IGCC电站二氧化碳捕集研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,CO2减排受到广泛重视。目前,我国燃煤电站CO2排放量约占总排放量的1/2。在相当长时期内,我国以煤电为主的格局不会改变,控制煤基电站的CO2排放尤为重要。整体煤气化联合循环IGCC (Integrated Gasification Combined Cycle)电站是未来重要的洁净煤发电技术,其与CO2捕集技术的结合是目前能源领域的研究热点之一。本文针对IGCC电站中的CO2捕集,对分别采用现有成熟CO2捕集技术以及先进钙基技术的电站进行了技术经济评估与比较,并与常规煤粉电站PC(Pulverized Coal)进行了对比,分析了关键技术工艺及参数的影响。论文具体工作如下:
     1.关键部件数学模型
     建立了多种类型气化炉、空分单元、水煤气变换WGS (Water Gas Shift)单元、CO2分离过程和燃气轮机数学模型并进行了验证。对甲基二乙醇胺法(MDEA法)及聚乙二醇二甲醚法(NHD法)分离CO2过程进行了入口条件、吸收率变化的影响分析及比较。
     2. IGCC捕集电站单元成本预测模型及经济性评价方法
     通过成本回归、规模缩放、地区因子修正等方式,建立了适合于我国的、基于关键性能参数的多种型式气化炉单元、WGS单元、CO2分离过程及CO2压缩单元的投资成本预测模型。集成以上投资模型,并对设备预备费及运行维护成本等进行补充,完善和发展了IGCC捕集电站经济性评价平台。
     3.基于现有技术的煤基捕集电站技术经济性评估
     研究了IGCC捕集电站的气化炉类型、空气/氧气气化、煤气冷却及除尘方式、CO2分离方法以及捕集率的选择问题。结果表明,与其他气化炉电站相比,输运床气化IGCC捕集电站的供电效率更高,发电成本更低。对输运床气化炉电站而言,无论是纯氧还是空气气化,均宜采用NHD法捕集CO2,其中纯氧气化系统的供电效率略高,而其发电成本也略高。从煤气冷却及除尘方式的选择来看,水煤浆、输运床纯氧及空气气化IGCC捕集电站从效率及发电成本角度均宜配置煤气余热锅炉干法除尘流程;干煤粉气化电站采用煤气余热锅炉干法除尘流程时系统效率较高,而采用激冷流程时发电成本较低。对输运床纯氧气化电站捕集率影响的研究表明,捕集率在87%左右时CO2减排成本最低。
     对IGCC及PC电站技术经济性对比表明,考虑CO2捕集后,IGCC电站效率的降低及发电成本的升高程度均低于PC电站,CO2减排成本较低。而从捕集后电站的经济性来看,PC捕集电站的发电成本较低。输运床空气、输运床纯氧、水煤浆及干煤粉气化IGCC捕集电站的总投资需分别低于7925元/kW、7945元/kW、7346元/kW及7742元/kW时,各电站的发电成本将低于PC捕集电站的发电成本。
     分析了不同CO2处置方式及碳税政策对捕集电站电站经济性的影响,得到了不同情景下分别推动PC及IGCC电站引入CO2捕集及封存技术的CO2临界售价及临界碳税。其中,IGCC电站的CO2临界售价及临界碳税均低于PC电站。
     4.基于钙基吸收剂的CO2吸收法在IGCC中的应用
     钙基吸收剂应用于IGCC中时,可与WGS相结合实现变换过程脱碳,即为钙基吸收剂循环过程CLP (Calcium Looping Process);亦可作为CO2接受体应用于气化过程,实现气化过程脱碳,即为内在碳捕集气化过程。基于以上两个过程,分别构建了IGCC-CLP及内在碳捕集气化发电系统。从系统的角度,对煅烧反应器压力及供氧方式进行了研究。结果表明,从热力性能角度而言,两种系统中煅烧反应器均宜在常压下运行;若取消空分装置,在原有的CO2吸收及再生过程双反应器基础上增加载氧体的氧化反应器,即可构成三反应器系统。此时采用载氧体循环方式供氧,两种系统的供电效率均稍有降低。对水碳比变化影响的研究表明,水碳比越低,两种系统的供电效率越高,但系统单位供电量排放的CO2越多。在单位供电量CO2排放相同的前提下,内在碳捕集气化发电系统的供电效率分别比基于输运床纯氧气化炉的IGCC-CLP系统及IGCC-NHD系统高约4.7及7.7个百分点。
     内在碳捕集气化及CLP过程用于制氢时,与常规的IGCC-NHD制氢系统相比具有较大的优势。内在碳捕集气化、IGCC-CLP、IGCC-NHD制氢系统的能量效率(LHV)分别为70.6%、60.2%及58.3%。另外,IGCC-CLP系统在制氢同时的可联产一部分电能,系统能量效率比相同产出规模的IGCC-NHD氢电联产系统高约7.1个百分点。
     在经济性方面,对基于CLP及内在碳捕集气化过程的发电系统,分析了关键单元投资变化对系统发电成本的影响。通过与基于常规脱碳过程的IGCC及PC捕集电站进行比较,得到了IGCC-CLP及内在碳捕集气化发电系统更具技术经济竞争力时的关键单元临界投资。其中,对内在碳捕集气化三反应器发电系统,反应器单元的投资若不高于相同煤处理量的输运床纯氧气化炉投资的3.2倍,系统的发电成本将低于PC基准电站的发电成本。
In recent years, CO2 abatement has received worldwide attention. In China, about half of the CO2 emission comes from coal-fired power plants. And this will not change in a long time due to the important role of coal in China's energy structure. Controlling the CO2 emission of coal based power stations is especially important for China. Integrated Gasification Combined Cycle (IGCC) power plants is one of the important clean coal technology in the future. Research on the IGCC with CO2 capture is one of the grand issues in energy field. This thesis focuses on the technic and economic evaluation of IGCC with mature and future CO2 capture technologies. Influences of key technologies and parameters are analyzed and compared. The content includes:
     1. Key components models of IGCC with CO2 capture
     Key components models of IGCC with CO2 capture are built and verified, including four kinds of gasifiers, Water Gas Shift (WGS), different kinds of CO2 removal processes, gas turbines and so on. Performance of CO2 removal process with MDEA and NHD solutions with the varying of inlet gas condition and CO2 removal percentage are investigated and compared.
