介质阻挡放电—催化降解甲苯的产物分布及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挥发性有机物(Volatile Organic Compounds,VOCs)来源广泛,危害人类健康,是主要的大气污染物之一。与传统治理技术相比,低温等离子体催化技术具有投资少、效率高、能耗低、操作简单、副产物少等优点,被认为是环境污染物处理领域中最有发展前景的技术之一。但低温等离子体催化技术还存在一些问题需要进一步的研究,如VOCs及臭氧的同时高效去除、气相副产物及气溶胶的分析和协同机制的探讨。
     采用线板式介质阻挡反应器,结合同时高效去除甲苯及臭氧的催化剂降解甲苯,考察反应条件对甲苯去除的影响,对反应生成的CO、CO2和O3进行定量分析,全面分析甲苯降解的气固相副产物;对催化剂进行表征和分析;分析臭氧和羟基自由基在介质阻挡放电协同催化体系中的作用,提出甲苯的降解机理。
     主要研究内容和结果如下:
     (1)氮气气氛下,介质阻挡放电没有产生臭氧,放电产生的高能粒子能有效地降解甲苯,输入电压较高时(>9.0kV),水蒸气对甲苯去除的促进作用大于抑制作用;空气气氛下,介质阻挡放电在去除甲苯的同时产生了高浓度的臭氧,输入电压、湿度及甲苯初始进口浓度对甲苯的去除效率和臭氧的出口浓度有重要的影响。
     (2)催化剂结合在介质阻挡放电区,能提高了反应器的放电性能;催化剂对催化氮活性物种去除甲苯的促进作用不明显;催化剂负载在发泡镍后端的甲苯及臭氧去除效果都比负载在前端的高;水蒸气的存在不利于甲苯的去除,但能减少臭氧的出口浓度。
     (3)催化剂结合在等离子体区后可实现甲苯及臭氧的同时去除,输入电压为9.0kV时,甲苯的去除效率达92.8%,在80min内O3的去除效率维持在99%以上;除臭氧外,空气放电产生的其它物种对DBD区后甲苯的催化降解的促进作用不明显。臭氧浓度较高时湿度对甲苯及O3的降解效率的影响都很小。
     (4)介质阻挡放电-催化降解甲苯生成的多相态产物,是碳平衡较低的原因之一。催化剂结合在等离子体区后,水蒸气的存在有利于CO向CO2转化,减少气相产物的种类,提高碳平衡。甲苯降解的副产物除了带苯环的衍生物(苯甲酸、苯甲醛、苯甲醇等),还包括苯环断裂后形成的小分子产物(丙烷、2-甲基丁烷等、乙醛、甲酸、硝基甲烷等)。在产物分析的基础上,研究了甲苯的降解机理。
The emission of volatile organic compounds (VOCs) with extensive sources is one of most important air pollution and harmful to human health. Compared with traditional technologies, non-thermal plasma-catalysis (NTP-catalysis) is considered as one of the most promising technologies for environmental pollution control in recent years, with many advantages such as low cost, high removal efficiency, less energy consumption, simple operation, less by-products etc. However, they still have many drawbacks. However, NTP-catalysis still has some problems to solve such as the simultaneous removal of toluene and ozone, analysis of by-products and investigation of synergetic mechanism.
     Technology of dielectric barrier discharge (DBD) combined with catalyst which performed efficiently in the simultaneous removal of toluene and ozone was applied for toluene descomposition. Effects of various reaction conditions were investigated. The products such as carbon monoxide, carbon dioxide and ozone were quantitatively analyzed. The products of toluene decomposition in gasous and solid phase were confirmed. In addition, the catalysts were characterized and analyzed. Based on the experimental results, the formation mechanism of products was analyzed. The roles of ozone and hydroxy radical in DBD-catalysis system were analyzed and the degradation mechanism was proposed.
     The main research contents and results were as follows:
     (1) DBD did not produce ozone and high energetic particles produced could degrade toluene effectively in N2. With higher input voltage (>9.0kV), the promotional effect of water vapor was greater than inhibitional one on toluene removal with N2 as background gas. High concentration ozone was produced when toluene was removed by DBD with air as background gas. Important effects of input voltage, humidity, as well as the initial toluene concentration on toluene removal and ozone outlet concentration were investigated in air.
