微生物法处理含铬电镀废水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含铬(Ⅵ)废水来源广泛、毒性大,严重危害了自然环境和人类健康。传统的物理化学方法存在二次污染严重,成本高等缺点。近年来,人们开始研究采用微生物法来处理含铬(Ⅵ)废水,在微生物处理重金属铬的机理及工艺应用已做出大量研究,但大多处于实验室研究阶段,很少有关于微生物法处理含铬(Ⅵ)电镀废水的工程试验。
     试验采用EGSB+好氧活性污泥的微生物法组合工艺,对含铬(Ⅵ)电镀废水连续运行处理,探索出该组合工艺处理含铬电镀废水的技术可行性。通过在厌氧反应器EGSB中培养SRB菌种,利用SRB菌还原硫酸盐产生S2-。废水中的Cr(Ⅵ)被S2-还原为Cr(Ⅲ),然后被厌氧污泥吸附去除,出水残余的COD、总铬及SS再利用好氧活性污泥工艺进一步处理。试验结果表明:(1)通过对SRB菌种的优势培养,在进水pH为6~7,COD/SO4 2-=1.5~2.5,HRT=12 h条件下,SRB对硫酸盐的还原率最高,产生的硫化物最多,但当容积负荷大于10 kgSO4 2-/(m3·d)时,出水硫化物含量超过200 mg/L,会抑制SRB菌的活性;(2)利用EGSB反应器连续运行处理含铬(Ⅵ)电镀废水,出水回流可以降低进水Cr(Ⅵ)对微生物的毒害作用。当进水[Cr6+]=30~50 mg/L,在保证硫化物产生量足够的前提下,Cr(Ⅵ)的去除率能够达到95%以上,平均出水Cr(Ⅵ)低于0.5mg/L,出水总铬维持在3~6 mg/L;运行过程中,重金属铬离子在反应器内累积,污泥VSS/SS比值不断降低,定期排泥能够减少铬离子的累积效应,恢复反应器中污泥活性。(3)采用好氧活性污泥工艺处理EGSB的出水,适量加入FeSO4降低硫化物对微生物的抑制作用,调节pH=8,好氧活性污泥反应器连续运行30 d,出水平均值:COD=78.5 mg/L,总铬浓度为0.61 mg/L,SS=64.3 mg/L,均能达到电镀废水排放标准。但长期运行铬离子在污泥系统中的大量累积会影响好氧活性污泥处理效果。
Hexavalent chromium-containing wastewater, which was harmful to natural environment and human being health, has widespread sources and great toxicity. At present, physicochemical methods are the major ones to treat this wastewater. However, these methods will produce secondary pollution and own the shortcoming of high cost. In recent years, people started to adopt microbiology methods to deal with hexavalent chromium-containing wastewater, and have gained lots of research results on the mechanism and static experiment of treating HCCWW with microbiology methods. But most of the research is the stage of laboratory research, there are little report about engineering experimental study about it.
     This paper research used the combined process of“Expanded Granular Sludge Bed(EGSB)+Aerobic Activated Sludge”to treatment of electroplating wastewater containing Chromium, and sought out the technological feasibility of this combine process.The Sulfate- reducing bacteria (SRB) was optimum cultured in the EGSB, and the Cr(Ⅵ) was converted to Cr(Ⅲ) by the sulfide which produced during the suflate was reduced by SRB.Most of Cr(Ⅲ) is adsorbed. by the anaerobic sludge to remove.Following, the residuals of COD, Cr(Ⅲ) and SS which generated in the EGSB are completely removed through the aerobic activated sludge process. The result of this research show: (1)Through advantage cultivation of SRB bacteria and in the condition of influent pH was 6~7, COD/SO4 2-=1.5~2.5,HRT=12h, SRB reached the highest rate of sulfate reduction, and produced the most amount sulfide, However, when the volume load was greater than 10 kgSO 4 2-/ (m3?d) , the Sulfide content of effluent would be more than 200mg/L, then the activity of SRB Bacteria was restrained; (2) EGSB Reactor was be used to treat Chromium (Ⅵ) electroplating wastewater Continuously, the return water could reduce toxicity to the microorganisms that from Cr(Ⅵ) in influent water , while concertration of Cr(Ⅵ) of influent was 30~50mg/L, in the context of Sulfide output enough, the reactor could achieve high Cr(Ⅵ) removal efficiency, the removal rate could reach 95%, the average Cr(Ⅵ) content of effluent was lower than 0.5mg/L; Cr(Ⅲ) ions accumulated in the reactor during operation, VSS / SS ratio of sludge decreased continuously, Through regular discharging, the sludge activity of the reactor could be restored in a certain degree.(3)The effluent of EGSB reactor was furtherly treated through using the aerobic activated sludge process, adding ferrous sulfate to avoid the inhibition phenomenon caused by sulfide.Adjusting the pH to 8,the aerobic activated sludge process continuously operated for 30 days, the average COD concentration of effluent is 78.5mg/L, the total chromium is 0.61mg/L, the SS is 64.3mg/L.The effluent quality can satisfiethe discharge standard.The treatmen effect of aerobic activated sludge process will be invalidure if the chromium are greatly accumulated when the reactor is operating lastingly.
