspergillus fumigatus CYP51 sequence: potential basis for fluconazole resistance, Med. Mycol., 2001, 39: 299-302.
    
    57. Engels AJ, Holub EF, Swart K, et al. Genetic analysis of resistance to fenpropimorph in Aspergillus niger, Curr. Genet., 1998, 33: 145-150.
    
    58. Engels AJG, De Waard MA. Fitness of isolates of Erysiphe graminis f. sp. tritici with reduced sensitivity to fenpropimorph, Crop Prot., 1996,15: 771-777.
    
    59. Fiecchi A, Galli-Kienle M, Scala A, Galli G, Grossi EP, Cattabeni F, Paoletti R. Hydrogen exchange and double bond formation in cholesterol biosynthesis, Proc. R. Soc. Lond. B. Biol., Sci., 1972, 180:147-165.
    
    60. Frye LL, Leonard DA. Lanosterol analogs: dual-action inhibitors of cholesterol biosynthesis, Crit. Rev. Biochem. Mol. Biol., 1999,34: 123-140.
    
    61. Fuchs A, Drandarevski C A. The likelihood of development of resistance to systemic fungicides which inhibit ergosterol biosynthesis. Neth. J. Plant Pathol., 1976, 82: 85-87.
    
    62. Fukuda H, Kizaki Y. A new transformation system of Saccharomyces cerevisiae with blasticidin S deaminase gene, Biotech. Lett., 1999,21(11): 969-971.
    
    63. Galli-Kienle M, Anastasia M, Cigherti G, Galli G, Fiecchi A. Studies on the 14 alpha-demethylation mechanism in cholesterol biosynthesis, Eur. J. Biochem., 1980, 110: 93-105.
    
    64. Georgopapadakov NH, Walsh TJ. Human mycoses: Drugs and targets for emerging pathogens, Science, 1994,264 (15): 371.
    
    65. Gisi U, Chin K. M, Knapova G, et al. Recent developments in elucidating modes of resistance to phenylamide, DMI and strobilurin fungicides, Crop. Prot., 2000, 19: 863-872.
    
    66. Grondahl C, et al. Meiosis-activating sterol promotes resumption of meiosis in mouse oocytes cultured in vitro in contrast to related oxysterols [In Process Citation], Biol. Reprod., 1998, 58(5): 1297-1302.
    
    67. Guardiola-Diaz HM., Lisa-Anne F, Darren M,et al. Azole-antifungal binding to a novel cytochrome P450 from Myobacterium wruberculosis:implications for treatment of tuberculosis. Biochem. Pharmacol., 2001,61:1463-1470.
    