     (2) The performance of dielectric barrier discharge was improved with catalyst in plasma. The stimulation of catalyst on the catalytic removal of toluene by nitrogen active species was not obvious. Removal efficiencies of toluene and ozone were higher with catalyst loaded at the back end of nickel foam than at the front end. Water vapor has a negative effect on toluene removal, but it could reduce the outlet concentration of ozone.
     (3) High removal efficiencies of toluene and ozone could be realized simultaneously with catalysis in plasma. With input voltage of 9.0kV, the toluene removal efficiency was up to 92.8% and that of ozone was above 99% within 80 min. Other species except ozone produced by air discharge had little contribution to toluene removal in post-plasma. Humidity had little effect on the removal efficiencies of toluene and ozone under higher ozone concentration.
     (4) The heterogenous products produced in toluene removal by DBD-catalysis were the main cause of low carbon balance. Water vapor was beneficial to the conversion of CO to CO2, which could also reduce the by-products and improve carbon balance with catalyst in post-plasma. By-products of toluene decomposition included ring-retaining substances (benzoic acid, benzaldehyde, benzyl alcohol etc.) and ring-cleavage substances (propane, 2-methylbutane, acetaldehyde, formic acid, nitromethane etc.). Base on the analysis of products, the degradation mechanism of toluene was deduced.
引文
[1]郝吉明,马广大.大气污染控制工程[M].第二版.高等教育出版社, 2002
    [2] Van Durme J., Dewulf J., Leys C., et al. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Applied Catalysis B: Environmental, 2008, 78(3-4): 324-333
    [3]张继娟,魏世强.我国城市大气污染现状与特点[J].四川环境, 2006, 25(3): 104-108
    [4]宋华,王保伟,许根慧.低温等离子体处理挥发性有机物的研究进展[J].化学工业与工程, 2007, 24(4):356-361
    [5]林云琴,林和健,王德汉.低温等离子体技术及其在VOCs处理中的应用[J].城市环境与城市生态, 2005, 18(5): 26-29
    [6]梁红,叶代启,肖美兰.恶臭及挥发性有机溶剂废气治理技术[J].广州环境科学, 1999, 14(4): 11-15
    [7] Jia C., Batterman S., Godwin C. VOCs in industrial, urban and suburban neighborhoods, Part 1: Indoor and outdoor concentrations, variation, and risk drivers[J].Atmospheric Environment, 2008, 42(9): 2083-2100
    [8]郭玉芳,叶代启.废气治理的低温等离子体-催化协同净化技术[J].环境污染治理技术与设备, 2003, 4(7): 41-46
    [9]杭维琦,薛光璞.南京市环境空气中挥发性有机物的组成与特点[J].中国环境监测, 2004, 20(2): 14-16
    [10]陈洪伟,李攻科,李核等.广州地区大气中挥发性有机物的污染状况[J].环境化学, 2003, 22(1): 89-92
    [11]蒋卉.挥发性有机物的控制技术及其发展[J].资源开发与市场, 2006, 22(4): 315-317
    [12] Lojewska, J., Kolodziej, A., Lojewski, T., et al. Structured cobalt oxide catalyst for VOC combustion. Part I: Catalytic and engineering correlations[J].Applied Catalysis A: General, 2009, 366(1): 206-211
    [13]张晓明,黄碧纯,叶代启.低温等离子体-光催化净化空气污染物技术研究进展[J].化工进展, 2005, 24(9):964-967
    [14] Tokumura M., Nakajima R., Znad H.T., et al. Chemical absorption process for degradation of VOC gas using heterogeneous gas–liquid photocatalytic oxidation: Toluene degradation by photo-Fenton reaction[J]. Chemosphere, 2008, 73(5): 768-775
    [15] Guieysse B., Hort C., Platel V., et al. Biological treatment of indoor air for VOC removal: Potential and challenges[J]. Biotechnology Advances, 2008, 26(5): 398-410