     2. Unit cost models and economic evaluation software platform of IGCC power plant with CO2 capture
     By cost regressing, scaling and modifying with district factors, cost models of different units are built, including different kinds of gasifier, WGS unit, different kinds of CO2 removal process, CO2 compression unit and so on. These models are all based on Chinese condition and take the technical performance parameters as input data. Economic evaluation software platform of IGCC power plants with CO2 capture is built through combining the new built unit cost models with existing IGCC economic evaluation software platform and making some complements and modifications to the equipment contingencies and costs of operation and maintenance.
     3. Economic evaluation of coal based power plants with CO2 capture under present technology
     Influences of gasifiers, oxidants (with oxygen or air), syngas cooling methods, CO2 removal methods and CO2 removal percentage are studied under the condition of IGCC with CO2 capture. Several conclusions have been attained. Transport gasifier IGCC power plants have higher efficiencies and lower cost of electricity (COE) than entrained gasifier plants. For transport gasifier IGCC plants, NHD CO2 removal process is preferred than MDEA process. Compared to air blown transport gasifier plant, oxygen blown plant has higher efficiency and COE. As for the gas cooling process choice, slurry feed entrained gasifier and transport gasifier plants should adopt syngas cooler. While, for dry feed entrained gasifier, plant will has lower COE with quench process. For CO2 capture of IGCC, CO2 avoidance cost is lowest when the CO2 removal efficiency is around 87%.
     Comparisons between IGCC and PC power plants show that, after CO2 capture is adopted, the energy penalty and COE increase percentage of IGCC power plants is lower than that of PC power plant. The cost of CO2 avoidance of IGCC power plants is also lower than that of PC power plants. While, as for the performance of capture power plants, PC power plants with CO2 capture is more economic under present technology condition. To battle with the PC power plants, IGCC power plants with air blown transport gasifier, oxygen blown transport gasifier, slurry feed entrained gasifier and dry feed entrained gasifier should reduce their investments under 7925 RMB/kW,7945 RMB/kW,7346 RMB/kW and 7742 RMB/kW respectively.
     Scenario analysis is conducted to investigate the influences of different CO2 treatment ways and carbon tax policy. Critical CO2 selling price and carbon tax rate for PC and IGCC power plant respectively have been got, below which power plants with CO2 capture and storage will be preferred. Results show that, the critical CO2 selling price and carbon tax of IGCC power plants are much lower than that of PC power plants.
     4. Techno-economic analysis of coal power plants with calcium based absorbent
     The calcium-based absorbent can be integrated with WGS process to capture CO2 during CO shift process, which is Calcium Looping Process (CLP). It can also be adopted in the gasifier to capture CO2 during gasification process, which is in-situ gasification process. Based on CLP and in-situ gasification process, IGCC-CLP and in-situ gasification systems for power generation and hydrogen production have been built.