    68. Guex N, Peitsch MC. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling, Electrophoresis, 1997,18: 2714-2723.
    
    69. Haider SK, et al. A cAMP-Responsive Element Binding Site Is Essential for Sterol Regulation of the Human Lanosterol 14a-Demethylase Gene(CYP51),Mol.Endocrinol.,2002,16(8):1853-1863.
    70.Hamamoto H,Hasegawa K,Nakaune R,Lee YJ,Makizumi Y,Akutsu K,Hibi T.Tandem repeat of a transcriptional enhancer upstream of the sterol 14a-demethylase gene(CYP51)in Penicillium digitatum,Appl.Environ.Microb.,2000,66:3421-3426.
    71.Han P(韩平),Liu XL(刘西莉),Liu PF(刘鹏飞),et al.Effect of Novel Fungicide 5-(4-Chloro phenyl)-2,3-dimethyl-3-(pyr idine-3)-oxazoline on Ergosterol Biosynthesis in B otrytis C ine rea by High Performance Liquid Chroma tography.Chinese J.Anal.Chem.(分析化学),2006,34(10):1467-1470.
    72.Hankins EG,Gillespie JR,Aikenhead K,Buckner FS,Upregulation of sterol C14demethylase expression in Trypanosoma cruzi treated with sterol biosynthesis inhibitors,Mol.Biochem.Parasitol.,2005,144:68-75.
    73.Hargeave JA,Keon J R.Isolation of an Ustilago maydis ERG11 gene and its expression in a mutant deficient in sterol 14 alpha-demethylase activity,FEMS Microbiol.Lett.,1996,139:203-207.
    74.Hasslacher M,Schall M,Hayn M,et al.High level in tracellular expression of hydroxynitrilelyase from the tropical rubber tree Hevea brasiline sisn in microbial hosts,Protein Expr Purif,1997,11:61-71.
    75.Higgins,CF.ABC transporters:from microorganisms to man,Annu.Rev.Cell Biol.,1992,8:67-113.
    76.Hitchcock CA.Resistance of Candida albicans to azole antifungal agent.Biochem.Soc.Trans,1993,21:1039-1047.
    77.Hitchcock CA,Dickinson K,Brown SB,Evans EG,Adams DJ.Purification and properties of cytochrome P-450-dependent 14 alpha-sterol demethylase from Candida albicans.Biochem.J.,1989,263(2):573-579.
    78.Hitchcock CA,Dickinson K,Brown SB,Evans EGV,Adams DJ.Interaction of azole antifungal antibiotics with cytochrome P450 dependent 14a-sterol demethylase purified from Candida albicans,Biochem.J.,1990,266:475-480.
    79.Hollomom DW.Resistance to azole fungicides in the field,Biochem.Soc.Trans,1993,21:1047-1051.
    80.Holmes GJ,Eckert JW.Sensitivity of Penicillium digitatum and P.italicum to postharvest citrus fungicides in California.Phytopathology,1999,89:716-721.
    81.Jackson CJ,Lamb DC,Marczylo TH,Warrilow AG,Manning NJ,Lowe DJ,Kelly DE,Kelly SL. A novel sterol 14alpha-demethylase/ferredoxin fusion protein (MCCYP51FX) from Methylococcus capsulatus represents a new class of the cytochrome P450 superfamily, J. Biol. Chem., 2002,277: 46959-46965.
    
    82. Jackson CJ, Lamb DC, Marczylo TH, Warrilow AG, Manning NJ, Lowe DJ, Kelly DE, Kelly, SL.A novel sterol 14alpha-demethylase/ferredoxin fusion protein (MCCYP51FX) from Methylococcus capsulatus represents a new class of the cytochrome P450 superfamily, J. Biol. Chem., 2002,277: 46959-46965.
    
    83. Jackson JC, Lamb DC, Marczylo TH, Parker JE, Manning NL, Kelly DE, Kelly SL. Conservation and cloning of CYP51: a sterol 14 alphademethylase from Mycobacterium smegmatis, Biochem. Biophys. Res. Co., 2003, 301: 558-563.
    
    84. Jackson JC, Lamb DC, Marczylo TH, Warrilow AG, Manning NJ, Lowe DJ, Kelly DE, Kelly SL. A novel stero 14alpha-demethylase/ferredoxin fusion protein (MCCYP51FX) from Methylococcus capsulatus represents a new class of the cytochrome P450 superfamily, J.Biol.Chem., 2002, 277: 46959-46965.
    
    85. Ji H, Zhang W, Zhou Y, et al. A three-dimensional model of lanosterol 14alpha-demethylase of Candida albicans and its inter-action with azole antifungals. J. Med. Chem., 2000,43: 2493-2505.
    
    86. Kahn RA, Bak S, Olsen CE, Svendsen I, Moller BL. Isolation and reconstitution of the heme-thiolate protein obtusifoliol 14alpha-demethylase from Sorghum bicolor (L.) Moench, J. Biol. Chem., 1996,271: 32944-32950.
    
    87. Kalamaralis AE, Demopoulos VP, Ziogas BN, et al. A high mutable major gene for tradimenol resistance in Nectria haematococcca var. cucurbitae, Neth. J. Plant Pathol., 1989, 95 (suppl. 1), 109-115.
    
    88. Kalb VF, Loper JC, Dey CR. Isolation of a cytochrome P450 structural gene from Saccharomyces cerevisiae, Gene, 1986,45:237-245.
    