    [16] Yi F.Y., Lin X.D., Chen, S.X., et al. Adsorption of VOC on modified activated carbon fiber[J]. Journal of Porous Materials, 2009, 16(5): 521-526
    [17] Davis R.J., Zeiss R.F. Cryogenic condensation: A cost-effective technology for controlling VOC emissions[J]. Environmental Progress, 2002, 21(2): 111-115
    [18] Koutsospyros A.D., Yin S.M., Christodoulatos C., et al. Plasmochemical degradation of volatile organic compounds (VOC) in a capillary discharge plasma reactor[J]. IEEE Transactions on Plasma Science, 2005, 33(1): 42-49
    [19] Huang H.B., Ye D.Q. Combination of photocatalysis downstream the non-thermal plasma reactor for oxidation of gas-phase toluene[J]. Journal of Hazardous Materials, 2009, 171(1-3): 535-541
    [20] Liang W.J., Li J., Li J., et al. Abatement of toluene from gas streams via ferro-electric packed bed dielectric barrier discharge plasma[J]. Journal of Hazardous Materials, 2009, 170(2-3): 633-638
    [21] Shang K.F., Wang X.C., Zhou X.Y., et al. Diagnosis of electron temperature in Ar/O2 mixed gas and destruction of toluene/benzene by positive dc discharge plasma[J]. Journal of Electrostatics, 2009, 67(5): 746-750
    [22] Byeon J.H., Park J.H., Jo Y.S., et al. Removal of gaseous toluene and submicron aerosol particles using a dielectric barrier discharge reactor[J]. Journal of Hazardous Materials, 2010, 175(1-3): 417-422
    [23]杨宽辉,王保伟,许根慧.介质阻挡放电等离子体特性及其在化工中的应用[J].化工学报, 2007, 58(7): 1609-1618
    [24]袁旭东,邢金丽.脉冲电晕放电法低温等离子体净化室内VOCs[J].建筑热能通风空调, 2005, 24(1): 96-99
    [25]徐学基,诸定昌.气体放电物理[M].复旦大学出版社,1996:309~335
    [26]黄立维,谭天恩,施耀.高压脉冲电晕法治理有机废气实验研究[J].环境污染与防治, 1998, 20(1):4-7
    [27]吴祖良,周勇平,高翔等.放电等离子体处理VOCs的研究[J].电站系统工程, 2003, 19(4): 7-12
    [28]吴祖良,高翔,李济吾,等.非热平衡等离子体过程苯的降解[J].化工学报, 2007, 58(8): 2076-2081
    [29] Li J., Han S.T., Bai S.P., et al. Effect of the reactor surface roughness on benzene oxidation in dielectric barrier discharges[J]. Plasma Sources Science and Technology, 2008, 17(4): 1-7
    [30] Harling A.M., Glover D.J., Whitehead J.C., et al. Novel method for enhancing the destruction of environmental pollutants by the combination of multiple plasma discharges[J]. Environ. Sci. Technol, 2008, 42(12): 4546-4550
    [31]朱元右,姜银方.等离子体技术在大气污染治理中的应用[J].环境卫生工程, 2003, 11(4): 183-186
    [32]吕唤春,潘洪明,陈英旭.低浓度挥发性有机废气的处理进展[J].化工环保, 2001, 21(6): 324-327
    [33] Guo Y.F., Ye D.Q., Chen K.F., et al. Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in-situ[J]. Journal of Molecular Catalysis A: Chemical, 2006, 245 (1-2):93-100
    [34]林云琴,林和健,王德汉.低温等离子体技术及其在VOCs处理中的应用[J].城市环境与城市生态, 2005, 18(5): 26-29
    [35]白敏冬,周锦进,白希尧等.超高压脉冲综合治理SO2、NOx和CO2气体[J].大连理工大学学报, 1996, 36(1): 47-50
    [36]周黎明,杨兰均等.高压脉冲电晕放电脱硫脱硝技术[J].高电压技术, 1995, 21(3): 25-29
    [37]李党生,冯涛,姚水良.低温等离子体与催化剂联用降解空气中低浓度的苯[J].环境科学与技术, 2007, 30(10): 65-67
    [38]梁文俊,李坚,李依丽等.挥发性有机物低温等离子体降解的影响参数研究[J].环境工程学报, 2009. 3(6): 1079-1083
    [39]赵雷,周中平.低温等离子体技术净化空气中的甲苯[J].环境科学研究, 2006, 19(4):70-73
    [40] Guo Y.F., Ye D.Q., Chen K.F., et al. Toluene removal by a DBD-type plasma combined with metal oxides catalysts supported by nickel foam[J]. Catalysis Today, 2007, 126(3-4): 328-337
