氧化锌及其复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌具有优异的光催化、光电、气敏、压电等性能,同时作为半导体材料又有成本低廉、无毒、制备简单等优点,因此一直被认为是解决目前能源、环境等问题的战略材料之一。本文在以前研究的基础上采用低温溶液体系制备了纳米氧化锌及氧化锌/氧化铟复合材料,研究了低温条件下氧化锌及其复合材料制备的影响因素,并在此基础上探讨了其形成机理,最终实现对其形貌的可控制备,同时对其性能进行了研究。此种方法具有工艺简单、对设备要求低、可重复、可规模化制备等优点。主要结论如下:
     以醋酸锌、氨水、六亚甲基四胺等为原料,在低温水溶液体系内研究了不同因素对氧化锌的影响,并对其生长机理进行了研究。1)在水浴条件下研究了温度对产物的影响,结果表明当温度低于40℃时,制备产物为氢氧化锌,当温度高于这一临界值时产物为氧化锌。2)研究发现添加剂的添加对氧化锌形貌有着重要的影响。当无添加剂时,生成的是1μm左右的氧化锌微米棒,尺寸不均一且出现团聚。当添加添加剂时发现氧化锌形貌变为纺锤状,尺寸为100nm左右,均一且没有团聚。这主要是由于添加剂的限制和诱导作用引起的。3)针对低温溶液法制备的氧化锌做了光致发光性能测试,结果显示低温制备的氧化锌主要包括有三个发光区域:紫外区(380-400nm)、蓝光区(460-480nm)、黄光区(540-580nm),同时本论文对其发光原理进行了阐述。4)研究发现这种纺锤状氧化锌对一氧化氮具有很好的气敏性和选择性
     在低温溶液法制备纳米氧化锌的基础上,本文采用原位合成法制备氧化锌/氧化铟微纳米复合结构。研究表明原位合成法制备的氧化锌/氧化钢复合材料为纺锤状氧化锌表面包裹颗粒状纳米In203的微纳米复合结构,In203颗粒尺寸均一、没有团聚。在对复合材料光致发光性能的研究中,我们发现In203的掺杂对复合材料的光致发光性能有很大影响,其中紫外峰出现50nm的红移并且强度降低,蓝光区相对强度增强,同时黄光发射区基本消失,分析可知这些现象主要是由于铟元素的掺入和热处理引起的。此外,氧化铟复合在很大程度上提高了氧化锌的气敏性能。
     本文尝试采用溶液法制备氧化锌及其复合薄膜。这种片状薄膜均一性好、没有团聚,具有很高的比表面积和介孔结构,是一种很好的支撑材料和功能材料。此方法工艺简单、成本低廉,是一种适合工业化生产的制备工艺。
Zinc oxides have been considered as important materials to resolve the energy and environmental issues, because of their excellent optical, gas sensing, photocatalysis, piezoelectric and other properties. At the same time, Zinc oxides have more advantages compared with other materials, such as non-toxic, low-cost, and simple preparation. In this paper, ZnO and ZnO/In2O3 composite materials have been successful prepared by a solution method at low temperature on the basis of previous studies. We studied the factors on the preparation, and discussed its formation mechanism. This method has many advantages, such as the simple process, low equipment requirements, repeatable, large-scale preparation. Finally, the properties of zinc oxide and its composites were characterized and the results showed that the samples obtained have very excellent optical and gas sensing performances. This method is a very promising technology for zinc oxide and its composites. The main conclusions are as follows:
     First, we studied the influence of different factors on the morphology of zinc oxides prepared from zinc acetate dihydrate, ammonia and hexamethylenetetramine in aqueous solution at low temperature. 1) The products have changed with the increase of temperature. Zinc hydroxides have been prepared when the temperature was below 40℃. On the contrary, the product was zinc oxides when the temperature was higher than the critical value (40℃).2) The study has found that the addition of additives has an important influence on the morphology of zinc oxides. The products were heterogeneous in size and had reunion when not adding hexamethylenetetramine. While spindle-shaped zinc oxide nanostructures with an almost uniform size of 100nm in diameter and 100-200nm in length were obtained with adding additives. This was mainly due to limitations and induction on morphology of additives.3) Photoluminescence spectra (PL) of zinc oxides prepared at low temperature were studied. The results showed that zinc oxides prepared at low temperature including three light emitting regions:the ultraviolet region (380-400nm), blue zone (460-480nm), yellow zone (540-580nm), and its light-emitting principles were described in this paper. 4) Spindle-shaped zinc oxide nanostructures sensors appeared the advantage of high selectivity for Nitric oxide.
