Co、Cr、Cu、Mn等过渡金属掺杂ZnO薄膜的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,稀磁半导体由于可能在同种材料中同时实现对电子电荷和自旋的调控而吸引了众多研究者的兴趣。2000年,Dietl等人从理论上预言了ZnO、GaN等宽带隙半导体材料有可能成为居里温度高于室温的稀磁半导体材料,该预言使得过渡金属掺杂宽带隙半导体成为国际材料界的研究热点,随后在过渡金属掺杂ZnO材料中发现室温铁磁性的实验报道更是引起了科学界的巨大热情。ZnO基稀磁半导体材料相对其它候选半导体材料有许多独特的优点,如很宽的带隙(约3.4 eV)、室温下很高的激子结合能(约60 meV)、很高的光学增益(300 cm–1)和极短的发光驰豫时间等等,这些特点使得ZnO基稀磁半导体材料不仅可能成为未来自旋电子器件的候选材料,还有可能在未来的光电子器件和磁光器件等领域得到广泛的应用。
     本文紧扣ZnO材料研究中的热点,以验证ZnO基薄膜材料是否具有室温铁磁性并理解其铁磁耦合机理为目的,利用射频磁控溅射方法选择制备了Co、Cr、Cu、Mn等一系列过渡金属掺杂ZnO薄膜,并详细研究了其微结构、光学性质和磁学性质,分析了其磁性耦合机理,得出的主要结果如下:
     1、微结构测试的结果表明:在掺杂浓度较低时,Co、Cr、Cu、Mn等过渡金属掺杂ZnO薄膜是单一相的,这些过渡金属掺杂原子成功地占据了ZnO晶格中的Zn位,实现了替位式掺杂而且没有改变ZnO的纤锌矿结构。然而,在高掺杂浓度的样品中,比如掺杂浓度大于等于31.3 atom%的Co掺杂ZnO薄膜中出现了少量纳米尺寸的Co3O4团簇,在掺杂浓度达到9.8 atom%的Cr掺杂ZnO薄膜中则出现了ZnCr2O4杂质相。
     值得注意的是:在本文制备的Cu掺杂和Mn掺杂ZnO薄膜中存在有排列整齐紧凑的纳米尺寸柱状晶粒阵列,该现象引起了我们的极大兴趣,相关工作内容目前已在Appl. Phys. Lett上发表。由于磁控溅射方法可以经济方便地大面积沉积薄膜,采取适当的工艺,磁控溅射有望在将来可用于大规模生产Mn掺杂或Cu掺杂ZnO纳米尺寸柱状晶粒阵列或纳米棒阵列。
     2、光致发光的测试结果表明Mn掺杂ZnO薄膜和低浓度Co掺杂ZnO薄膜的光致发光谱中都存在中心位于375 nm附近的近带边发光,表明其有可能在短波长发光器件中得到应用。有趣的是,在Co掺杂ZnO薄膜中,当Co掺杂浓度增加到31.3 atom%和37.7 atom%时,其光致发光谱中出现了中心位于332 nm处的强烈深紫外发光峰,该发光应源于包裹在Zn1-xCoxO中的Co3O4团簇内部从O2-→Co2+的电荷转移过程。Co3O4/ Zn1-xCoxO复合结构中强烈的深紫外发射表明其将来有望在短波长磁光器件、发光二极管及激光二极管等领域得到应用。
     3、实验中制备的过渡金属掺杂ZnO薄膜在掺杂浓度合适时都具有铁磁性,尤其是在Cr、Cu和Mn掺杂ZnO薄膜中发现了居里温度高于室温的铁磁性,结构测试分析的结果表明这些薄膜中发现的铁磁性来源于过渡金属掺杂原子溶入ZnO晶格之后产生的本征属性,而并非源于杂质沉淀。进一步的电学性质测试结果和分析表明薄膜中形成这些铁磁性的可能机理为束缚磁极化子(BMP)模型。这些过渡金属掺杂ZnO薄膜表现出的铁磁行为表明了其在未来自旋电子器件领域的潜在应用价值。另外,实验中还发现,当过渡金属元素掺杂的浓度足以在ZnO薄膜中形成铁磁性之后,进一步增加过渡金属元素的掺杂浓度,反而导致每个过渡金属原子的平均饱和磁矩减小。这可能是因为掺杂浓度增加以后,更多过渡金属原子占据了ZnO晶格中的相邻位置并在相互间发生反铁磁耦合而引起了铁磁耦合效率的降低。
Diluted magnetic semiconductors (DMS) have been attracting much interest of almost a decade now due to their potential to manipulate charge and spin degrees of freedom in a single material. Dietl et al. predicted high-temperature ferromagnetism in transition-metal (TM) doped wide-band-gap semiconductors particularly in ZnO and GaN. This fact has motivated many researchers to study the properties of TM doped semiconductors. Recent reports on the observation of room-temperature (RT) ferromagnetism in TM-doped ZnO have been welcomed with great enthusiasm by the scientific community. ZnO-based DMS have some advantages over others because of their unique characteristics, such as having a large band gap (~3.4 eV), large exciton binding energy at RT (~60 meV), high optical gain (300 cm–1), and very short luminescence lifetime, which are required for various optoelectronic and magneto-optical devices.
     This thesis is focused on the hotspots and challenges in the field of ZnO materials research. The purpose of this thesis is to investigate the room ferromagnetic behavior and the orgin of ferromagnetism in ZnO based DMS films. TM (Here Co, Cr, Cu, and Mn) doped ZnO thin films were synthesized via magnetron sputtering method and its microstructure, optical properties, and magnetic properties were investigated. The following is the major results:
     1. Structural analyses suggest that Co, Cr, Cu, and Mn occupied the Zn sites successfully and did not change the wurtzite structure of ZnO at low doping content. However, a small amount of Co3O4 clusters could be found in Zn1-xCoxO films when the doping level x reached 0.313. In addition, ZnCr2O4 could also be found in Zn1-xCrxO films when the doping level x reached 0.098. A point worth emphasizing is that nanoscale columnar grain arrays were found in the cross-sectional images of Mn- and Cu-doped ZnO films. As the magnetron sputtering method can produce economically feasible large area films with well-controlled composition, we suggest that the method in our experiment may be applied to future large-scale manufacturing of aligned Mn- and Cu-doped ZnO nanoscale columnar grains and nanorod arrays.