    89. Kall L, Krogh A, Sonnhammer EL. A Combined Transmembrane Topology and Signal Peptide Prediction Method, J. Mol. Biol., 2004, 338(5): 1027-1036.
    
    90. Kane JF. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli, Curr. Opin. Biotech., 1995,6(5): 494-500.
    
    91. Karaoglanidis GS, Loannidis PM, Thanassoulopoulos CC. Reduced sensitivity of Cercospora beticola isolates to sterol-demethylation-inhbiting fungicides, Plant Pathol., 2000,49: 567-572.
    
    92. Kim HB, Schaller H, Goh CH, Kwon M, Choe S, An CS, Durst F, Feldmann KA, Feyereisen R. Arabidopsis cyp51 mutant shows postembryonic seedling lethality associated with lack of membrane integrity,Plant Physiol.,2005,138:2033-2047.
    93.Koller W,Scheinpflug H.Fungal resistance to sterol biosynthesis inhibitors,a new challengenge,Plant Dis.,1987,71:1066-1074.
    94.Kontoyiannis DP,Sagar N,Hirschi KD.Overexpression of Ergllp by the regulatable GAL1promoter confers fluconazole resistance in Sccharomyces cerevisiae,Antimicrob.Agents Ch.,1999,43:2798-2800.
    95.Kristy JM,Ker RM,Alison R,et al.Azole Antifungals are potent inhibitors of cytochrome P450mono-oxygenases and bacterial growth in mycobateria and strepromycetes,Microbiology,2002,148:2937-2949.
    96.Krogh A,et al.Predicting transmembrane protein topology with a hidden Markov model:application to complete genomes,J.Mol.Biol.,2001,305(3):567-580.
    97.Lamb DC,Kelly DE,White TC,et al.The R467K amino acid substitution in Candida albicans sterol 14alpha-demethylase causes drug resistance through reduced affinity,Antimicrob.Agents Ch.,2000,44:63-67.
    98.Lamb DC,Kelly DE,Schunck WH,et al.The mutation T315A in Candida albicans sterol 14alpha-demethylase causes reduced enzyme activity and fluconazole resistance through reduced affinity.J.Biol.Chem.,1997,272(5):5682-5688.
    99.Lamb DC,Kelly DE,Manning NJ,Hollomon DW,Kelly SL.Expression,purification,reconstitution and inhibition of Ustilago maydis sterol 14 alpha-demethylase(CYP51;P450(14DM)),FEMS Microbiol.Lett.,1998,169:369-373.
    100.Lamb,DC,et al,The R467K amino acid substitution in Candida albicans sterol 14alpha-demethylase causes drug resistance through reduced affinity.Antimicrob.Agents Ch.,2000,44(1):63-67.
    101.Lepesheva G.,Zaitseva NG,Nes WD,Zhou W,Arase M,Liu J,Hill GC,Waterman MR.CYP51from Trypanosoma cruzi:a phyla-specific residue in the B' helix defines substrate preferences of sterol 14alphademethylase.J.Biol.Chem.,2006,281:3577-3585.
    102.Lepesheva GI,Nes WD,Zhou W,Hill GC,Waterman MR.CYP51 from Trypanosoma brucei is obtusifoliol-specific.Biochemistry,2004b,43:10789-10799.
    103.Lepesheva GI,Virus C,Waterman MR.Conservation in the CYP51 family.Role of the B'helix/BC loop and helices F and G in enzymatic function.Biochemistry,2003,42:9091-9101.
    104.Lepesheva GI,Waterman MR.CYP51-the omnipotent P450.Mol.Cell Endocrinol.,2004a,215(1-2):165-170.
    105.Lepesheva GI,Waterman MR.Sterol 14a-demethylase cytochrome P450(CYP51),a P450 in all biological kingdoms.Biochim.Biophys.Acta,2007,1770:467-477.
    106.Lepesheva GI,Zaitseva NG,Nes WD,Zhou W,Arase M,Liu J,Hill GC,Waterman MR.CYP51from Trypanosoma cruzi:a phyla-specific residue in the B'helix defines substrate preferences of sterol 14alphademethylase.J.Biol.Chem.,2006,281:3577-3585.