     Micro/nanostructured ZnO/In2O3 composites have been prepared in situ growth at the low-temperature basic on our previous study. Results showed that the hierarchically micro/nanostructures ZnO/In2O3 composites with spindle-shaped zinc oxide particles with 100-200nm in diameter and about 500nm in length and indium oxide particles with 20-50nm in diameter. The size of zinc oxide and indium oxide were uniform and unagglomerate, indium oxide particles uniformly distribute on the surface of zinc oxide particle. Comparing with the morphology of composites without additives, we found that the addition of additives has great influence on the morphology and composite state of indium oxide of composite materials. In the photoluminescence (PL) properties of composite materials research, we found that the doping of indium oxide has great influence on the photoluminescence of composite material, which a red shift (about 50nm) and lower intensity appeared at UV peak, the relative increasing intensity at blue area, in addition to, yellow luminescence zone disappeared. The results show that these phenomena mainly due to the incorporation of indium elements and heat treatment. The sensing property of Zinc oxide has a great advantage because of dipping of indium oxide.
     We try to prepare the zinc oxide and composite films at solution. The results showed that the homogeneity of sheet film is good:no reunion with high surface area and pore structure be good as support materials and functional materials. This method is a simple, low cost preparation process for industrial production.
引文
[1]http://www.eia.doe.gov/oiaf/ieo/index.html, US Department of Energy[J].2008:
    [2]F. Lu, W.P. Cai, Y.G. Zhang. ZnO Hierarchical Micro/Nanoarchitectures:Solvothermal Synthesis and Structurally Enhanced Photocatalytic Performance[J]. Adv Funct Mater,2008,18:1047-1056
    [3]S.C. Navale, S.W. Gosavi, I.S. Mulla. Controlled synthesis of ZnO from nanospheres to micro-rods and its gas sensing studies[J]. Talanta,2008,75:1315-1319
    [4]A. Umar, M.M. Rahman, Y.B. Hahn. Ultra-sensitive hydrazine chemical sensor based on high-aspect-ratio ZnO nanowires[J]. Talanta,2009,77:1376 - 1380
    [5]J. Halme, P. Vahermaa, K. Miettunen, et al. Device Physics of Dye Solar Cells[J]. Adv Mater,2010,22:E210-234
    [6]B. Pradhan, S.K. Batabyal, A.J. Pal. Vertically aligned ZnO nanowire arrays in Rose Bengal-based dye-sensitized solar cells[J]. Sol Energy Mater Sol Cells,2007,91(9):769-773
    [7]Z.L. Wang, J.H. Song. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays[J]. Science,2006,312:242-245
    [8]A.B. Djurisic, A.M.C.Ng, X.Y.Chen. ZnO nanostructures for optoelectronics:Material properties and device applications[J]. Prog. Quan.Electron.,2010,34:191-259
    [9]Z.L. Wang. Theme Article-Piezoelectric Nanostructures:From Growth Phenomena to Electric Nanogenerators[J]. Mater Res Bull 2007,32:109 - 116
    [10]X.Y. Kong. Z.L. Wang. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts[J]. Nano Lett,2003,3:1625 - 1631