     2. The near band edge (NBE) emissions at around 375 nm were observed in the photoluminescent spectra of the Co- and Mn-doped ZnO films, which suggest the possibility of their application in ultraviolet light-emitting devices. Interestingly, when Co concentration was further increased up to 31.3 atom% and 37.7 atom%, a broad intense emission band centered at 332 nm (deep ultraviolet emission) was observed. The deep ultraviolet emission should be related to the O2-→Co2+ charge-transfer process in Co3O4 clusters embedded in Zn1-xCoxO films. The intense deep ultraviolet emissions of the Co3O4/ Zn1-xCoxO composite structures suggest their potential applications for short wavelength magneto-optical devices, such as light-emitting diodes and laser diodes.
     3. The ZnO films doped with moderate TM (Co, Cr, Cu, or Mn) exhibit obvious ferromagnetic ordering, which origins from TM-ZnO matrix rather than impurities and can be ascribed to originate from the bound magnetic polarons (BMP) model. The ferromagnetism of these TM-doped ZnO films also suggests their potential applications for future spintronics. In addition, the magnetic moment per TM atom decreased as the TM concentration further increased. It is proposed that the decrease in magnetic moment per TM atom as the TM concentration increases is due to an increase in the number of TM atoms that occupy adjacent cation lattice positions with an attendant increase in antiferromagnetic interaction between those TM atoms.
引文
[1]王季陶,刘明登编.半导体材料.北京:高等教育出版社,1990
    [2]张军.多功能ZnO薄膜的制备与性能研究:[学位论文].兰州:兰州大学,2007
    [3] W. Shockley. Electrons and Holes in Semiconductors. New York:D. Van Nostrand Company, 1950,
    Chap. 2.
    [4] J. Bardee, W. H. Brattain. Physical Principles Involved in Transistor Action. Phys. Rev. 1949, 75: 1208
    [5]孙柏. PLD技术制备ZnO薄膜及其结构和发光性质研究:[学位论文].合肥:中国科学技术大学,2007
    [6]吕建国. ZnO半导体光电材料的制备及其性能的研究:[学位论文].杭州:浙江大学,2005
    [7] P. Yu, Z. K. Tang, G. K. L. Wong, et al. 23nd Int.Conf. On the Physics of Semiconductor, World Scientific, Singapore. (1996), 1453 [ 8 ] Z. K. Tang, G. K. L. Wong, P. Yu, et al. Room-temperature ultraviolet laser emission fromself-assembled ZnO microcrystalline thin films. Appl. Phys. Lett. 1998, 72: 3270
    [9] T. Dietl, H.Ohno, F.Matsukura, et al. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science. 2000, 287: 1019
    [10]刘诩纶.基础元素化学.北京:高等教育出版社,1992
    [11]杨作新,张霖霖.无机化学.广东:广东教育出版社,2000
    [12]ü. ?zgür, Y. I. Alivov, C. Liu, et al. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98: 041301
    [13] J. E. Jaffe, J. A. Snyder, Z. Lin, and A. C. Hess. LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO. Phys.Rev.B. 2000, 62(3): 1660.
    [14] J. E. Jaffe and A. C. Hess. Hartree-Fock study of phase changes in ZnO at high pressure. Phys. Rev. B. 1993, 48: 7903
    [15] C. H. Bates, W. B. White, and R. Roy. New High-Pressure Polymorph of Zinc Oxide. Science. 1962, 137: 993
    [16] W. L. Bragg and J. A. Darbyshire, and R. Roy. The structure of thin films of certain metallic oxides. Trans. Faraday Soc. 1932, 28: 522
    [17]居健. Cr掺杂ZnO薄膜的结构和性质研究:[学位论文].苏州:苏州大学,2008
    [18] H. Karzel, et al. Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures. Phys. Rev. B. 1996, 53: 11425
    [19] W. I. Park, G. C. Yi, and H. M. Jang. Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1–xMgxO (0≤x≤0.49) thin films. Appl. Phys. Lett. 2001, 79: 2022
    [20] A. F. Cohan, G. Ceder, D. Morgen, et al. First-principles study of native point defects in ZnO. Phys Rev B. 2000, 61:15019
    [21] Y. F. Chen, S. K. Hong, H. Wenisch, et al. Effects of an extremely thin buffer on heteroepitaxy with large lattice mismatch. Appl Phys Lett. 2001, 78: 3352
    [22]陈学梅.Cu掺杂ZnO薄膜的结构及性质的研究:[学位论文].苏州:苏州大学,2009
    [23] T. Yamamoto, T. Shiosaki, and A. Kawabata. Characterization of ZnO piezoelectric films prepared by rf planar-magnetron sputtering. J. Appl. Phys. 1980, 51: 3113
    [24] T. Mitsuyu, S. Ono, and K. Wasa. Structures and SAW properties of rf-sputtered single-crystal films of ZnO on sapphire. J. Appl. Phys. 1980, 51: 2464
    [25] A. Hachigo, H. Nakahata, K. Higaki, et al. Heteroepitaxial growth of ZnO films on diamond (111) plane by magnetron sputtering. Appl. Phys. Lett. 1994, 65: 2556
    [26] T. Sekiguchi, S. Miyashita, K. Obara, et al. Hydrothermal growth of ZnO single crystals and their optical characterization. J. Cryst. Growth. 2000, 72: 214
    [27] K. Matsumoto and K. Noda. Crystal growth of ZnO by chemical transport using HgCl2 as a transport agent. J. Cryst. Growth. 1990, 102: 137
    [28] J.-M. Ntep, S. S. Hassani, A. Lusson, et al. ZnO growth by chemical vapour transport. J. Cryst. Growth. 1999, 207: 30
    [29] J. Nause. ZnO broadens the spectrum.Ⅲ-Ⅴs Review. 1999, 12(4): 28
    [30] R. Janisch, P. Gopal, N. A. Spaldin. Transition metal-doped TiO2 and ZnO—present status of the field. J. Phys.: Condens. Matter. 2005, 17: R657
    [31] K. Ueda, H. Tabata, T. Kawai. Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 2001, 79: 988
    [32]吴锦雷,吴全德.几种新型薄膜材料.北京:北京大学出版社,1999
    [33]潘晓燕.稀磁半导体氧化物的结构和磁性能研究:[学位论文].上海:华东师范大学,2006
    [34] Z. Jin, T. Fukumura, M. Kawasaki, et al. High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties. Applied Physics Letters. 2001, 78: 3824