     For power generation systems, the influences of calcinator pressure and oxygen supply methods are studied. Results show that for both the two kinds of system, calcinator should be operated under ambient pressure. Compared to systems with low pressure cryogenic air separation units, systems using oxygen carrier to supply oxygen for calcinators have a little lower efficiencies. Influences of steam/C ratio are also similar for the two kinds of systems. Systems efficiencies increase with the decrease of steam supply. While under lower steam/C ratio, the CO2 emission rate is high. Different kinds of coal power plants are compared under the same CO2 emission restriction. Results show that efficiency of in-situ carbon capture power system is higher than that of oxygen blown transport gasifier IGCC-CLP system and IGCC-NHD system by about 4.7 and 7.7 percent points respectively.
     Besides power plants systems, hydrogen production systems with in-situ carbon capture process and IGCC-CLP process are studied, and compared with the conventional system with IGCC-NHD process. Results show that the energy efficiencies of the three hydrogen production systems are 70.6%,60.2% and 58.3%. As for IGCC-CLP system, it can output a certain amount of electricity during the production of hydrogen as a cogeneration system, which has a higher efficiency by 7.1 percent points compared to the same output scale IGCC-NHD cogeneration system.
     As for power generation systems based on CLP and in-situ capture gasification process, the influences of key units investments are investigated by sensitivity analysis. By comparing with the IGCC and PC capture power plants with conventional CO2 capture processes, critical investments of CLP process and in-situ carbon capture processes are obtained, under which the new kinds of calcium-based IGCC power plants will has lower COE. Such as, for an in-situ carbon capture power system with three reactors, is the investment of reactor system is lower than that of three oxygen blown transport gasifiers, the COE of the power system will lower than that of PC power plants without CO2 capture.
引文
[1]IPCC. IPCC Fourth Assessment Report:Climate Change 2007 [R]. http://www.ipcc.ch/ipccreports/assessmens-reports.htm
    [2]Copengen Accord [R],2009. http://unfccc.int/files/meetings/cop 15/application/pdf/cop15 cph auv.pdf
    [3]温家宝.中国坚定不移地为应对气候变化作出不懈努力和积极贡献[J/OL],2009. http://news.xinhuanet.com/world/2009-12/19/content_12668048.htm.
    [4]绿色煤电有限公司.挑战全球气候变化一二氧化碳捕集与封存[M].北京:水利水电出版社,2008.
    [5]郑楚光.温室效应及其控制对策[M].北京:中国电力出版社,2001.
    [6]气候组织.CCS在中国现状、挑战和机遇[R],2010.http://www.theclimategroup.org.cn/publications/2010-07-Carbon Capture and Storage.pdf
    [7]韩文科,杨玉峰,苗韧,等.当前全球碳捕集与封存(CCS)技术进展及面临的主要问题[J].中国能源,2009,(10):5-6+45.
    [8]FutureGen Initial Conceptual Design Report [R]:Future Gen Alliance,2007.
    [9]ENEA, Franhnofer ISI. HypoGen Pre-feasibility Study Final Report [R]:Riso National Laboratory,2005.
    [10]Morrison H, Schwander M, Bradshaw J. A vision of a CCS business-the ZeroGen e xperience [J]. Energy Procedia,2009,1 (1):1751-1758.
    [11]NEDO. Concept of NEDO's Clean Coal Technology Strategy [M].2007.
    [12]中国电力企业联合会.中国电力行业年度发展报告2011[R].北京,2011.
    [13]IEA. World Energy Outlook 2006 [M]. Paris:International Energy Agency,2006.
    [14]Elwell LC, Grant WS. Technical Overview of Carbon Dioxide Capture Technologies for Coal-Fired Power Plants [R]. Alexandria Virginia:MPR Associates, Inc.,2005.
    [15]上海科学技术情报研究所.整体煤气化联合循环(IGCC)技术走向成熟[J/OL],2010. http://www.istis.sh.cn/list/list.aspx?id=6708.
    [16]Jaeger H. Profle of active IGCC projects under development or in build [J]. Gas Turbine World,2010,40(1):22-25.
    [17]中国科学院上海科技查新咨询中心.欧盟IGCC产业政策[J/OL],2010. http://www.hyqb.sh.cn/tabid/337/InfoID/5887/frtid/1023/Default.aspx.
    [18]许世森,李春虎,郜时旺.煤气净化技术[M].北京:化学工业出版社,2006.