    [11]P.X. Gao, Y. Ding, W.J. Mai, et al. Wang, Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices[J]. Science,2005,309:1700-1704
    [12]关敏,李彦生,国内外纳米ZnO研究和制备概况[J].化工新型材料,2005,33(2):18-21
    [13]L. Schmidt-Mende, J.L. MacManus-Driscoll. ZnO nanostructures,defects,and devices[J]. materialstoday,2007,10(5):40-48
    [14]贺永宁,朱长纯,侯洵.ZnO宽带隙半导体及其基本特性[J].功能材料与器件学报,2008,14(3):566~574
    [15]H.B. Zeng, W.P. Cai, P.S. Liu, et al. ZnO-Based Hollow Nanoparticles by Selective Etching: Elimination and Reconstruction of Metal-Semiconductor Interface, Improvement of Blue Emission and Photocatalysis[J]. ACS nano,2008:1661-1670
    [16]P.H. Kasai. Electronsp inresonance studies of donors and acceptors in ZnO[J]. Phys. Rev.,1963,130(3):989-995
    [17]Kohan, A.F. Ceder, G. Morgan, et al. First-principles study of native point defects in ZnO[J]. Phys. Rev.B (Condens. Matter),2000,61 (22):15019-15027
    [18]T. Waitz. M. Tiemann. P.J. Klar, et al. Crystalline ZnO with an Enhanced Surface Area Obtained by Nanocasting[J]. Appl Phys Lett,2007,90:123108
    [19]赵旭,杨少风,赵敬哲等.超细二氧化钛的制备及其紫外屏蔽性能[J].高等学校化学报,2000,21:1617-1620
    [20]S. Polarz, A.V. Orlov, F. Schuth, et al. Preparation of High-Surface-Area Zinc Oxide with Ordered Porosity,Different Pore Sizes, and Nanocrystalline Walls[J]. Chem Eur J,2007,13:592-597
    [21]王玉棉,侯新刚,王大辉.纳米氧化锌的制备技术及应用[J].有色金属(冶炼部分),2002,3:39-48
    [22]N. Han, P. Hu, A. Zuo, et al. Photoluminescence investigation on the gas sensing property of ZnO nanorods prepared by plasma-enhanced CVD method[J]. Sens Actuators, B,2010,145:114-119
    [23]田敬民,李守智,金属氧化物半导体气敏机理探析[J].西安理工大学学报,2002,18(2):144-147
    [24]徐甲强,纪朋,李志伟等.水热法合成氧化锌亚微米棒及气敏性能研究[J].郑州轻工业学院学报,2005,20(3):1~3
    [25]戴护民,桂阳海,气、光敏材料ZnO的掺杂改性研究[J].材料导报,2006,20(6):21-23
    [26]Y. Zeng, T. Zhang, L.J. Wang, et al. Enhanced toluene sensing characteristics of Ti02-doped flowerlike ZnO nanostructures[J]. Sens Actuators, B,2009,140:73-78
    [27]N. Singh, C. Yan, P.S. Lee. Room temperature CO gas sensing using Zn-doped In2O3 single nanowire field effect transistors[J]. Sens Actuators, B,2010,150:19-24
    [28]S.F. Si, C.H. Li, X. Wang, et al. Fe2O3/ZnO core-shell nanorods for gas sensors[J]. Sens Actuators, B,2006,119:52-56
    [29]C.Y. Lin, Y.Y. Fang, C.W. Lin, et al. Fabrication of NOx gas sensors using In2O3-ZnO composite films[J]. Sens Actuators, B,2010,146:28-34
    [30]S. Aygun, D. Cann. Hydrogen sensitivity of doped CuO/ZnO heterocontact sensors[J]. Sens Actuators, B,2005,106:837-842
    [31]I. Gonzalez-Valls, M. Lira-Cantu. Vertically-aligned nanostructures of ZnO for excitonic solar cells:a review[J]. Energy Environ Sci,2009,2:19-34
    [32]Q.F. Zhang, C.S. Dandeneau, X.Y. Zhou, et al.ZnO Nanostructures for Dye-Sensitized Solar Cells[J]. Adv Mater,2009,21:4087-4108
    [33]J.F. Qian, P. Liu, Y. Xiao, et al. TiO2-Coated Multilayered SnO2 Hollow Microspheres for Dye-Sensitized Solar Cells[J]. Adv Mater,2009,21:3663-3667
    [34]Y.S. Fua, J. Sun, Y. Xie, et al. ZnO hierarchical nanostructures and application on high-efficiency dye-sensitized solar cells[J]. Mater Sci Eng B,2010,166 196-202