    [35] S. W. Jung, S. J. An, G. Yi, et al. Ferromagnetic properties of Zn1-xMnxO epitaxial thin films. Applied Physics Letters. 2002, 80: 4561
    [36]车平. ZnO基稀磁半导体的制备与性质研究:[学位论文].长春:中国科学院长春应用化学研究所,2005
    [37] Y. Ohya, H. Saiki, Y. Takahashi. Preparation of transparent, electrically conducting ZnO film from zinc acetate and akloxide. Journal of material science. 1994, 29: 4099
    [38]施昌勇,沈克明.稀有金属. 2000, 24(2): 154
    [39]贺洪波,易葵,范正修.光学学报. 1998, 18(6): 799
    [40] Z. W. Pan, Z. R. Dai, and Z. L. Wang. Nanobelts of Semiconducting Oxides. Science. 2001, 291: 1947
    [41] J. Lee, K. Parka, M. Kanga, et al. ZnO nanomaterials synthesized from thermal evaporation of ball-milled ZnO powders. J. Crystal Growth. 2003, 254: 423
    [42] B. Liu, and H. C. Zeng. Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm. J. Am. Chem. Soc. 2003, 125: 4430
    [43] S. W. Kim, T. Kotani, M. Ueda, et al. Selective formation of ZnO nanodots on nanopatterned substrates by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2003, 83: 3593
    [44] M. H. Huang, S. Mao, H. Feick, et al. Room-Temperature Ultraviolet Nanowire Nanolasers. Science. 2001, 292: 1897
    [45] P. X. Gao, Z. L. Wang. Nanopropeller arrays of zinc oxide. Appl. Phys. Lett. 2004, 84: 2883
    [46] B. P. Zhang, N. T. Binh, K. Wakatsuki, et al. Formation of highly aligned ZnO tubes on sapphire
    (0001) substrates. Appl. Phys. Lett. 2004, 84: 4098
    [47] Z. L. Wang, X. Y. Kong, and J. M. Zuo. Induced Growth of Asymmetric Nanocantilever Arrays on Polar Surfaces. Phys. Rev. Lett. 2003, 91: 185502
    [48] X. Y. Kong and Z. L. Wang. Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts. Nano Lett. 2003, 3: 1625
    [49]X. Y. Kong, Y. Ding, R. Yang, et al. Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts. Science. 2004, 303: 1348
    [50]刘佳宇.绒面氧化锌薄膜的研究及其在太阳能电池上的应用:[学位论文].天津:河北工业大学,2006
    [51] Z. B. Ayadi, L. E. Mir, K. Djessas, et al.The properties of aluminum-doped zinc oxide thin films prepared by rt-magnetron sputtering from nanopowder targets. Materials Science and Engineering C. 2008, 28: 613
    [52] T. H. Kwon, S. H. Park, J. Y. Ryu, et al. Zinc oxide thin film doped with Al2O3, TiO2 and V2O5 as sensitive sensor for trimethylamine gas. Sensors and Actuators B. 1998, 46: 75
    [53] V. R. Shinde, T. P. Gujar, C. D. Lokhande, et al. Use of chemically synthesized ZnO thin film as a liquefied petroleum gas sensor. Mater. Sci. Eng. B. 2007, 137: 119
    [54]杨敏.纳米ZnO光电气敏原型器件的设计及性质研究:[学位论文].长春:吉林大学,2007
    [55]赵佰军.声表面波用ZnO薄膜的制备及器件的初步研究:[学位论文].长春:吉林大学,2004
    [56] H. Nakahata, A. Hachigo, S. Fujii, et al. Equivalent Circuit Parameters of Surface-Acoustic-Wave Interdigital Transducers for ZnO/Diamond/Si and SiO2/ZnO/Diamond Structures. Jpn. J. Phys. 2002, 41: 3489
    [57] H. Nakahata, S. Fujii, K. Higaki, et al. Diamond-based surface acoustic wave devices. Semiconductor Science and Technology. 2003, 18: 596
    [58] M. H. Huang, S. Mao, et al. Room-Temperature Ultraviolet Nanowire Nanolasers. Science. 2001, 292: 1897
    [59] Z. K. Tang, G. K. L. Wong, P. Yu, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl. Phys. Lett. 1998, 72: 3270
    [60] R. F. Service. Materials Science: Will UV Lasers Beat the Blues? Science. 1997, 276: 895
    [61]孙玉明. ZnO及其缺陷电子结构的FP-LMTO研究:[学位论文].合肥:中国科学技术大学,2000
    [62] A. A. Sokol, S. A. French, S. T. Bromley, et al. Point defects in ZnO. Faraday Discussions. 2007, 134: 267
    [63] A. B. Djuri?i? and Y. H. Leung.Optical Properties of ZnO Nanostructures. Small. 2006, 2(8-9): 944
    [64] R. C. Wang, C. P. Liu, J. L. Huang, et al. ZnO symmetric nanosheets integrated with nanowalls. Appl. Phys. Lett. 2005, 87: 053103
    [65] L. E. Greene, M. Law, J. Goldberger, et al. Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays. Angewandte Chemie International Edition. 2003, 42: 3031
    [66] H. J. Fan, R. Scholz, F. M. Kolb, et al. Two-dimensional dendritic ZnO nanowires from oxidationof Zn microcrystals. Appl. Phys. Lett. 2004, 85: 4142
    [67] H. T. Ng, B. Chen, J. Li, et al. Optical properties of single-crystalline ZnO nanowires on m-sapphire. Appl. Phys. Lett. 2003, 82: 2023
    [68] X. Liu, X. Wu, H. Cao, et al. Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 2004, 95: 3141
    [69] L. Huang, S. Wright, S. Yang, et al. ZnO Well-Faceted Fibers with Periodic Junctions. J. Phys. Chem. B. 2004, 108: 19901
    [70] F. Wen, W. Li, J.-H. Moon, et al. Hydrothermal synthesis of ZnO:Zn with green emission at low temperature with reduction process. Solid State Communications. 2005, 135: 34
    [71] Q. Yang, K. Tang, J. Zuo, et al. Synthesis and luminescent property of single-crystal ZnO nanobelts by a simple low temperature evaporation route. Appl. Phys. A. 2004, 79: 1847
    [72] S. Choopun, N. Hongsith, S. Tanunchai, et al. Single-crystalline ZnO nanobelts by RF sputtering. J. Cryst. Growth. 2005, 282: 365
    [73] W. Yu, X. Li, X. Gao. Catalytic Synthesis and Structural Characteristics of High-Quality Tetrapod-Like ZnO Nanocrystals by a Modified Vapor Transport Process. Crystal Growth & Design. 2005, 5: 151 [ 74 ] D. Zhao, C. Andreazza, P. Andreazza, et al. Temperature-dependent growth mode and photoluminescence properties of ZnO nanostructures. Chem. Phys. Lett. 2004, 399: 522