引文
[1]尹洪.电镀废水中铬的处理与回收[J].陕西环境, 1998, 5(1):24~25
    [2]涂锦葆.电镀废水治理手册[M].北京:机械工业出版社, 1989
    [3]王志忠.反渗透技术处理电镀废水的探讨[J].工业水处理, 2005,(5): 17~21
    [4]赵静,黄瑞敏,聂凌燕. Fenton氧化-曝气生物滤池处理电镀铜镍废水的研究[J].电镀与涂饰, 2010(4):36~38
    [5]张春爱.电镀废水综合治理的研究[J].环境工程, 2005 13(2): 3~7
    [6]廖自基.微量元素的环境化学及生物效应[M].北京:中国环境出版社, 1985
    [7]弗朗特纳, W维特曼.水环境的金属污染[M].北京:中国海洋出版社, 1987
    [8] Kotas J., Stasicka Z..Chromium occurrence in the environment and methods of its Speciation. Environmental Pollution[J]. 2000,107 (3): 263~283
    [9]宋马胜,张迎新.铁屑活性炭综合处理电镀废水[J].电镀与环保, 1998, 18(6): 31~32
    [10]魏振枢.铁氧体法处理含铬废水工艺条件探讨[J].化工环保, 1998, 18(1): 3
    [11]赵振业,傅家谟.离子交换处理电镀废水[J].水处理技术, 2001, 27(6): 341
    [12]逯兆庆,寻知磊.活性炭处理含铬废水的方法[J].电镀与涂饰, 2002, 21(5): 42~44
    [13]黄力群,石国乐.电解法处理含铬废水的改进[J].电镀与环保, 2004, 14(5): 20~23
    [14]黄炳辉.用液膜技术处理含铬废水的研究[J].环境开发, 1999, 14(2): 31~32
    [15]刘俊.化学法处理含铬含锌废水[J].电镀与精饰, 1998, 18(9): 37
    [16]罗耀宗.电镀含铬废水处理[M].上海:上海科学出版社, 1991: 3
    [17]张纯一,瞿建国,王毓芳.含铬(Ⅵ)工业废水的处理.环境保护[J]. 2002, 12: 4-8
    [18]马前,宋卫峰,吴斌等.含Cr(Ⅵ)废水生物处理技术及其影响因素[J].四川环境.2001, 20(4): 19-22
    [19]胡涛,李亚云.含铬废水的治理研究.污染防治技术[J]. 2005, 18(4): 5-8
    [20]张健民,宗刚,朱宝瑜等.生物处理电镀铬废水的研究[J].工业水处理. 1999,19(5): 21-22
    [21]石燕,杨海真,陈银广.生物法处理含铬废水的研究进展[J].江苏环境科技. 2001, 14(4): 35-37
    [22]马锦民,瞿建国,夏君等.失活微生物和活体微生物处理含铬(Ⅵ)[J].废水研究进展.环境科学与技术. 2006, 29(4):103-106
    [22]沈样信,李小明,曾光明等.活性污泥吸附重金属离子的研究进展[J].工业用水与废水. 2006, 37(4): 7-11
    [23]任乃林,许配云.用底泥吸附处理含铬废水[J].水处理技术. 2002, 28(3):172-174
    [24]王保军,杨惠芳,李文忠.真菌还原(Ⅵ)的研究[J].微生物学报, 1998, 38(2): 108-113
    [25]吴海锁,张鸿,张爱茜,等.活性污泥对重金属离子混合物的生物吸附[J].环境化学.2002, 21(6): 528-532
    [26]赖国新,任乃林.壳聚糖处理含铬(Ⅵ)废液的研究[J].化工时刊.2005. 19(5): 44-46
    [27]杨峰,尹华,彭辉等.融合菌一活性污泥联合曝气吸附处理重金属铬[J].环境科学与技术.2006, 29(5): 79-80
    [28] Rapoport A.I. Muter O.A.. Biosorption of hexavalent chromium by yeasts [J]. Process Biochemistry, 1995, 30(2):145-149
    [29] Sag Y., Kutsal T. Determination of the biosorption heats of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus[J]. Biochemical Engineering journal, 2000, 6: 145-151
    [30] Prakasham R. S., Sheno Merrie J. Biosorption of chromiumⅥby free and immobilized Rhizopus arrhizus[J]. Environmental Pollution, 1999, 104: 421-427
    [31] Mat i s K. A., Zouboul i s A. I. et al. Metal biosorption-flotation Application to cadmium removal [J]. Appl Microbiol Biotechnol, 1996, 45: 569- 573