    [35]X.H. Jia, H.Q. Fan, F.Q. Zhang, et al. Using sonochemistry for the fabrication of hollow ZnO microspheres[J]. Ultrason. Sonochem.,2010,17:284-287
    [36]Z.Y. Jiang, Q. Kuang, Z.X. Xie, et al. Syntheses and Properties of Micro/Nanostructured Crystallites with High-Energy Surfaces[J]. Adv Funct Mater,2010,20:3634-3645
    [37]K.P. Musselman, A. Wisnet, D.C. Iza, et al. Strong Efficiency Improvements in Ultra-low-Cost Inorganic Nanowire Solar Cells[J]. Adv Mater,2010,22(35):E254-E258
    [38]A.I. Hochbaum, P. Yang. Semiconductor Nanowires for Energy Conversion[J]. Chem. Rev.,2010,110:527-546
    [39]D.S. Zhang, T. Yoshida, T. Oekermann, et al. Room-Temperature Synthesis of Porous Nanoparticulate TiO2 Films for Flexible Dye-Sensitized Solar Cells[J]. Adv Funct Mater,2006,16:1228-1234
    [40]C.-H. Chao, C.-L. Chang, C.-H. Chan, et al. Rapid thermal melted TiO2 nano-particles into ZnO nano-rod and its application for dye sensitized solar cells[J]. Thin Solid Films,2010,518:7209-7212
    [41]Y.J. Kim, M.H. Lee, H.J. Kim, et al. Formation of Highly Efficient Dye-Sensitized Solar Cells by Hierarchical Pore Generation with Nanoporous TiO2 Spheres[J]. Adv Mater,2009,21:3668-3673
    [42]Q.F. Zhang, T.P. Chou, B. Russo, et al. Polydisperse Aggregates of ZnO Nanocrystallites:A Method for Energy-Conversion-Efficiency Enhancement in Dye-Sensitized Solar Cells[J]. Adv Funct Mater,2008,18:1654-1660
    [43]T.P. Chou, Q.F. Zhang, G.E. Fryxell, et al. Hierarchically Structured ZnO Film for Dye-Sensitized Solar Cells with Enhanced Energy Conversion Efficiency[J]. Adv Mater,2007,19:2588-2592
    [44]R. Jose, V. Thaavasi, S. Ramakrishna. Metal oxides for Dye-sensitized solar cells[J].J Am Ceram Soc,2009,92:289-301
    [45]J.H. Zhang, A. Thurber, D.A. Tenne, et al. Enhanced Dye Fluorescence in Novel Dye-ZnO Nanocomposites[J]. Adv Funct Mater,2010:1-6
    [46]L.W. Yang, H.L. Han, Y.Y. Zhang, et al. Self-organized comb-like ZnO microstructures: Morphologies and defect induced optical emission[J]. Optical Materials.2009. doi:10.1016/j.optmat.2009.03.016:
    [47]G. Jimenez-Cadena, E. Comini, M. Ferroni, et al. Synthesis of different ZnO nanostructures by modified PVD process and potential use for 1dye-sensitized solar cells[J]. Mater. Chem. Phys.,2010,124:694-698
    [48]C.C. Lin, Y.Y. Li. Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dihydrate[J]. Mater. Chem. Phys.,2009,113:334-337
    [49]M.S. fang, L. Jian, W.L. Hong. Study on Preparation and Photoluminescence Property of ZnO Hexagonal nanotubes[J].发光学报,2008,29:183-185
    [50]X.Y. Kong, Y. Ding, R. Yang, et al. Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts[J]. Science,2004,303:1348-1351
    [51]C.C. Wu, D.S. Wuu, P.R. Lin, et al. Repeated Growing and Annealing Towards ZnO Film by Metal-Organic CVD[J]. Chem Vap Deposition,2009,15:234-241
    [52]X.H. Xia, Z.Z. Ye, G.D. Yuan, et al. Rapid synthesis of novel flowerlike ZnO structures by thermolysis of zinc acetate[J]. Appl Surf Sci,2006,253:909-914
    [53]任湘菱,韩冬,陈东等.直接沉积法制备棒状ZnO[J].物理化学学报,2005,21(12):1419-1421
    [54]陈建刚.郭常新,张琳丽等.一步溶液法制备ZnO亚微米晶体棒及其发光性能[J].发光学报,2006,27:59-61