    107.Li H,Poulos TL.The structure of the cytochrome p450BM-3haem domain complexed with the fatty acid substrate,palmitoleic acid.Nat.Struct.Biol.,1997,4:140-146.
    108.Liu HT(刘洪涛),Gao PH(高平挥),Cao YB(曹永兵),et al.Inhibitory effect of fluconazole on sterol biosynthesis in Candida albicans studied by gaschromatography-mass spectrometry.Chinese J.Pharmacol.Toxicol.,2002,16(5):368-371.
    109.Liu XH(刘小红),Li JQ(李健强),Zhou LG(周立刚),et al.Inhibition effect of dimboa on fusarium graminearum and bipolaris maydis.Mycosystema(菌物学报),2004,23(1):109-114.
    110.Lupetti A,Danesi R,Campa M,Tacca MD,Kelly S.Molecular basis of resistance to azole antifungals,Trends Mol.Med.,2002,2:76-81.
    111.Majdic G,et al.Lanosterol 14alpha-demethylase(CYP51),NADPH-cytochrome P450 reductase and squalene synthase in spermatogenesis:late spermatids of the rat express proteins needed to synthesize follicular fluid meiosis activating sterol,J.Endocrinol.,2000,166(2):463-474.
    112.Marichal P,Koymans L,Willemsens S,Bellens D,Verhasselt P,Luyten W,Borgers M,Ramaekers FC,Odds FC,Bossche HV.Contribution of mutations in the cytochrome P45014alpha-demethylase(Erg11p,Cyp51p)to azole resistance in Candida albicans,Microbiology 1999,145:2701-2713.
    113.Masayo K,Takeshi N,Ken S,et al.Obtusifoliol 14a-Demethylase(CYP51)Antisense Arabidopsis Shows Slow Growth and Long Life.Biochem.Bioph.Res.Co.,2001,285:98-104.
    114.Matsumoto M,Ishida K.Strong antifungal activity of SS750,a new triazole derivative,is based on its selective binding affinity to cytochrome P450 of fungi,Antimicrob.Agents Ch.,2002,46:308-314.
    115.Morisaki M,Sonoda Y,Makino T,Ogihara N,Ikekawa N,Sato Y.Inhibitory effect of 15-oxygenated sterols on cholesterol synthesis from 24,25-dihydrolanosterol.J.Biochem.(Tokyo),1986,99:597-600.
    116.Nakahara K,et al.Cytochrome P-450 55A1(P-450dNIR)acts as nitric oxide reductase employing NADH as the direct electron donor.J.Biol.Chem.,1993,268(11):8350-8355.
    117.Nebert DW,Gonzalez FJ.P450 genes:structure,evolution,and regulation,Annu.Rev.Biochem.,1987,56:945-93.
    118.Nebert DW,Nelson DR,Coon MJ,Estabrook RW,Feyereisen R,Fujii-Kuriyama Y,Gonzalez F J,Guengerich FP,Gunsalus IC,Johnson EF,et al.The P450 superfamily:update on new sequences,gene mapping,and recommended nomenclature,DNA Cell Biol.,1991,10:1-14.
    119.Nelson DR,et al.P450 superfamily:update on new sequences,gene mapping,accession numbers and nomenclature,Pharmacogenetics,1996,6(1):1-42.
    120.Nes WR,McKean MR.Biochemistry of Steroids and Other Iisopentenoids.University Park Press,Baltimore,1977.
    121.Ness GC,Gertz KR,Holland RC.Regulation of hepatic lanosterol 14 alpha-demethylase gene expression by dietary cholesterol and cholesterol-lowering agents,Arch.Biochem.Biophys.,2001,395(2):233-8.
    122.Nitahara Y,Aoyama Y,Horiuchi T,Noshiro M,Yoshida Y.Purification and characterization of rat sterol 14-demethylase P450(CYP51)expressed in Escherichia coli.J.Biochem.,1999,126:927-933.
    123.Nitahara Y,Kishimoto K,Yabusaki Y,Gotoh O,Yoshida Y,Horiuchi T,Aoyama Y.The amino acid residues affecting the activity and azole susceptibility of rat CYP51(sterol 14demethylase P450),J.Biochem.(Tokyo),2001,129:761-768.