    [41]魏长宽,朱天乐,樊星等.非热等离子体与催化相结合去除气相低浓度苯系物[J].环境科学学报, 2008, 28(4) : 676-680
    [42] Li D., Zhang D., Wu Y., et al. A study of removing chlorobenzene by the synergistic effect of catalysts and dielectric-barrier discharge driven by bipolar pulse-powe[J]. Plasma Science and Technology, 2008, 10(1): 94-99
    [43]李锻,刘明辉,吴彦等.双极性脉冲高压介质阻挡放电降解氯苯和甲苯[J].中国环境科学, 2006, 26(S1): 23-26
    [44]张静,吕福功等.介质阻挡放电脱除甲醛的化学动力学模拟[J]. Acta Phys.-Chim.Sin., 2007, 23(9): 1425-1431
    [45]谢志辉,陈林根,孙丰瑞等.纳米二氧化钛协同放电等离子体降解甲苯的实验研究[J].高电压技术. 2010, 46(1): 13-21
    [46]于欣,刘洪波,孔令江. MCM241介孔分子筛水热结构稳定性对介质阻挡放电脱除甲苯的影响[J].环境化学, 2007, 26(3): 280-283
    [47] Shen Y.J., Lei L.C., Zhang, X.W., et al. Effect of various gases and chemical catalysts on phenol degradation pathways by pulsed electrical discharges[J]. Journal of Hazardous Materials, 2008, 150(3): 713-722
    [48]陆彬,季民,于欣等.介质阻挡等离子体放电与催化联用技术分解苯[J].中国环境科学, 2006, 26(6): 703-707
    [49] Lee H.M., Chang M.B. Gas-phase removal of acetaldehyde via packed-bed dielectric barrier discharge reactor[J]. Plasma Chemistry and Plasma Processing, 2001, 21(3): 329-343
    [50] Lee H.M., Chang M.B. Abatement of gas-phase p-xylene via dielectric barrier discharges[J]. Plasma chemistry and Plasma Processing, 2003, 23(3): 541-558
    [51] Futamura, S., Zhang, A., Einaga, H. Kabashima, H., Involvement of catalyst materials in nonthermal plasma chemical processing of hazardous air pollutants. Catalysis Today 2002, 72(3-4): 259-265
    [52] Ogata, A., Miyamae, K., Mizuno, K. et al. Decomposition of benzene in air in a plasma reactor: Effect of reactor type and operating conditions[J]. Plasma Chemistry and Plasma Processing, 2002, 22(4): 537-552
    [53] Ayrault C., Barrault J., Blin-Simiand N., et al. Oxidation of 2-heptanone in air by a DBD-type plasma generated within a honeycomb monolith supported Pt-based catalyst[J]. Catalysis Today, 2004, 89(1-2): 75-81
    [54] Mista W., Kacprzyk R. Decomposition of toluene using non-thermal plasma reactor at room temperature[J]. Catalysis Today, 2008, 137(2-4):345-349
    [55] Magureanu M., Mandache N.B., Parvulescu V.I., et al. Improved performance of non-thermal plasma reactor during decomposition of trichloroethylene: Optimization of the reactor geometry and introduction of catalytic electrode[J]. Applied Catalysis B: Environmental, 2007, 74(3-4): 270-277
    [56] Ban J.Y., Son Y.H., Kang M., et al. Highly concentrated toluene decomposition on the dielectric barrier discharge (DBD) plasma–photocatalytic hybrid system with Mn-Ti-incorporated mesoporous silicate photocatalyst (Mn-Ti-MPS)[J]. Applied Surface Science, 2006, 253(2): 535-542
    [57] Demidiouk, V., Moon, S. I., Chae, J. O. Toluene and butyl acetate removal from air by plasma-catalytic system[J]. Catalysis Communications, 2003, 4(2): 51-56
    [58] Kohno, H., Berezin, A.A., Chang, J.S., et al.Destruction of volatile organic compounds used in a semiconductor industry by a capillary tube discharge reactor[J]. IEEE Transactions on Industry Applications, 1998, 34(5): 953-966.