    [75] R. Wu, Y. Yang, S. Cong, et al. Fractal dimension and photoluminescence of ZnO tetrapod nanowhiskers. Chem. Phys. Lett. 2005, 406: 457
    [76] Z. Chen, N. Wu, Z. Shan, et al. Effect of N2 flow rate on morphology and structure of ZnO nanocrystals synthesized via vapor deposition. Scr. Mater. 2005, 52: 63
    [77] B. Lin, Z. Fu, Y. Jia. Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 2001, 79: 943
    [78] D. C. Reynolds, D. C. Look, B. Jogai. Fine structure on the green band in ZnO. J. Appl. Phys. 2001, 89: 6189
    [79] A. van Dijken, E. Meulenkamp, D. Vanmaekelbergh, et al. The Kinetics of the Radiative and Nonradiative Processes in Nanocrystalline ZnO Particles upon Photoexcitation. J. Phys. Chem. B. 2000, 104: 1715
    [80] A. van Dijken, E. Meulenkamp, D. Vanmaekelbergh, et al. Identification of the transition responsible for the visible emission in ZnO using quantum size effects. J. Lumin. 2000, 90: 123
    [81] Y.W. Heo, D. P. Norton, S. J. Pearton. Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy. J. Appl. Phys. 2005, 98: 073502
    [82] Q. X. Zhao, P. Klason, M. Willander, et al. Deep-level emissions influenced by O and Zn implantations in ZnO. Appl. Phys. Lett. 2005, 87: 211912
    [83] A. B. Djuri?i?, W. C. H. Choy, V. A. L. Roy, et al. Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures. Adv. Funct. Mater. 2004, 14: 856
    [84] H. J. Fan, R. Scholz, F. M. Kolb, et al. On the growth mechanism and optical properties of ZnOmulti-layer nanosheets. Appl. Phys. A. 2004, 79: 1895
    [85] R. B. M. Cross, M. M. De Souza, E. M. Sankara Narayanan. A low temperature combination method for the production of ZnO nanowires. Nanotechnology. 2005, 16: 2188
    [86] W. M. Kwok, Y. H. Leung, A. B. Djuri?i?, et al. Time-resolved photoluminescence study of the stimulated emission in ZnO nanoneedles. Appl. Phys. Lett. 2005, 87: 093108
    [87]陈欢欢.人们从此发现:自旋如此重要.北京:科学时报,2007
    [88] H. Ohno. Making Nonmagnetic Semiconductors Ferromagnetic. Science. 1998, 281: 951
    [89]史同飞. ZnO基稀磁半导体的结构与性能研究:[学位论文].合肥:中国科学技术大学,2007
    [90]中国科学院. 2003科学发展报告.北京:科学出版社,2003
    [91] C. M. Hu, J. Nitta, A. Jensen, et al. Spin-polarized transport in a two-dimensional electron gas with interdigital-ferromagnetic contacts. Phys. Rev. B. 2001, 63: 125333
    [92] H. J. Zhu, M. Ramsteiner, H. Kostial, et al. Room-Temperature Spin Injection from Fe into GaAs. Phys. Rev. Lett. 2001, 87: 016601
    [93] R. Fiederling, M. Keim, G. Reuscher, et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature. 1999, 402: 787
    [94]夏建白,葛惟昆,常凯.半导体自旋电子学.北京:科学出版社,2008
    [95] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, et al. Spintronics: A Spin-Based Electronics Vision for the Future. Science. 2001, 294: 1488
    [96] P. Sharma, A. Gupta, K. V. Rao, et al. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater. 2003, 2: 673
    [97] S. J. Pearton, Y. D. Park, C. R. Abernathy, et al. Ferromagnetism in GaN and SiC doped with transition metals. Thin Solid Films. 2004, 447-448: 493
    [98] H. X. Liu, S. Y. Wu, R. K. Singh, et al. Observation of ferromagnetism above 900 K in Cr–GaN and Cr–AlN. Appl. Phys. Lett. 2004, 85: 4076
    [99] H. Liu, X. Zhang, L.Y. Li, et al. Role of point defects in room-temperature ferromagnetism of Cr-doped ZnO. Appl. Phys. Lett. 2007, 91: 072511
    [100] L. Li, H. Liu, X. Luo, et al. Ferromagnetism in polycrystalline Cr-doped ZnO films: Experiment and theory. Solid State Communications. 2008, 146: 420
    [101] M. Venkatesan, C.B. Fitzgerald, J.G. Lunney, et al. Anisotropic Ferromagnetism in Substituted Zinc Oxide. Phys. Rev. Lett. 2004, 93: 177206
    [102] K. Ueda, H. Tabata, T. Kawai. Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 2001, 79: 988
    [103] T. Sasaki, S. Sonoda, Y. Yamamoto, et al. Magnetic and transport characteristics on high Curie temperature ferromagnet of Mn-doped GaN. J. Appl. Phys. 2002, 91: 7911
    [104] S. Dhar, O. Brandt, A. Trampert, et al. Origin of high-temperature ferromagnetism in (Ga,Mn)N layers grown on 4H–SiC(0001) by reactive molecular-beam epitaxy. Appl. Phys. Lett. 2003, 82: 2077
    [105] K. H. Ploog, S. Dhar, and A. Trampert. Structural and magnetic properties of (Ga,Mn)N layers grown on SiC by reactive molecular beam epitaxy. J. Vac. Sci. Technol. B. 2003, 21: 1756
    [106] Y. M. Kim, M. Yoon, I.–W. Park, et al. Synthesis and magnetic properties of Zn1?xMnxO films prepared by the sol–gel method. Solid State Communications. 2004, 129: 175
    [107] M. H. Kane, K. Shalini, C. J. Summers, et al. Magnetic properties of bulk Zn1?xMnxO and Zn1?xCoxO single crystals. J. Appl. Phys. 2005, 97: 023906
    [108] X. Y. Liu, F. T. Lin, L. L. Sun, et al. Doping concentration dependence of room-temperature ferromagnetism for Ni-doped ZnO thin films prepared by pulsed-laser deposition. Appl. Phys. Lett. 2006, 88: 062508
    [109] C. Song, K. W. Geng, F. Zeng, et al. Giant magnetic moment in an anomalous ferromagnetic insulator: Co-doped ZnO. Phys. Rev. B. 2006, 73: 024405
    [110] D. L. Hou, X. J. Ye, X. Y. Zhao, et al. Room-temperature ferromagnetism in n-type Cu-doped ZnO thin films. J. Appl. Phys. 2007, 102: 033905
    [111]冯秋菊. Fe基宽带隙Ⅱ—Ⅵ族稀磁半导体及FeSe异质结构的生长及特性研究:[学位论文].长春:中国科学院长春精密机械与物理研究所,2006.