    124.O'Brien M,Chantha SC,Rahier A,Matton DP.Lipid signaling in plants.Cloning and expression analysis of the obtusifoliol 14alphademethylase from Solanum chacoense Bitt.,a pollination-and fertilization-induced gene with both obtusifoliol and lanosterol demethylase activity.Plant Physiol.,2005,139:734-749
    125.Omura T,Sato R.A New Cytochrome in Liver Microsomes,J.Biol.Chem.,1962,237(4):1375-1376.
    126.Omura T.Forty years of cytochrome P450.Biochem.Biophys.Res.Co.,1999,266(3):690-698.
    127.Park SY,Shimizu H,Adachi S,Nakagava A,Tanaka I,Nakahara SH,Obayashi E,Nakamura H,Iizuka T,Shiro Y.Crystal structure of nitric oxide reductase from denitrifying fungus Fusarium oxysporum,Nat.Struct.Biol.,1997,4:827-832.
    128.Peever TL,Milgroom MG.Inheritance of triadimenol resistance in Pyrenophora teres,Phytopathol,1992,82:821-828.
    129.Pena-Diaz J,Montalvetti A,Flores CL,et al.Mitochondrial localization of the mevalonate pathway enzyme 3-Hydroxy-3-methyl-glutaryl-CoA reductase in the Trypanosomatidae,Mol.Biol.Cell,2004,15:1356-1363.
    130.Podust LM,Poulos TL,Waterman MR.Crystal structure of eytochrome P450 14alpha -sterol demethylase(CYP51)from Mycobacterium tuberculosis in complex with azole inhibitors,P.Natl.Acad.Sci.U.S.A.,2001,98:3068-3073.
    131.Podust LM,Poulos TL,Waterman MR.Crystal structure of cytochrome P450 14alpha-sterol demethylase(CYP51)from Mycobacterium tuberculosis in complex with azole inhibitors,Proceedings of the National Academy of Sciences,2001,98(6):3068.
    132.Podust,LM,et al,Estriol bound and ligand-free structures of sterol 14alpha-demethylase,Structure,2004,12(11):1937-1945
    133.Poulos TL,AJ Howard.Crystal structures of metyrapone-and phcnylimidazole-inhibited complexes of cytochrome P-450cam,Biochemistry,1987,26(25):8165-8174.
    134.Poulos TL,et al.The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450,J.Biol.Chem.,1985,260(30):16122-16130.
    135.Ravichandran KG,Boddupalli SS,Hasemann CA,Pcterson JA,Dcisenhofer J.Crystal structure of hemoprotein domain of P450BM-3,a prototype for microsomal P450's,Science,1993,261:731-736.
    136.Rehm A,et al.Signal peptide cleavage of a type I membrane protein,HCMV US11,is dependent on its membrane anchor,The EMBO J.,2001,20:1573-1582.
    137.Robbertse B,vander Rijst M,van Aarde IMR,et al.DMI sensitivity and corr-resistance patterns of Rhynchosporium secalis isolates from South Africa,Crop Pro.,2001,20:97-102.
    138.Rozman D,et al.Cyclic adenosine 3′,5'-monophosphate(cAMP)/cAMP-rcsponsive clement modulator(CREM)-dependent regulation of cholesterogenic lanosterol 14alpha-demethylase (CYP51)in spermatids,Mol.Endocrinol.,1999,13(11):1951-1962.
    139.Rozman D,Stromstedt M,Waterman MR.The three human cytochrome P450 lanosterol 14alpha-demethylase(CYP51)genes reside on chromosomes 3,7,and 13:structure of the two retrotransposed pseudogenes,association with a line-1 element,and evolution of the human CYP51 family,Arch.Biochem.Biophys.,1996a,333(2):466-474.
    140.Rozman D,Stromstedt M,Tsui LC,Schcrer SW,Waterman MR.Structure and mapping of the human lanosterol 14alpha-demethylasc gene(CYP51)encoding the cytochrome P450 involved in cholesterol biosynthesis;comparison of exon/intron organization with other mammalian and fungal CYP genes,Genomics,1996b,38(3):371-381.