    [19]黄斌,刘练波,许世森,等.燃煤电站CO2捕集与处理技术的现状与发展[J].电力设备,2008,9(5):3-6.
    [20]郑瑛,池保华,王保文,等.燃煤CO2减排技术[J].中国电力,2006,39(10):91-94.
    [21]蔡宁生,房凡,李振山.钙基吸收剂循环煅烧/碳酸化法捕集CO2的研究进展[J].中国电机工程学报,2010,30(26):35-43.
    [22]Dey A, Aroonwilas A. CO2 absorption into MEA-AMP blend:Mass transfer and absorber height index [J]. Energy Procedia,2009,1(1):211-215.
    [23]Kishimoto S, Hirata T, Iijima M, et al. Current status of MHI's CO2 recovery technology and optimization of CO2 recovery plant with a PC fired power plant [J]. Energy Procedia,2009,1 (1):1091-1098.
    [24]Kozak F, Petig A, Morris E, et al. Chilled ammonia process for CO2 capture [J]. Energy Procedia,2009,1 (1):1419-1426.
    [25]Darde V, Thomsen K, van Well WJM, et al. Chilled ammonia process for CO2 capture [J]. International Journal of Greenhouse Gas Control,2010,4 (2):131-136.
    [26]李小森,鲁涛.二氧化碳分离技术在烟气分离中的发展现状[J].现代化工,2009,29(4):25-30.
    [27]Wang M, Lawal A, Stephenson P, et al. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review [J]. Chemical Engineering Research and Design(2010), doi:10.1016/j.cherd.2010.11.005.
    [28]Brunetti A, Scura F, Barbieri G, et al. Membrane technologies for CO2 separation [J]. Journal of Membrane Science,2010,359 (1-2):115-125.
    [29]Figueroa J, Fout T, Plasynski S, et al. Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program ☆[J].International Journal of Greenhouse Gas Control,2008,2(1):9-20.
    [30]Hart A, Gnanendran N. Cryogenic CO2 capture in natural gas [J]. Energy Procedia,2009,1 (1): 697-706.
    [31]Shimizu T, Hirama T, Hosoda H, et al. A Twin Fluid-Bed Reactor for Removal of CO2 from Combustion Processes [J]. Chemical Engineering Research and Design,1999,77 (1):62-68.
    [32]房凡,李振山,蔡宁生.钙基CO2吸收剂循环反应特性的实验与模拟[J].中国电机工程学报,2009,29(14):30-35.
    [33]Chen H, Zhao C, Chen M, et al. CO2 uptake of modified calcium-based sorbents in a pressurized carbonation-calcination looping [J]. Fuel Processing Technology,2011,92 (5): 1144-1151.
    [34]Bouquet E, Leyssens G, Schonnenbeck C, et al. The decrease of carbonation efficiency of CaO along calcination-carbonation cycles:Experiments and modelling [J]. Chemical Engineering Science,2009,64 (9):2136-2146.
    [35]Jakobsen JP, Halmφy E. Reactor modeling of sorption enhanced steam methane reforming [J]. Energy Procedia,2009,1(1):725-732.
    [36]Abanades JC, Anthony EJ, Wang J, et al. Fluidized Bed Combustion Systems Integrating CO2 Capture with CaO [J]. Environ Sci Technol,2005,39 (8):2861-2866.
    [37]Li Y, Zhao C, Chen H, et al. CO2 capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle [J]. Energy,2011,36 (3):1590-1598.
    [38]Yang Y, Zhai R, Duan L, et al. Integration and evaluation of a power plant with a CaO-based CO2 capture system [J]. International Journal of Greenhouse Gas Control,2010,4 (4):603-612.
    [39]Romeo LM, Lara Y, Lisbona P, et al. Economical assessment of competitive enhanced limestones for CO2 capture cycles in power plants [J]. Fuel Processing Technology,2009,90 (6):803-811.
    [40]Khayyat AH. A Regenerative Process for CO2 Removal and Hydrogen Producation In IGCC [Doctor]. Chicago:The Graduate College of the Illinois Institute of Technology,2007.
    [41]Hassanzadeh A, Abbasian J. Regenerable MgO-based sorbents for high-temperature CO2 removal from syngas:1.Sorbent development, evaluation, and reaction modeling [J]. Fuel, 2010,89 (6):1287-1297.
    [42]Symonds RT, Lu DY, Macchi A, et al. CO2 capture from syngas via cyclic carbonation/calcination for a naturally occurring limestone:Modelling and bench-scale testing [J]. Chemical Engineering Science,2009,64(15):3536-3543.