    [112] P. Hohenberg, W. Kohn. Inhomogeneous electron gas. Phys. Rev. B. 1964, 136(3): 864
    [113] W. Kohn, L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev. B. 1965, 140(4): 1133
    [114] K. Sato, H. K. Yoshida. Material design for transparent ferromagnets with ZnO-based magnetic semiconductors. Japan J. Appl. Phys. 2000, 39: L555
    [115] N. A. Spaldin. Search for ferromagnetism in transition-metal-doped piezoelectric ZnO. Phys. Rev. B. 2004, 69: 125201
    [116] P. Gopal, N. A. Spaldin. Magnetic interactions in Transition-metal-doped ZnO: An ab-initio study. Phys. Rev. B. 2006, 74: 094418
    [117] R. Janisch, P. Gopal, N. A. Spaldin. Transition metal-doped TiO2 and ZnO—present status of the field. J. Phys.: Condens. Matter. 2005, 17: R657
    [118] R. White. Quantum Theory of Magnetism. Berlin: Springer, 1983
    [119] P. W. Anderson. Magnetism ed G Rado and H Suhl. New York: Academic, 1963
    [120] K. Yoshida. Theory of Magnetism. Berlin: Springer, 1996
    [121] C. Zener. Interaction Between the d Shells in the Transition Metals. Phys. Rev. 1951, 81: 440
    [122] C. Zener. Interaction between the d-Shells in the Transition Metals. III. Calculation of the Weiss Factors in Fe, Co, and Ni. Phys. Rev. 1951, 83: 299
    [123] C. Zener. Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure. Phys. Rev. 1951, 82: 403
    [124] A. C. Durst, R. N. Bhatt, and P. A. Wolff. Bound magnetic polaron interactions in insulating doped diluted magnetic semiconductors. Phys. Rev. B. 2002, 65: 235205
    [125] T. Fukumura, Z. Jin, and M. Kawasaki. Magnetic properties of Mn-doped ZnO. Appl. Phys. Lett. 2001, 78: 958
    [126] S. W. Lim, M. C. Jeong, M. H. Ham, et al. Hole-Mediated Ferromagnetic Properties in Zn1-xMnxO Thin Films. Japan. J. Appl. Phys. 2004, 43: L280
    [127] S. W. Jung, S. J. An, G. Yi, et al. Ferromagnetic properties of Zn1?xMnxO epitaxial thin films. Appl. Phys. Lett. 2002, 80: 4561
    [128] D. B. Buchholz, R. P. H. Chang, J. H. Song, et al. Room-temperature ferromagnetism in Cu-doped ZnO thin films. Appl. Phys. Lett. 2005, 87: 082504
    [129] A. Tiwari, M. Snure, D. Kumar, et al. Ferromagnetism in Cu-doped ZnO films: Role of charge carriers. Appl. Phys. Lett. 2008, 92: 062509
    [130] T. S. Herng, S. P. Lau, S. F. Yu, et al. Origin of room temperature ferromagnetism in ZnO:Cu films. J. Appl. Phys. 2006, 99: 086101
    [131] C. Sudakar, J. S. Thakur, G. Lawes, et al. Ferromagnetism induced by planar nanoscale CuO inclusions in Cu-doped ZnO thin films. Phys. Rev. B. 2007, 75: 054423
    [132]曹强. ZnO基稀磁半导体单晶薄膜的分子束外延生长以及性能研究:[学位论文].济南:山东大学,2008
    [133]蒋平.沉积气压对ZnO薄膜的结构与光学性能影响:[学位论文].苏州:苏州大学,2009
    [134]阎益. ZnO薄膜生长初期形貌以及ZnO基薄膜的光学性质:[学位论文].苏州:苏州大学,2007
    [135]徐庆岩.过渡金属掺杂ZnO薄膜的结构、透光性和电学性质研究:[学位论文].苏州:苏州大学,2009
    [136]陈正才.工作参数对Zn1-xFexO薄膜结构和性质的影响:[学位论文].苏州:苏州大学,2007
    [137]陈爱军. Si,Al2O3衬底上Fe掺杂ZnO薄膜结构及光致发光性质研究:[学位论文].苏州:苏州大学,2007
    [138]崔美丽. Fe、Cr掺杂ZnO薄膜的结构和性质研究:[学位论文].苏州:苏州大学,2007
    [139]王晓飞.射频磁控溅射制备Cu掺杂ZnO薄膜的结构及性质研究:[学位论文].苏州:苏州大学,2008
    [140]腾晓云. ZnO和ZnO基稀磁半导体薄膜的PLD法制备及其特性研究:[学位论文].天津:河北工业大学,2007
    [141] T. Fukumura, Z. Jin, A. Ohtomo, et al. An oxide-diluted magnetic semiconductor: Mn-doped ZnO. Appl. Phys. Lett. 1999, 75: 3366
    [142]李金华. Mn掺杂ZnO纳米晶的光学和磁学性质研究:[学位论文].长春:中国科学院长春精密机械与物理研究所,2006
    [143] M. Fiebig, D. Fr?hlich, G. Sluyterman, et al. Domain topography of antiferromagnetic Cr2O3 by second-harmonic generation. Appl. Phys. Lett. 1995, 66: 2906
    [1]陈学梅.Cu掺杂ZnO薄膜的结构及性质的研究:[学位论文].苏州:苏州大学,2009
    [2]范雄.金属X射线学.北京:机械工业出版社, 1989
    [3]杜希文,原续波.材料分析方法.天津:天津大学出版社, 2006
    [4] B. D. Cullity. Elements of X-Ray Diffractions. MA: Addition-Wesley, 1978, p. 102
    [5] C. V. Raman, K. S. Krishnan. A New Type of Secondary Radiation. Nature. 1928, 121: 501
    [6] J. W. Schopf, A. B. Kudryavtsev, D. G. Agresti, et al. Laser–Raman imagery of Earth's earliest fossils. Nature. 2002, 416: 73
    [7]张树霖.拉曼光谱学与低纬纳米半导体.北京:科学出版社, 2008
    [8]张军.多功能ZnO薄膜的制备与性能研究:[学位论文].兰州:兰州大学,2007
    [9]华中一,罗维昂.表面分析.上海:复旦大学出版社,1989
    [10]冯秋菊. Fe基宽带隙Ⅱ—Ⅵ族稀磁半导体及FeSe异质结构的生长及特性研究:[学位论文].长春:中国科学院长春精密机械与物理研究所,2006.