    [55]郭奇花,陶炼,陈炳坤等.温度起伏对ZnO纳米晶体形貌的影响[J].半导体技术,2009,34(2):134-138
    [56]J. Xie, P. Li, Y.J. Wang, et al. Synthesis of needle-and flower-like ZnO microstructures by a simple aqueous solution route[J]. J. Phys. Chem. Solids,2009,70:112-116
    [57]C.C. Chen, P. Liu, C.H. Lu. Synthesis and characterization of nano-sized ZnO powders by direct precipitation method[J]. Chem. Eng. J.,2008,144:509-513
    [58]M. Bitenc, Z.C. Orel. Synthesis and characterization of crystalline hexagonal bipods of zinc oxide[J]. Mater Res Bull.2009,44:381-387
    [59]D. Yuan, G,S, Wang, Y. Xiang, et al. Optical properties and formation mechanism of radial ZnO hexagonal nanoprism clusters [J]. J Alloys Compd,2009,478:489-492
    [60]Y. Deng, G.S. Wang, N. Li, et al. Synthesis and red-shifted photoluminescence of single-crystalline ZnO nanowires[J]. J Lumin 2009,129:55-58
    [61]X.C. Li, G.H. He, G.K. Xiao, et al. Synthesis and morphology control of ZnO nanostructures in microemulsions[J]. J Colloid Interface Sci,2009,333(2):465-473
    [62]Boutonnet, Magali, Kizling, et al. preparation of monodisperse colloidal metal particles from microemulsions[J]. Colloids Surf,1982,5(3):209-225
    [63]H. Usui. Surfactant concentration dependence of structure and photocatalytic properties of zinc oxide rods prepared using chemical synthesis in aqueous solutions[J]. J Alloys Compd,2009,336:667-674
    [64]J. Zhao, Z.G. Jin, T. Li, et al. Nucleation and growth of ZnO nanorods on the ZnO-coated seed surface by solution chemical method[J]. J Eur Ceram Soc,2006,26:2769-2775
    [65]徐迪,段学臣,李中兰等.水热法制备掺铝氧化锌纳米棒阵列及其光学特性[J].功能材料.2008,4(39):695-697
    [66]B.G. Wang, E.W. Shi, W.Z. Zhong. Twinning Morphologies and Mechanisms of ZnO Crystallites under Hydrothermal Conditions[J].Cryst Res Technol,1998,33:937-941
    [67]Q.Y. Li, E.B. Wang, S.H. Li, et al. Template-free polyoxometalate-assisted synthesis for ZnO hollow spheres[J].J Solid State Chem,2009,182:1149-1155
    [68]D.B. Wang, Y.H. Zhao, C.X. Song. Synthesis and properties of cuboid-shaped ZnO hierarchical structures[J]. Solid State Sci.,2010,12:776-782
    [69]X.P. Gao, Z.F. Zheng, H.Y. Zhu, et al. Rotor-like ZnO by epitaxial growth under hydrothermal conditions[J]. Chem Commun,2004:1428-1429
    [70]吕敏峰,崔作林,张志焜.氧化锌薄膜溶胶-凝胶分析[J].功能材料,2003,34(4):433-435
    [71]H.V.d. Rul, D. Mondelaers, M.K.V. Bael, et al. Water-based wet chemical synthesis of (doped) ZnO Nanostructures[J]. J Sol-Gel Sci Technol,2006,39:41-47
    [72]L. Vayssieres. Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions[J]. Adv Mater,2003,15:464-466
    [73]公茂刚,许小亮,曹自立等.两步法制备超疏水性ZnO纳米棒薄膜[J].物理学报,2009,58(3):1885~1889
    [74]林传金,王引书,郑东.水溶液的化学方法生长ZnO纳米棒的研究[J]. Journal of Zhangzhou Normal University(Nat Sci).2007.2:67-71
    [75]张琳丽,郭常新,陈建刚等.醋酸锌一步溶液法制备的各种形貌ZnO棒[J].发光学报,2005,26(14):521-525
    [76]刘然,章婷,赵谡玲等.从无序到有序ZnO纳米棒的制备[J].功能材料,2008,39(3):488~490
    [77]杨永强,杜高辉,许并.花状ZnO纳米结构的液相合成和光学性能[J].发光学报,2010,31(2):248-252
    [78]Q. Ahsanulhaq, J.H. Kim, N.K. Reddy, et al. Growth mechanism and characterization of rose-like microspheres and hexagonal microdisks of ZnO grown by surfactant-free solution method[J]. J. Ind. Eng. Chem.,2008,14:578-583