    [32]陈永生,孙启俊,陈钧等.重金属的生物吸附技术研究[J].环境科学进展, 1997, 5(6): 34 -41
    [33]张建梅,韩志萍,王亚军.重金属废水的生物处理技术[J].环境污染治理技术与设备, 2003, 4(4): 75-78
    [34] Ozdemir Guven, Ceyhan Nur, et al. Biosorption of chromium(Ⅵ), cadmium(II) and copper(II) by Pantoea sp. TEM18[J]. Chemical Engineering journal, 2004, 102: 249-253
    [35] Ozdemir Guven, Ozturk Tansel, Ceyhan Nur et al. Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge[J]. Bioresource Technology, 2003, 90: 71-74
    [36] Srinath T., Verma T., Ramteke P. W. et al. Chromium (Ⅵ) biosorption and bioaccumulation by chromate resistant bacteria [J]. Chemosphere, 2002, 48: 427-435
    [37] Gupta VA., Shrivastava A. K., Jain N. Biosorption of chromiun(Ⅵ) from aqueous solutions by green algae spirogyra species [J]. Wat. Res.2001, 35(17): 4079- 4085
    [38]汪频,李福德.硫酸盐还原菌还原铬(Ⅵ)的研究[J].环境科学, 1993, 14(6):1-4
    [39]尹华,等.掷饱酵母吸附去除铬的性能研究[J].环境化学, 2003, 22(5): 469-473
    [40]陈林,邱廷省,陈明.生物吸附剂去除水中六价铬的实验研究[J].皮革科学与工程, 2003, 13(4): 48-51
    [41] Srinath T., Verma T., Ramteke P. W. et al. Chromium (Ⅵ) biosorption and bioaccumulation by chromate resistant bacteria [J]. Chemosphere, 2002, 48: 427-435
    [42]张建民,宗刚,朱宝瑜等.生物处理电镀铬废水的研究[J].工业水处理, 1999, 19(5): 21-22
    [43]张纯一.铬(Ⅵ)还原菌的分离筛选及应用研究[D].上海:华东师范大学环科系, 2003
    [44]胡勇有,刘铁梅.烟束曲霉HLS-6的筛选及其对Cr (Ⅵ)的吸附特性[J].华南理工大学学报. 2005, 33(9): 73-76
    [45]尹华,叶锦韶,彭辉等.酵母菌-活性污泥法吸附处理含铬电镀废水的性能[J].环境科学, 2004, 25(3): 61-64
    [46] Arslan P., Beltrame M., Tomasi A. Intracellular chromium reduction [J]. Biochim. Biophys. Acta., 1987, 931:10-15
    [47] Pantani, C., Ghetti et all. Action of temperature and water hardness on the toxicity of hexavalent chromium in Gammarus italicus Goedem[J]. Environ. Technol. Lett., 1989, 10: 661-668
    [48] Philip L., lyengar L. Cr(Ⅵ) reduction by Bacillus coagulansiso lated from contaminated soil [J].J. Envir. Engrg., 1998, 124(12):1165- 1170
    [49] Wang Yi-Tin, Xiao Changsong. Factor affecting hexavalent chromium reduction in pure culture of bacteria[J]. Wat. Res. 1995, 29(11):2467- 2474
    [50] Suzuki Tohru, Miyata Naoyuki, Horitsu Hiroyuki.NAD(P)H-dependent chromium(Ⅵ) reductase of Pseudomonas ambigua G-1:a Cr(Ⅵ) intermediate is fomed during the reduction of Cr(Ⅵ) to Cr(III)[J]. Journal of Bacteriology, 1992, 174(6):5340-5345