    141.Sanglard D,Ischer F,Koymans L,et al.Amino acid substitutions in the cytochrome P-450lanosterol 14α-demethylase(CYP51A1)from azole-resistant Canida albicans clinical isolates contribute to resistanace to azole antifungal agents,Antimicrob.Agents Ch.,1998,42:241-253.
    142.Schaller H.The role of sterols in plant growth and development,Prog.Lipid.Res.,2003,42:163-175.
    143.Schnabel G,Jones AL.The 14a-demethylase(CYP51Al)gene is overexpressed in Venturia inaequlis strains resistant to Myclobutanil,Phytopathol,2004,91:102-110.
    144.Seele R,Himmele W,Kober R,Ammermann E,Lorenz G.Rademacher W,Jung J.Azolylethanderivate and diese Enthaltende Fungizide und Wachstumsregulation.DE3914944,1989.
    145.Shen AL,O'Leary KA,Kas CB.Association of Multiple Developmental Defects and Embryonic Lethality with Loss of Microsomal NADPH-Cytochrome P450 Oxidoreductase.J.Biol.Chem.,2002,277(8):6536-6541.
    146.Shimozawa O,Sakaguchi M,Ogawa H,Harada N,Mihara K,Omura T.Core glycosylation of cytochrome P-450(arom).Evidence for localization of N terminus of microsomal cytochrome P-450 in the lumen,J.Biol.Chem.,1993,268(28):399-402.
    147.Shyadehi AZ,Lamb DC,Kelly SL,et al.The mechanism of the acyl-carbon bond cleavage reaction catalyzed by recombinant sterol 14 alpha-demethylase of Candida albicans(other names are:lanosterol 14 alpha-demethylase,P-45014DM,and CYP51,J.Biol.Chem.,1996,271:12445-12450.
    148.Smith FD,Koller W.The expression of resistance of Ustilago avenae to the sterol demethylation inhibitor triadimenol is an induced response,Phytopathol,1990,80:584-590.
    149.Snyder MJ,Hsu EL,Feyereisen R.Induction of cytoehrome P-450 activities by nicotine in the tobacco homworm,Manduca sexta,J.Chem.Ecol.,1993,19(12):2903-2916.
    150.Sono H,Sonoda Y,Sato Y.Purification and characterization of cytochrome P-45014DM (lanosterol 14 alpha-demethylase)from pig liver microsomes,Biochim.Biophys.Acta,1991,1078:388-394.
    151.Sonoda Y,Obi N,Onoda M,Sakakibara Y,Sato Y.Effects of 32-oxygenated lanosterol derivatives on 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and cholesterol biosynthesis from 24,25-dihydrolanosterol,Chem.Phann.Bull(Tokyo),1992,40:2796-2799.
    152.Stanis VF,Jonos AL.Reduced sensitivity to sterol inhibiting fungicides in field isolates of Venturia inaequalis,Phytopathol,1985,75:1098-1101.
    153.Stewart RS,Drisaldi B,Harris DA.A transmembrane form of the priori protein contains an uncleaved signal peptide and is retained in the endoplasmic reticulum,Mol.Biol.Cell,2001,12(4):881-889.
    154.Stromstedt M,et al.Elevated expression of lanosterol 14alpha-demethylase(CYP51)and the synthesis of oocyte meiosis-activating sterols in postmeiotic germ cells of male rats,Endocrinology,1998,139(5):2314-2321.
    155.Stromstedt M,Rozman D,Waterman MR.The ubiquitously expressed human CYP51 encodes lanosterol 14 alpha-demethylase,a cytochrome P450 whose expression is regulated by oxysterols,Arch.Biochem.Biophys.,1996a,329(1):73-81.
    156.Stromstedt M,Waterman MR,Haugen TB,Tasken K,Parvinen M,Rozman D.Elevated expression of lanosterol 14alpha-demethylase(CYP51)and the synthesis of oocyte meiosis-activating sterols in postmeiotic germ cells of male rats,Endocrinology,1998,139:2121-2314.