    [59] Kim H.H., Ogata A., Futamura S. Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma[J]. Applied Catalysis B: Environmental, 2008, 79(4): 356-367
    [60] Subrahmanyam C., Renken A., Kiwi-Minsker L. Novel catalytic non-thermal plasma reactor for the abatement of VOCs[J]. Chemical Engineering Journal, 2007, 134(1-3):78-83
    [61] Futamura S., Sugasawa M. Additive effect on energy efficiency and byproduct distribution in VOC decomposition with nonthermal plasma[J]. IEEE Transactions on Industry Applications, 2008, 44(1): 40-45
    [62] Delagrange S., Pinar L., Tatibou?t J.M. Combination of a non-thermal plasma and a catalyst for toluene removal from air: Manganese based oxide catalysts[J]. Applied Catalysis B: Environmental, 2006, 68(3-4): 92-98
    [63] Roland U., Holzer F., Kopinke F.D.Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds Part 2. Ozone decomposition and deactivation ofγ-Al2O3[J]. Applied Catalysis B: Environmental, 2005, 58(3-4): 217-226
    [64] Harling A.M., Demidyuk V., Fischer S.J., et al. Plasma-catalysis destruction of aromatics for environmental clean-up: Effect of temperature and configuration[J]. Applied Catalysis B: Environmental, 2008, 82(3-4): 180-189
    [65] Istadi I., Amin N.A.S. Modelling and optimization of catalytic-dielectric barrier discharge plasma reactor for methane and carbon dioxide conversion using hybridartificial neural network-genetic algorithm technique[J]. Chemical Engineering Science, 2007, 62: 6568-6581
    [66] Guo Y.F., Ye D.Q., Chen K.F., et al. Humidity effect on toluene decomposition in a wire-plate dielectric barrier discharge reactor[J]. Plasma Chemistry and Plasma Processing, 2006, 26(3): 237-249
    [67] Blin-Simiand N., Jorand F., Magne L., et al. Plasma reactivity and plasma-surface interactions during treatment of toluene by a dielectric barrier discharge[J]. Plasma Chemistry and Plasma Processing, 2008, 28(4): 429-466
    [68]冯发达.低温等离子体-催化降解有机废气的多相产物及其生成机理研究[D].广州:华南理工大学, 2009
    [69]白敏菂、张芝涛.产生臭氧的等离子体过程及其特性[J].核聚变与等离子体物理2001, 21(3): 183-188
    [70] Toby S., Vande Burgt L.J., Toby F.S. Kinetics and chemiluminescence of ozone-aromatic reactions in the gas phase[J]. J Phys. Chem., 1985, 89(10): 1982-1986
    [71]郭玉芳,叶代启,陈克复.甲苯在不同背景气氛下的介质阻挡放电降解行为研究[J].北京理工大学学报, 2005, 25(S1): 212-216
    [72] Chavadej S., Kiatubolpaiboon W., Rangsunvigit P., et al. A combined multistage corona discharge and catalytic system for gaseous benzene removal[J]. Journal of Molecular Catalysis A-Chemical, 2007, 263(1-2): 128-136
    [73]李坚,马广大.电晕法处理VOCs的机理分析与实验[J].西安建筑科技大学学报[J].2000, 32(1): 24-27
    [74]何鹰,程代云,史喜成等.非平衡等离子体技术对有害气体污染物的降解研究进展[J].环境污染治理技术与设备, 2002, 3(4): 12-17
    [75]韩瑞萍,杨来等.脉冲电晕等离子体技术脱除有害气体研究进展[J].低温与特气, 2004, 22(2): 1-3
    [76] Lowke J.J., Morrow R. Theoretical analysis of removal of oxides of sulphur and nitrogen in pulsed operation of electrostatic precipitators[J].IEEE Transactions on Plasma Science, 1995, 23(4): 661-671
    [77] Magureanu M., Mandache N.B., Eloy P., et al. Plasma-assisted catalysis for volatile organic compounds abatement[J]. Applied Catalysis B: Environmental, 2005, 61(1-2): 12-20
    [78] Herron J.T., Green D.S. Chemical kinetics database and predictive schemes for nonthermal humid air plasma chemistry. Part II. Neutral species reactions[J]. Plasma Chemistry and Plasma Processing, 2001, 21(3): 459-481