    [51] Ohtake Hisao, Fujii Eiji, Toda Kiyoshi. A suvey of effective electron donors for reducetion of toxic hexavalent chromium by Enterbacter cloacae (stain HO1)[J]. J. Gen. Appl.Microbiol., 1990, 36:203-208
    [52] Wang Y. T., Chirwa E. M.. Simultaneous removal of Cr(Ⅵ) and phenol in chemostat culture of E. coli ATCC 33456 and P. putida DMP-1 [J]. Wat. Sci. Tech., 1998, 38 (8-9):113-119
    [53]李新荣,沈德中.硫酸盐还原菌的生态特性及其应用[J].应用与环境生物学报, 1999, 5: 10-13
    [54]冯易君,谢家理,向芹等.共存离子对硫酸盐还原菌(SRB)处理含铬废水的影响研究[J].环境污染与防治, 1995, 17 (4) :15-17
    [55]李福德.微生物治理电镀废水方法[J].电镀与精饰,2002,24(2): 35-37
    [56]叶恒朋,陆少鸣,汪晓军.微生物法处理电镀废水技术概况与展望[J].环境技术2002,5:31~34
    [57] Renze T., Van Houten,Shang Yu Yun,et al.Thermophilic sulfate and sulphite reduction in lab-sacle gas-lift reactor using H2 and CO2 as energy and carbon source[J].biotechnol bioeng, 1997,55:807-814
    [58] Aksu Z., Sag Y., Kutsal T. The Biosorption of Copper (II) by C.Vulguris and Z.Ramigera. Environmental Technology, 1992, 13 (3): 579-590
    [59] Betul Arican, Celal F. Gokcay, Ulku Yetis. Mechanistics of Nickel Sorption by Activated Sludge. Process Biochemistry, 2002, 37 (4): 1307-1314
    [60] J. Horitsu. Enzymatic reduction of hexavalent chromium tolerant Pseudomonai ambigua G-1.Agriculture Biological Chemistry, 1987 51(8): 2417-2425
    [61]吴乾箐,宋颖,李昕等.电镀超高浓度铬废水微生物治理工程的研究[J].水处理技术, 1996, 22 (3): 165-16
    [62]陈坚,卫功元.新型高效废水厌氧生物处理反应器研究进展[J].无锡轻工大学学报, 2001, 20(3): 323-329
    [63]季民,霍金胜.厌氧颗粒污泥膨胀床(EGSB)的工艺特征与运行性能[J].工业用水与废水, 1999, 30 (4): 1-4
    [64]张丽杰,陈建中.UASB反应器中颗粒污泥形成的影响因素[J].云南化工, 2001, 28(4): 11-13
    [65]涂保华,王建芳,张雁秋. UASB反应器中颗粒污泥的培养[J].污染防治技术, 2003, 16(3): 65-67
    [66]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社, 1998 [67」张忠祥,钱易主编.废水生物处理新技术[M].北京:清华大学出版社, 2004: 422- 423
    [68] Renze T, Van Houten, Hielke Van der Spoel, et al. Biological Sulfate Reduction using Synthesis Gas as Energy and Carbon Source[J]. Biotech.Bioeng, 1996, 50(2): 136-144
    [69]宗义,王海磊,程彦伟等.成熟厌氧颗粒污泥的结构及其特征[J].微生物学通报, 2003, 30 (3): 56-59
    [70] Gerhard Stucki, Kurt W Hanselmann, Richard A Hurzeler. Biological sulfuric acid transformation[J]. Biotech Bioeng, 1993, 41: 303-315
    [71] Habets L H A, Engelaar A J H H, Groeneveld N. Anaerobic treatment of inuline effluent in an internal circulation reactor[J]. Wat. Sci. Tech., 1997, 35(10): 189-197