    157.Taton M,Rahier A.Properties and structural requirements for substrate specificity of cytochrome P-450-dependent obtusifoliol 14 alphademethylase from maize(Zea mays)seedlings,Biochem.J.,1991,277:483-492.
    158.Trzaskos J,Kawata S,Gaylor JL.Microsomal enzymes of cholesterol biosynthesis.Purification of lanosterol 14 alpha-methyl demethylase cytochrome P-450 from hepatic microsomes,J.Biol.Chem.,1986,261:14651-14657.
    159.Trzaskos JM,Favata MF,Fischer RT,Stam SH.In situ accumulation of 3 beta-hydroxylanost -8-en-32-aldehyde in hepatocyte cultures.A putative regulator of 3-hydroxy-3-methylglutarylcoenzyme A reductase activity,J.Biol.Chem.,1987,262:12261-12268.
    160.Trzaskos JM,Fischer RT,Ko SS,Magolda RL,Stam S,Johnson P,Gaylor JL.Substrate-based inhibitors of lanosterol 14 alpha-methyl demethylase:Ⅱ.Time-dependent enzyme inactivation by selected oxylanosterol analogs,Biochemistry,1995,30:9677-9681.
    161.Tsukuda T,Shiratori Y,Watanabe M,Ontsuka H,Hattori K,Shirai M,Shimma N.Modeling,synthesis and biological activity of novel antifungal agents(1),Bioorg.Med.Chem.Lett.,1998,8:1819-1824.
    162.Tuck SF,Robinson CH,Silverton JV.Assessment of the active-site requirements of lanosterol 14a-demethylase:evaluation of novel substrate analogues as competitive inhibitors,J.Org.Chem.,1991,56(3):1260.
    163.Tuck SF,Y Aoyama,Y Yoshida,et al.Active site topology of saccharomyces cerevisiae lanosterol 14a-demethylase(CYP51)and its G310D mutant(Cytochrome P2450SG1),J.Biol.Chem.,1992,267(19):13175-13179.
    164.Tuck,SF,et al.Lanosterol 14 alpha-demethylase(P450_(14DM)):effects of P45014DM inhibitors on sterol biosynthesis downstream of lanosterol,J.Lipid.Res.,1991,32(6):893-902.
    165.Usuda K,et al.Denitrification by the fungus Cylindrocarpon tonkinense:anaerobic cell growth and two isozyme forms of cytochrome P-450nor,Appl.Environ.Microbiol.,1995,61(3):883-889.
    166.van den Brink HJ,van Nistelrooy JGM,De Waard MA,et al.Increased resistance to 14alpha-demethylase inhibitors(DMIs)in Aspergillus niger by coexpression of the Penicillium italicum eburicol 14 alpha-demethylase(cyp51)and the A.niger cytochrome P450 reductase (cprA)genes,J.Biotechnol.,1996,49:13-18.
    167.Van Nistelrooy JGM,van den Brink JM,van Kan JAL,et al.Isolation and molecular characterisation of the gene encoding eburicol 14 alpha-demethylase(CYP51)from Penicillium italicum,Mol.Gen.Genet.,1996,250:725-733.
    168.Van Nistelrooy JGM,van den Brink JM,van Kan JAL,van Gorcom RFM,de Waard MA.Isolation and molecular characterization of the gene encoding eburicol 14a-demethylase (CYP51)from Penicillium italicum,Mol.Gen.Genet.,1996,250:725-733.
    169.Venateswarlu K,Denning DW,Manning NJ,et al.Comparison of D0870 a new Triazole Antifungal agent,to Fluconzole for inhibition of Candida albicans cytochrome P-450 by using in vitro assays,Antimicrob.Agents Ch.,1996,40(6):308-314.
    170.Venateswarlu K,Daine EK,Nigel JM,et al.NADPH cytochrome P-450 oxidoredutase and susceptibility to Ketoconazole,Antimicrob.Agents Ch.,1998,42(7):1756-1761.