    [79]郝彦忠.花状氧化锌的制备及光电性能的研究[J].功能材料,2008,39(1):83-85
    [80]Y.Q. Zhu, Y.Q. Chen, X.H. Zhang, et al. Urchin-like ZnO nanostructures:Synthesis, characterization and optical properties[J]. Mater. Lett.,2009,63:1242 - 1244
    [81]J.H. Yang, J.H. Zheng, H.J. Zhai, et al. Growth mechanism and optical properties of ZnO nanotube by the hydrothermal method on Si substrates[J].J Alloys Compd,2009,475:741-744
    [82]Z.L.Wang, X.Y. Kong, J.M. Zuo. Induced Growth of Asymmetric Nanocantilever Arrays on Polar Surfaces[J].Phys Rev Lett,2003,91(18):185502-185501-185504
    [83]C.S. Lao, P.X. Gao, R.S. Yang, et al. Formation of double-side teethed nanocombs of ZnO and self-catalysis of Zn-terminated polar surface[J].Chem Phys Lett.2005,417:359-363
    [84]Y. Dai, Y. Zhang, Z.L. Wang. The octa-twin tetraleg ZnO nanostruclures[J].Solid State Commun, 2003,126:629-633
    [85]Q. Zhang, T.P. Chou, B. Russo, et al. Aggregation of ZnO Nanocrystallites for High Conversion Efficiency in Dye-Sensitized Solar Cells[J].Angew Chem,2008,120:2436-2440
    [86]Y. Wang. W. Jia, T. Strout. et al. Ammonia Gas Sensor Using Polypyrrole-Coated TiO2/ZnO Nanofibers[J].Electroanalysis,2009,21(12):1432-1438
    [87]K. Wang, J.J. Chen, W.L. Zhou, et al. Direct Growth of ZnO/ZnSe Highly Mismatched Type II Core/Shell Nanowire Array on Transparent Conducting Oxide (TCO) Substrate for Potential Solar Cell Application[J].Adv Mater,2008,20:3248-3253
    [88]C. Liu, H.P. Hea, L.W. Suna, et al. Conelation between the 3.31-eV emission and the doping level in indium-doped ZnO nanostructures[J]. Solid State Commun.2010.150:2303-2305
    [89]B. Alema'n, P.Ferna'ndez, J.Piqueras. Dense vertical nanoplates arrays and nanobelts of indium doped ZnO grown by thermal treatment of ZnS-In2O3 powders[J].J Cryst Growth,2010, 312:3117-3121
    [90]林贺,范新会,于灵敏等.紫光激发对Ce02掺杂ZnO纳米线气敏性能的影响[J].铸造技术,2009 30(3):412-415
    [91]Jayakumar, I.K. Gopalakrishnan, R.M. Kadam, et al. Magnetization and structural studies of Mn doped ZnO nanoparticles:Prepared by reverse micelle method[J].J Cryst Growth.2007,300: 358-363
    [92]C.W. Zou, X.D. Yan, J. Han, et al. Preparation and enhanced photoluminescence property of ordered ZnO/TiO2 bottlebrush nanostructures[J].Chem. Phys. Lett.,2009.476:84-88
    [93]L.Y. Chen, S.L. Bai, G.J. Zhou, et al. Synthesis of ZnO-SnO2 nanocomposites by microemulsion and sensing properties for NO2[J].Sens Actuators. B,2008,134:360-366
    [94]K. Park, Q.F. Zhang, B.B. Garcia, et al. Effect of an Ultrathin TiO2 Layer Coated on Submicrometer-Sized ZnO Nanocrystallite Aggregates by Atomic Layer Deposition on the Performance of Dye-Sensitized Solar Cells[J].Adv Mater,2010,22:2329-2332
    [95]S. Yun, J. Lee, JahyunYang, et al. Hydrothermal synthesis of Al-doped ZnO nanorod arrays on Si substrate[J].Phys. B,2010,405:413-419
    [96]E. Pal, V. Hornok, A. Oszko, et al. Hydrothermal synthesis of prism-like and flower-like ZnO and indium-doped ZnO structures[J].Colloids and Surf. A:,2009,340:1-9