    [11]沈学础.半导体光学性质.北京:科学出版社,2002
    [1] K. Ueda, H. Tabata, T. Kawai. Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 2001, 79: 988
    [2] A. Ney, K.Ollefs, S. Ye, et al. Absence of Intrinsic Ferromagnetic Interactions of Isolated and Paired Co Dopant Atoms in Zn1-xCoxO with High Structural Perfection. Phys. Rev. Lett. 2008, 100: 157201
    [3] P. Sati, R. Hayn, R. Kuzian, et al. Magnetic Anisotropy of Co2+ as Signature of Intrinsic Ferromagnetism in ZnO: Co. Phys. Rev. Lett. 2006, 96: 017203
    [4] R. D. Shannon. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical General Crystallography. 1976, A32: 751
    [5] J. H. Park, M. G. Kim, H. M. Jang, et al. Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl. Phys. Lett. 2004, 84: 1338
    [6] B. Varghese, T. C. Hoong, Z. Yanwu, et al. Co3O4 Nanostructures with Different Morphologies and their Field-Emission Properties. Adv. Funct. Mater. 2007, 17: 1932
    [7] H. Yamaura, J. Tamaki, K. Moriya, et al. Highly Selective CO Sensor using Indium Oxide Doubly Promoted by Cobalt Oxide and Gold. J. Electrochem. Soc. 1997, 144: L158
    [8] F. ?vegl, B. Orel, M. G. Hutchins, et al. Structural and Spectroelectrochemical Investigations of Sol-Gel Derived Electrochromic Spinel Co3O4 Films. J. Electrochem. Soc. 1996, 143: 1532
    [9]张树霖.拉曼光谱学与低纬纳米半导体.北京:科学出版社, 2008
    [10] M. Millot, J. Gonzalez, I. Molina, et al. Raman spectroscopy and magnetic properties of bulk ZnO:Co single crystal. J. Alloys Compd. 2006, 423: 224
    [11] L. He, Z. Li, Z. Zhang. Rapid, low-temperature synthesis of single-crystalline Co3O4 nanorods on silicon substrates on a large scale. Nanotechnology. 2008, 19: 155606
    [12] J. Jiang, L. C. Li. Synthesis of sphere-like Co3O4 nanocrystals via a simple polyol route. Mater. Lett. 2007, 61: 4894
    [13] H. Liu, X. Zhang, L. Y. Li, et al. Role of point defects in room-temperature ferromagnetism of Cr-doped ZnO. Appl. Phys. Lett. 2007, 91: 072511
    [14] B. J. Jin, S. Im, S. Y. Lee. Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin Solid Films. 2000, 366: 107
    [15] K. Samanta, P. Bhattacharya, R.S. Katiyar. Optical properties of Zn1?xCoxO thin films grown on Al2O3 (0001) substrates. Appl. Phys. Lett. 2005, 87: 101903
    [16] K.J. Kim, Y.P. Park. Spectroscopic ellipsometry study of optical transitions in Zn1?xCoxO alloys. Appl. Phys. Lett. 2002, 81: 1420
    [17] L. Wei, Z. Li, W. F. Zhang. Influence of Co doping content on its valence state in Zn1-xCoxO (0≤x≤0.15) thin films. Applied Surface Science. 2009, 255: 4992
    [18] R. Xu, H. C. Zeng. Self-Generation of Tiered Surfactant Superstructures for One-Pot Synthesis of Co3O4 Nanocubes and Their Close- and Non-Close-Packed Organizations. Langmuir. 2004, 20: 9780
    [19] D. Barreca, C. Massignan, S. Daolio, et al. Composition and Microstructure of Cobalt Oxide Thin Films Obtained from a Novel Cobalt(II) Precursor by Chemical Vapor Deposition. Chem. Mater. 2001, 13: 588
    [20] H. J. Lee, S. Y. Jeong, C. R. Cho. Study of diluted magnetic semiconductor: Co-doped ZnO. Applied Physics Letters. 2002, 81(21): 4020
    [21] C. G. Jin, Y. Gao, X. M. Wu, et al. Structural and magnetic properties of transition metal doped ZnO films. Thin Solid Films. 2010, 518: 2152
    [22] C. Song, K. W. Geng, F. Zeng, et al. Giant magnetic moment in an anomalous ferromagnetic insulator: Co doped ZnO. Physical Review B. 2006, 73: 024405
    [23] D. Chaktaborti, S. Ramachandran, G. Trichy, et al. Magnetic, electrical, and microstructural characterization of ZnO thin films codoped with Co and Cu. J. Appl. Phys. 2007, 101: 053918
    [24] R. Janisch, P. Gopal, N. A. Spaldin. Transition metal-doped TiO2 and ZnO—present status of the
    field. J. Phys.: Condens. Matter. 2005, 17: R657
    [25] K.R. Kittilstved, W.K. Liu, D.R. Gamelin. Electronic structure origins of polarity-dependent high-TC ferromagnetism in oxide-diluted magnetic semiconductors. Nat. Mater. 2006, 5: 291
    [26] J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald. Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 2005, 4: 173
    [27] E. Biegger, M. Fonin, U. Rüdiger, et al. Defect induced low temperature ferromagnetism in Zn1-xCoxO films. J. Appl. Phys. 2007, 101: 073904