    [79] Trawczyński J., Bielaka B., Mistab W. Oxidation of ethanol over supported manganese catalysts—effect of the carrier[J]. Applied Catalysis B: Environmental, 2005, 55(4): 277-285
    [80]吴锁川.载钴ZSM-5沸石的程序升温还原[J].催化学报, 1993, 14(3): 239-242
    [81]王大祥,王嘉福,张鎏.用磁天平和XRD研究Co/Mo/γ-Al2 O3催化剂中钴的性质[J].分子催化, 1993, 7(6): 479-482
    [82]郑小明,莫流业,井强山等.甲烷部分氧化与甲烷二氧化碳重整耦合制合成气Co系催化剂研究[J].复旦学报(自然科学版), 2003, 42(3): 253-256
    [83] Subrahmanyam C., Magureanu A., Renken A., et al. Catalytic abatement of volatile organic compounds assisted by non-thermal plasma: Part 1. A novel dielectric barrier discharge reactor containing catalytic electrode[J]. Applied Catalysis B: Environmental, 2006, 65(1-2): 150-156
    [84] Chavadej S., Saktrakool K., Rangsunvigit P., et al. Oxidation of ethylene by a multistage corona discharge system in the absence and presence of Pt/TiO2[J]. Chemical Engineering Journal, 2007, 132(1-3): 345-353
    [85] Van Durme J., Dewulf J., Sysmans W., et al. Efficient toluene abatement in indoor air by a plasma catalytic hybrid system[J]. Applied Catalysis B: Environmental, 2007, 74(1-2): 161-169
    [86]蒋洁敏,吴玉萍,侯惠奇.氧化铂对DBD处理含苯废气的影响研究[J].化学世界, 2002, (S1): 89-90
    [87]张竞杰,张彭义,张博等.活性炭负载金催化分解空气中低浓度臭氧[J].催化学报, 2008, 29(4): 335-340
    [88] Van Durme J., Dewulf J., Demeestere K., et al. Post-plasma catalytic technology for the removal of toluene from indoor air: Effect of humidity[J]. Applied Catalysis B: Environmental, 2009, 87(1-2): 78-83
    [89]关绣娟,叶代启,黄海保.介质阻挡放电-催化降解空气中甲苯的研究[J].环境工程学报, 2008, 2(7): 977-982
    [90] Radhakrishnan R., Oyama S.T., Ohminami Y., et al. Structure of MnOx /Al2O3 catalyst: A study using EXAFS, in situ laser Raman spectroscopy and ab initio calculations[J]. J. Phys. Chem. B, 2001, 105(38): 9067-9070
    [91] Li W., Gibbs G.V., Oyama S.T. Mechanism of ozone decomposition on a manganese oxide catalyst. 1. In situ Raman spectroscopy and ab initio molecular orbital calculations[J]. Journal of the American Chemical Society, 1998, 120(35): 9041-9046
    [92]印红玲,谢家理,杨庆良.臭氧在金属氧化物上的分解机理[J].化学研究与应用, 2003, 15(1): 1-5
    [93] Van Durme J., Dewulf J., Sysman W., et al. Abatement and degradation pathways of toluene in indoor air by positive corona discharge[J]. Chemosphere, 2007, 68(10): 1821-1829
    [94] Kim H.H., Kobara H., Ogata A., et al. Comparative assessment of different nonthermal plasma reactors on energy efficiency and aerosol formation from the decomposition of gas-phase benzene[J].IEEE Transactions on Industry Applications, 2005, 41(1): 206-214
    [95]邓芹英,刘岚,邓慧敏.波谱分析教程[M].第一版.科学出版社, 2003
    [96]张宇,周洪雷.波谱解析[M].第一版.郑州大学出版社, 2006
    [97]陈洁,宋启泽.有机波谱分析[M].第一版.北京理工大学出版社, 2007
    [98]沈淑娟.波谱分析法[M].第一版.华东理工大学出版社, 1992
    [99]李猛,崔宝军,徐晓沐.多相催化加氢动力学方程的建立与推导[J].化学与黏合, 2005, 27(2): 90-95
    [100] Holzer F., Roland U., Kopinke F.D. Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: Part 1. Accessibility of the intra-particle volume[J]. Applied Catalysis B: Environmental, 2002, 38 (3): 163-181
    [101] Ogata A., Einaga H., Kabashima H., et al. Effective combination of nonthermal plasma and catalysts for decomposition of benzene in air[J]. Applied Catalysis B: Environmental, 2003, 46(1): 87-95
    [102] Ogata A., Ito D., Mizuno K., et al. Effect of coexisting components on aromatic decomposition in a packed-bed plasma reactor[J]. Applied Catalysis A: General, 2002, 236(1-2): 9-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700