    [97]A.E. Morales, M.H. Zaldivar, U. Pal. Indium doping in nanostructured ZnO through low-temperature hydrothermal process[J].Opt. Mater.,2006,29:100-104
    [98]A.K. Srivastavaa, M. Deepaa, N. Bahadura, et al. Influence of Fe doping on nanostructures and photoluminescenceof sol-gel derived ZnO[J].Mater. Chem. Phys.,2009,114:194 - 198
    [99]K.J. Chen, F.Y. Hung, S.J. Chang, et al. Microstructures, optical and electrical properties of In-doped ZnO thin films prepared by sol-gel method[J]. Appl Surf Sci,2009,255:6308-6312
    [100]J.F. Su, C.H. Zang, C.X. Cheng, et al. Structural, optical and electrical properties of Al-N codoped ZnO films by RF-assisted MOCVD method[J].Appl Surf Sci.2010,257:160-164
    [101]L.P. Peng, L. Fang, X.F. Yang, et al. Effect of annealing temperature on the structure and optical properties of In-doped ZnO thin films[J].J Alloys Compd.2009.S0925-8388(09)00911-6:
    [102]X. Gan, X. Li, X. Gao, et al. ZnO nanowire TiO2 nanoparticle photoanodes prepared by the ultrasonic irradiation assisted dip-coating method[J].Thin Solid Films,2010,518:4809-4812
    [103]Q. Li, Y.Q. Chen, X.H. Zhang, et al. Annealing effect on the morphologies and photoluminescence properties of ZnO nanocombs[J]. J. Phys. Chem. Solids.2009.70:1482-1486
    [104]H. Zeng, G. Duan, Y. Li, et al. Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes:Defect Origins and Emission Controls[J]. Adv Funct Mater,2010,20(4):561-572
    [105]王白齐,夏春辉,富强.Co掺杂ZnO纳米棒的水热法制备及其发光性能[J].物理化学学报,2008,24(27):1165-1168
    [106]陈艳伟.ZnO、ZnO:In一维纳米结构材料的制备及其光伏器件,,2006,博士论文
    [107]胡文远,杨定明,刘勋.氧化锌基纳米发光材料的研究进展[J].材料导报,2007,21:108-112
    [108]S. Singh, M.S.R. Rao. Green light emitting oxygen deficient ZnO forks brooms and spheres[J]. Scripta Mater.,2009,61:169-172
    [109]刘宝,吴佑实,吴莉莉等.Sn掺杂ZnO纳米晶的水热法制备及光学能[J].发光学报,2008,29(3):532-536
    [110]R.K. Gupta, K. Ghosh, R. Patel, et al. Band gap engineering of ZnO thin films by In2O3 incorporation[J].J Cryst Growth,2008,310:3019-3023
    [111]范学运,王艳香,章义来等,稀土掺杂氧化锌米粉的制备及其性能研究[J].人工晶体学报,2008,37(5):1166-1171
    [112]H.S. Kang, J.W. Kim. S.H. Lim. et al. Investigation on the variation of green. yellow. and orange emission properties of ZnO thin film[J]. Superlattices Microstruct.,2006,39:193-201
    [113]C. Chandrinou, N.Boukos, C.Stogios, et al. PL study of oxygen defect formationin ZnO nanorods[J]. Microelectron. J.,2009,40:296-298
    [114]J.F. Chen, Y. Hu, X.S. Zheng. Surfactant-assisted self-assembly growth of single-crystalline ZnO microflowers at low temperature[J]. Colloids Surf. A:,2008,313-314:576-580
    [115]W.W. He, Y.P. Li, Z.Q. Chen, et al. One-step solution synthesis of monodispersed ZnO nanowhiskers at low-temperature[J]. Mater. Lett.,2006,60:2299-2301
    [116]X.D. Gao, X.M Li, W.D. Yu. Flowerlike ZnO Nanostructures via Hexamethylenetetramine-Assisted Thermolysis of Zinc-Ethylenediamine Complex[J].J Phys Chem B,2005,109:1155 -1161
    [117]H.X. Lu, Y.L. Zhao, X.J. Yu, et al. Controllable Synthesis of Spindle-like ZnO Nanostructures by a Simple Low-temperature Aqueous Solution Route[J]. Appl Surf Sci,2011,257: 4514-4518.