    [1] K. Sato, H. K. Yoshida. Material design for transparent ferromagnets with ZnO-based magnetic semiconductors. Japan J. Appl. Phys. 2000, 39: L555
    [2] K. Sato, H. K. Yoshida. Ab initio study on the magnetism in ZnO-, ZnS-, ZnSe and ZnTe-based diluted magnetic semiconductors. Phys. Stat. Sol. B. 2002, 229: 673
    [3] A. Punnoose, M. S. Seehra, W. K. Park, et al. On the room temperature ferromagnetism in Co-doped TiO2 films. J. Appl. Phys. 2003, 93: 7867
    [4] M. Venkatesan, C.B. Fitzgerald, J.G. Lunney, et al. Anisotropic Ferromagnetism in Substituted Zinc Oxide. Phys. Rev. Lett. 2004, 93: 177206
    [5] K. Ueda, H. Tabata, T. Kawai. Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 2001, 79: 988
    [6] H. Liu, X. Zhang, L. Y. Li, et al. Role of point defects in room-temperature ferromagnetism of Cr-doped ZnO. Appl. Phys. Lett. 2007, 91: 072511
    [7] J. Elanchezhiyan, K.P. Bhuvana, N. Gopalakrishnan, et al. Realization of room temperature ferromagnetism in Zn1?xCrxO thin films grown by RF magnetron sputtering. Journal of Alloys and Compounds. 2009, 468: 7
    [8] S. G. Yang, A. B. Pakhomov, S. T. Hung, et al. Room-temperature magnetism in Cr-doped AlN semiconductor films. Appl. Phys. Lett. 2002, 81: 2418
    [9] A. Maetaki, M. Yamamoto, H. Matsumoto, et al. The preparation of ultra-thin chromium–vanadium oxides on Cu(100) studied by XPS and LEED. Surface Science. 2000, 445: 80
    [10] L. Li, H. Liu, X. Luo, et al. Ferromagnetism in polycrystalline Cr-doped ZnO films: Experiment and theory. Solid State Communications. 2008, 146: 420
    [11] K. Rode, A. Anane, R. Mattana, et al. Magnetic semiconductors based on cobalt substituted ZnO. J. Appl. Phys. 2003, 93: 7676
    [12] N. F. Heinig, H. Jalili, K. T. Leung, et al. Fabrication of epitaxial CrO2 nanostructures directly on MgO(100) by pulsed laser deposition. Appl. Phys. Lett. 2007, 91: 253102
    [13] N. H. Hong, J. Sakai, N. T. Huong, et al. Role of defects in tuning ferromagnetism in diluted magnetic oxide thin films. Phys. Rev. B. 2005, 72: 045336
    [14] A. J. Chen, X. M. Wu, Z. D. Sha, et al. Structure and photoluminescence properties of Fe-doped ZnO thin films. J. Phys. D: Appl. Phys. 2006, 39: 4762
    [15] J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, et al. Fitzgerald. Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 2005, 4: 173
    [16] K. R. Kittilstved, W. K. Liu, D. R. Gamelin, et al. Electronic structure origins of polarity-dependent high-TC ferromagnetism in oxide-diluted magnetic semiconductors. Nat. Mater. 2006, 5: 291
    [1] K. Sato, H. K. Yoshida. Material design for transparent ferromagnets with ZnO-based magnetic semiconductors. Japan J. Appl. Phys. 2000, 239: L555
    [2] K. Sato, H. K. Yoshida. Ab initio study on the magnetism in ZnO-, ZnS-, ZnSe and ZnTe-based diluted magnetic semiconductors. Phys. Stat. Sol. B. 2002, 229: 673
    [3] S. J. Pearton, W. H. Heo, M. Ivill, et al. Dilute magnetic semiconducting oxides. Semicond. Sci. Technol. 2004, 19: R59
    [4] A. Tiwari, M. Snure, D. Kumar, et al. Ferromagnetism in Cu-doped ZnO films: Role of charge carriers. Appl. Phys. Lett. 2008, 92: 062509
    [5] D. L. Hou, X. J. Ye, H. J. Meng, et al. Magnetic properties of n-type Cu-doped ZnO thin films. Appl. Phys. Lett. 2007, 90: 142502
    [6]陈学梅.Cu掺杂ZnO薄膜的结构及性质的研究:[学位论文].苏州:苏州大学,2009
    [7]王晓飞.射频磁控溅射制备Cu掺杂ZnO薄膜的结构及性质研究:[学位论文].苏州:苏州大学,2008
    [8] X. B. Wang, C. Song, K. W. Geng, et al. Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering. Applied Surface Science. 2007, 253: 6905
    [9] C. Sudakar, J. S. Thakur, G. Lawes, et al. Ferromagnetism induced by planar nanoscale CuO inclusions in Cu-doped ZnO thin films. Phys. Rev. B. 2007, 75: 054423
    [10] R. Hong, J. Huang, H. He, et al. Influence of different post-treatments on the structure and optical properties of zinc oxide thin films. Applied Surface Science. 2005, 242: 346
    [11] S. Y. Li, C. Y. Lee, T. Y. Tseng. Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor–liquid–solid process. Journal of Crystal Growth. 2003, 247: 357
    [12] J. N. Zeng, J. K. Low, Z. M. Ren, et al. Effect of deposition conditions on optical and electrical properties of ZnO films prepared by pulsed laser deposition. Appl. Surf. Sci. 2002, 197: 362.