    171.Venkateswarlu K,David CL,Daine EK,et al.The N-terminal membene domain of yeast NADPH-Cytochrome P450(CYP)oxidoreductase is not required for catalytic activity in sterol biosynthsis or in reconstitution of CYP activity,J.Biol.Chem.,998,273(8):4492-4496.
    172.Vidakovic M,Sligar SG.Li H,Poulos TL.Understanding the role of the essential Asp251 in cytochrome p450cam using site-directed mutagenesis,crystallography,and kinetic solvent isotope effect,Biochemistry,1998,26:9211-9219.
    173.Waterman MR,Lepesheva GI.Sterol 14 alpha-demethylase,an abundant and essential mixed-function oxidase,Biochem.Biophys.Res.Co.,2005,338:418-422.
    174.Wellman H,Schauz K.Characterization and genetics analysis of triadimefon-resistant laboratory Mutants,Pestic.Biochem.Physiol.,1992,43:171-179.
    175.Werten MW,vanden Bosch TJ,Wind RD,et al.High yield sescretion of recombinant gelatins by Pichia pastoris,Yeast,1999,15:1087-1096.
    176.White TC.Increased mRNA levels ofErg16,CDR,and MDR1 correlation with the increases in azole-resistant lanosterol 14alpha demethylase in Candida albicans,Antimicrob.Agents Ch.,1997,41:1488-1494.
    177.Wood HM,Dickinson M J,Lucas JA,et al.Cloning of the CYP51 gene from the eyespot pathogen Tapesia yallundae indicates that resistance to the DMI fungicide prochloraz is not related to sequence changes in the gene encoding the target site enzyme,FEMS Microbiol.Lett.,2001,196:183-187.
    178.Wu G,et al.SGDB:a database of synthetic genes re-designed for optimizing protein over-expression,Nucleic Acids Research,2007,35(Database issue):D76.
    179.Wy RA,Brown JK.Sequence variation in the CYP51 gene of Blumeria graminis associated with resistance to sterol demethylase inhibiting fungicides,Fungal Genet.Biol.,2005,42:726-735.
    180.Xiang Wen-Sheng,Wang Xiang-Jing,Ren Tian-Rui,Ci Su-Qin.Purification of recombinant wheat cytochrome P450 monooxygenase expressed in yeast and its properties,Protein Expres.Purif.,2006,45:54-59.
    181.Yah XW(晏秀伟),Liu HT(刘洪涛),Cao YB(曹永兵),et al.Determination of CYPS1 activity in azole-resistant Candida albicans by the incoperation of 14C,China New Medicine(中国新医药),2004,3(6):1-3.
    182.Yoshida Y,Aoyama Y,Noshiro M,Gotoh O.Sterol 14demethylase P450(CYP51)provides a breakthrough for the discussion on the evolution of cytochrome P450 gene superfamily,Biochem Biophys Res.Co.,2000,273:799-804.
    183.Yoshida Y,Aoyama Y.Yeast cytochrome P-450 catalyzing lanosterol 14 alpha-demethylation.I.Purification and spectral properties.Journal of Biological Chemistry,1984,259(3):1655-1660.
    184.Yoshida Y.Sterol biosynthesis,in:T.Omura,Y.Oshimura,Y.Fujii-Kuriyama(Eds.),Cytochrome P450,2nd ed,1992:93-101.
    185.Zarn JA,Bruschweiler B J,Schlatter JR.Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14 alpha-demethylase and aromatase,Environ Health Persp.,2003,111:255-261.
    186.Zhang W,Ramamoorthy Y,Kilicarslan T,Nolte H,Tyndale RF,Sellers EM.Inhibition of cytochromes P450 by antifungal imidazole derivatives,Drug Metab.Dispos.,2002,30:314-318.
    187.Zhu J,Lu JG,Zhou YJ,Li YW,Cheng J,Zheng CH.Design,synthesis,and antifungal activities in vitro of novel tetrahydroisoquinoline compounds based on the structure of lanosterol 14a-demethylase(CYP51)of fungi,Bioorg.Med.Chem.Lett.,2006,16:5285-5289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700