    [118]范良明,刘文君.四川省石柱铅锌矿床氧化带中的水锌矿[J].矿物岩石,1982,2:68-73
    [119]H.H. Wang, C.S. Xie, D.W. Zeng. Controlled growth of ZnO by adding H2O [J].J Cryst Growth,2005,277:372-377
    [120]金迭莱,岳林海,徐铸德.球形·碳酸钙复合物的红外、拉曼光谱分析研究[J].无机化学学报,2004,6(6):715-720
    [121]K.-M. Kim, H.-R. Kim, K.-I. Choi, et al. ZnO hierarchical nanostructures grown at room temperature and their C2H5OH sensor applications[J]. Sens Actuators, B,2011: doi:10.1016/j.snb.2011.1001.1040
    [122]J. Zhang, S.r. Wang, Y. Wang, et al. ZnO hollow spheres:Preparation, characterization, and gas sensing properties[J]. Sens Actuators, B,2009.139:411-417
    [123]N.F. Hamedani, A.R. Mahjoub, A.A. Khodadadi, et al. Microwave assisted fast synthesis of various ZnO morphologies for selective detection of CO,CH4 and ethanol[J]. Sens Actuators, B,2011:doi:10.1016/j.snb.2011.1002.1028
    [124]L. Liu, S.c. Li, J. Zhuang, et al. Improved selectiv eacetone sensing properties of Co-doped ZnO nanofibers by electrospinning[J]. Sens Actuators, B,2011: doi:10.1016/j.snb.2011.1001.1047
    [125]I. Sayago, J. Gutierrez, L. Ares, et al. The effect of additives in tin oxide on the sensitivity and selectivity to NOx and CO[J]. Sens Actuators, B,1995,26:19-23
    [126]M. Seetha, S. Bharathi, A.D. Raj, et al. Optical investigations on indium oxide nano-particles prepared through precipitation method[J].Mater Charact.2009.60:1578 - 1582
    [127]M.M.-Hukovic', S. Omanovic. Thin indium oxide film formation and growth:Impedance spectroscopy and cyclic voltammetry investigations[J]. J Electroanal Chem,1998,455:181-189
    [128]F. Cai, L. Zhu, H. He, et al. Growth and optical properties of tetrapod-like indium-doped ZnO nanorods with a layer-structured surface[J].J Alloys Compd,2011,509:316-320
    [129]O. Lupan, T. Pauporte', L. Chow, et al. Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium[J].Appl Surf Sci.2010.256:1895 1907
    [130]K. Ogata, K. Sakurai, S. Fujita, et al. Effects of thermal annealing of ZnO layers grown by MBE[J].J Cryst Growth 2000,214/215:312-315
    [131]X.X. Yang, W. Lei, X.B. Zhang, et al. Growth and optical and field emission properties of flower-like ZnO nanostructures with hexagonal crown[J].Thin Solid Films,2009,517:4385-4389
    [132]R. Yousefi, M.R. Muhamad, A.K. Zak. Investigation of indium oxide as a self-catalyst in ZnO/ZnInO heterostructure nanowires growth[J].Thin Solid Films,2010,518:5971-5977

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700