    [13] A. F. Kohan, G. Ceder, D. Morgan, et al. First-principles study of native point defects in ZnO. Phys. Rev. B. 2000, 61: 15019
    [14] A. Janotti and C. G. Van de Walle. Oxygen vacancies in ZnO. Appl. Phys. Lett. 2005, 87: 122102
    [15] C. Song, K. W. Geng, F. Zeng, et al. Giant magnetic moment in an anomalous ferromagnetic insulator: Co doped ZnO. Physical Review B. 2006, 73: 024405
    [16] R. Janisch, P. Gopal, and N. A. Spaldin. Transition metal-doped TiO2 and ZnO—present status of the field. J. Phys.: Condens. Matter. 2005, 17: R657
    [17] D. Chakraborti, S. Ramachandran, G. Trichy, et al. Magnetic, electrical, and microstructural characterization of ZnO thin films codoped with Co and Cu. J. Appl. Phys. 2007, 101: 053918
    [18] X. F. Wang, J. B. Xu, W. Y. Cheung, et al. Aggregation-based growth and magnetic properties of inhomogeneous Cu-doped ZnO nanocrystals. Appl. Phys. Lett. 2007, 90: 212502
    [19] Ramon Cuscó, Esther Alarcón-Lladó, Jordi Ibá?ez, et al. Temperature dependence of Raman scattering in ZnO. Phys. Rev. B. 2007, 75: 165202
    [20]李丽,常仁杰,方亮, et al. Al掺杂的ZnO薄膜的XPS谱和光学特性研究.微细加工技术. 2007, 5: 39
    [21] J. F. Moulder, W. F. Stickle, P. E. Sobol, et al. in Handbook of X-ray Photoelectron Spectroscopy, edited by J. Chastain (Perkin-Elmer, Eden Prairie, MN. 1992), p. 87
    [22] O. D. Jayakumar, I. K. Gopalakrishnan, R. M. Kadam, et al. Surfactant-induced enhanced room
    temperature ferromagnetism in Zn0.96Mn0.03Li0.01O nanoparticles: Prepared by solid-state pyrolitic reaction. Journal of Crystal Growth. 2007, 307: 315
    [23] A. Tiwari, M. Snure, D. Kumar, et al. Ferromagnetism in Cu-doped ZnO films: Role of charge carriers. Appl. Phys. Lett. 2008, 92: 062509
    [24] X. C. Liu, E. W. Shi, Z. Z. Chen, et al. High-temperature ferromagnetism in (Co, Al)-codoped ZnO powders. Appl. Phys. Lett. 2006, 88: 252503
    [25] J. Alaria, H. Bieber, S. Colis, et al. Absence of ferromagnetism in Al-doped Zn0.9Co0.10O diluted magnetic semiconductors. Appl. Phys. Lett. 2006, 88: 112503
    [26] D. Chakraborti, G. Trichy, J. Narayan, et al. Effect of Al doping on the magnetic and electrical properties of Zn(Cu)O based diluted magnetic semiconductors. J. Appl. Phys. 2007, 102: 113908
    [1] D. P. Norton, S. J. Pearton, A. F. Hebard, et al. Ferromagnetism in Mn-implanted ZnO: Sn single crystals. Appl. Phys. Lett. 2003, 82: 239
    [2] P. Sharma, A. Gupta, K. V. Rao, et al. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nature Mat. 2003, 2: 673
    [3] B. D. Cullity. Elements of X-Ray Diffractions, Addition-Wesley, Reading, MA, 1978, p. 102.
    [4] Y. M. Hu, Y. T. Chen, Z. X. Zhong, et al. The morphology and optical properties of Cr-doped ZnO films grown using the magnetron co-sputtering method. Applied Surface Acience. 2008, 254: 3873
    [5] T. Li, H. Qiu, P. Wu, et al. Characteristics of Ni-doped ZnO: Al films grown on glass by direct current magnetron co-sputtering. Thin Solid Films. 2007, 515: 3905
    [6] J. Wang, W. Chen, M. Wang. Properties analysis of Mn-doped ZnO piezoelectric films. J. Alloys Compd. 2008, 449: 44
    [7] J. Elanchezhiyan, K.P. Bhuvana, N. Gopalakrishnan, et al. Investigation on Mn doped ZnO thin films grown by RF magnetron sputtering. Mater. Lett. 2008, 62: 3379
    [8] Z.B. Bahsi, A.Y. Oral. Effects of Mn and Cu doping on the microstructures and optical properties of sol–gel derived ZnO thin films. Opt. Mater. 2007, 29: 672
    [9] Y.J. Li, B. Zhang, W. Lu, et al. Crystallographically oriented Zn nanocrystals formed in ZnO by Mn+-implantation. Appl. Phys. Lett. 2008, 93: 131919
    [10] S. Venkataraj, N. Ohashi, I. Sakaguchi, et al. Structural and magnetic properties of Mn-ion implanted ZnO films. J. Appl. Phys. 2007, 102: 014905
    [11] O. D. Jayakumar, C. Sudakar, A. Vinu, et al. Effect of Surfactant Treatment on the Magnetic Properties of Mn-Doped ZnO Bulk and Nanoparticles. J. Phys. Chem. C. 2009, 113: 4814
    [12]李金华. Mn掺杂ZnO纳米晶的光学和磁学性质研究:[学位论文].长春:中国科学院长春精密机械与物理研究所,2006
    [13] A.A. Sokol, S.A. French, S.T. Bromley, et al. Point defects in ZnO. Faraday Discuss. 2007, 134: 267
    [14] R. Wu, Y. Yang, S. Cong, et al. Fractal dimension and photoluminescence of ZnO tetrapod nanowhiskers. Chem. Phys. Lett. 2005, 406: 457
    [15] C. G. Jin, Y. Gao, X. M. Wu, et al. Structural and magnetic properties of transition metal doped ZnO films. Thin Solid Films. 2010, 518: 2152
    [16] C. Song, K. W. Geng, F. Zeng, et al. Giant magnetic moment in an anomalous ferromagnetic insulator: Co doped ZnO. Physical Review B. 2006, 73: 024405
    [17] R. Janisch, P. Gopal, N. A. Spaldin. Transition metal-doped TiO2 and ZnO—present status of the field. J. Phys.: Condens. Matter. 2005, 17: R657
    [18] K.R. Kittilstved, W.K. Liu, D.R. Gamelin. Electronic structure origins of polarity-dependent high-TC ferromagnetism in oxide-diluted magnetic semiconductors. Nat. Mater. 2006, 5: 291
    [19] D. Chakraborti, S. Ramachandran, G. Trichy, et al. Magnetic, electrical, and microstructural characterization of ZnO thin films codoped with Co and Cu. J. Appl. Phys. 2007, 101: 053918
    [20] X. C. Liu, E. W. Shi, Z. Z. Chen, et al. High-temperature ferromagnetism in (Co, Al)-codoped ZnO powders. Appl. Phys. Lett. 2006, 88: 252503
    [21] J. Alaria, H. Bieber, S. Colis, et al. Absence of ferromagnetism in Al-doped Zn0.9Co0.10O diluted magnetic semiconductors. Appl. Phys. Lett. 2006, 88: 112503
    [22] D. Chakraborti, G. Trichy, J. Narayan, et al. Effect of Al doping on the magnetic and electrical properties of Zn(Cu)O based diluted magnetic semiconductors. J. Appl. Phys. 2007, 102: 113908

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700