    [72]赵雅光.内循环厌氧反应器生产性启动与运行特性研究[D].郑州:郑州大学, 2007
    [73]丁丽丽,任洪强,华兆哲等.内循环式厌氧反应器启动过程中颗粒污泥的特性[J].环境科学, 2001, 22 (3): 30-34
    [74]刘双江,胡纪萃,顾夏声.厌氧颗粒污泥形成过程中胞外多聚物作用的研究[J].中国沼气, 1992, 10(1)
    [75]国家环境保护总局.水和废水分析监测方法[M]第四版.北京:中国环境科学出版社, 2002
    [76] Widdel F. and Prenning N. Dissimilatory sulphate or Surfur-Reducing Bacteria. In Bergey’s Manual of Systematic Bacteriology, 1984, 1:633
    [77] Pogate, J. R. The sulphate Reducing Bacteria[M]. Cambridge University Press, UK 1984
    [78]缪应祺.废水生物脱硫机理及技术[M].化学工业出版社, 2004
    [79] Van Houten, R.T. et al.; Thermophilic sulfat and SulPhite Reduction in Lab-Saele Gas-Lift Reaetor Using H2 and CO2 as Energy and Carbon Source; Biotechnol Bioeng, 1997, 55: 807-814
    [80] Vikas Uberoi, Sanjoy K; Effeets of Chlorophenols on the Kinetics of Propionate Degradation in Sulfate-Reducing Anerobic System; Environ.Sci.Technol.1997, 31: 1607-1614
    [81] Andy ve Smul, Willy, verstraete; Retention of sulfate reducing Bacterria in Expanded Greinular-sludge-blanket Reacter; Water Environ.Res, 1999, 71(421): 427-482
    [82] Greinular-sludge-blanket Reacter; Water Environ.Res, 1999, 71(421): 427-482
    [83] D. H. Zitomer, J. D. Shrout. High-Sulfate High-Chemical Oxygen Demand Wastewater Treatment Using Aerated Methanogeni Fluidized Beds [J]. Water Eviron Res, 2000, 72(90): 90-97
    [84]王浩源,缪应祺.高浓度硫酸盐废水治理技术的研究[J].环境导报, 2001, (1): 22-25
    [85] Andy ve Smul, Willy Verst raete. Retention of Sulfate Reducing Bacteria in Expanded Granular Sludge blanket Reactor [J]. Water Environ Res, 1999, 71:427 - 482
    [86]王凯军,左剑恶,甘海南,等. UASB工艺的理论与工程实践[M].北京:中国环境科学出版社, 2000
    [87] Anderson R E. Process Biochemistry[M]. 1982, 23 (7-8): 28
    [88] Lawrence A W, McCarty P L, Guerin F J A. The Effects of Sulfides on Anaerobic Treatment [J]. Air &Water Pollution, 1986 , (10): 207
    [89] Buisman CNT. Biotechnological Sulfide Removal with Oxygen, pHD Thesis [M]. The Netherlands : WAU, 1994
    [90]莫文英,闵航,陈美德,等.硫酸盐对不同浓度有机废水厌氧消化的影响[J].环境污染与防治, 1998, 15(3): 5-7
    [91]冀宾弘,章非娟.高硫酸盐有机废水厌氧处理技术的进展[J].中国沼气, 1999, 17(3): 76-81
    [92]张小里,刘海洪.硫酸盐还原菌生长规律的研究[J].西北大学学学报(自然科学版),1999, 29(5):397- 402
    [93]刘宏芳,许立铭,郑家众. SRB生物膜与碳钢腐蚀的关系[J].中国腐蚀与防护学报,2000, 20(1) : 41- 46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700