    [43]Fan L, Li F, Ramkumar S. Utilization of chemical looping strategy in coal gasification processes [J]. Particuology,2008,6 (3):131-142.
    [44]Manovic V, Charland J-P, Blarney J, et al. Influence of calcination conditions on carrying capacity of CaO-based sorbent in CO2 looping cycles [J]. Fuel,2009,88 (10):1893-1900.
    [45]李振山,蔡宁生,赵旭东,等.CaO与CO2循环反应动力学特性[J].燃烧科学与技术,2006,12(6):481-485.
    [46]Stantnick RM, Fan LS. Carbonation-Calcination Reaction(CCR) Process for High Temperature CO2 and Sulfur Removal [R]. http://archivos.labcontrol.cl/wcce8/offline/techsched/manuscripts%5Crbrkda.pdf
    [47]Gupta H, Iyer M, Sakadjian B, et al. Enhanced Hydorgen Production Integrated with CO2 Separation in a Single-Stage Reactor [R],2007. http://www.netl.doe.gov/publications/factsheets/proiect/Proj478.pdf
    [48]Wang Y, Chao Z, Chen D, et al. SE-SMR process performance in CFB reactors:Simulation of the CO2 adsorption/desorption processes with CaO based sorbents [J]. International Journal of Greenhouse Gas Control(2010), doi:10.1016/j.ijggc.2010.09.001.
    [49]Florin N, Harris A. Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents [J]. Chemical Engineering Science,2008,63 (2):287-316.
    [50]Pires JCM, Martins FG, Alvim-Ferraz MCM, et al. Recent developments on carbon capture and storage:An overview [J]. Chemical Engineering Research and Design(2011), doi:10.1016/j.cherd.2011.01.028.
    [51]NETL. DOE/NETL Carbon dioxide Capture and Sorage RD&D Roadmap [R],2010. http://www.netl.doe.gov/technologies/carbon seq/refshelf/CCSRoadmap.pdf
    [52]Sharma SD, McLennan K, Dolan M, et al. Design and performance evaluation of dry cleaning process for syngas [J]. Fuel(2011), doi:10.1016/j.fuel.2011.02.041
    [53]Singh R, Ram Reddy MK, Wilson S, et al. High temperature materials for CO2 capture [J]. Energy Procedia,2009,1(1):623-630.
    [54]黄粲然.中国近零排放煤基电站的经济模型、评估及政策研究[硕士].北京:中国科学院,2010.
    [55]Chen C. A Technical and Economic Assessment of CO2 Capture Technology for IGCC Power Plants [Doctor]. Pittsburgh:Carnegie Mellon University 2005.
    [56]Rosenberg WG, Alpern DC, Walker MR. Deploying IGCC in this Decade with 3 Party Covenant Financing [R],2004. http://belfercenter.ksg.harvard.edu/files/igcc_voll.pdf
    [57]黄河,何芬,李政,等.IGCC电厂的工程设计、采购和施工成本的估算模型[J].动力工程,2008,28(3):475-479.
    [58]David J.Economic Evaluation of Leading Technology Options for Sequestration of Carbon Dioxide [Master]. Massachusetts avenue cambridge:Massachusette Institute of Technology, 2000.
    [59]Damen K, Troost MV, Faaij A, et al. A Comparison of Electricity and Hydrogen Production Systems With CO2 Capture and Storage. Part A:Review and Selection of Promising Conversion and Capture Technologies [J]. Progress in Energy and Combustion Science,2006, 32 (2):215-246.
    [60]Metz B, Davidson O, Conink H. IPCC Special Report on Carbon Dioxide Capture and Storage [R]. http://www.ipcc.ch/ipccreports/srccs.htm
    [61]DOE/NETL. Assessment of power plants that meet proposed greenhouse gas emission performance standards [R],2009.
    [62]DOE/NETL. Cost and performance baseline for fossil energy plants [R],2007.
    [63]IEA. An overview of CO2 capture technology:what are the challenges ahead? [R],2008.
    [64]Bohm MC, Herzog HJ, Parsons JE, et al. Capture-ready coal plants-Options, technologies and economics [J]. International Journal of Greenhouse Gas Control,2007,1 (1):113-120.
    [65]Narula RG, Wen H. The Battle of CO2 capture technology [M]. Proceeding of ASME Turbo Expo 2010:Power for Land, Sea and Air. Glasgow,UK.2010.
    [66]Jordal K, Anheden M, Yan J, et al. Oxyfuel combustion for coal-fired power generation with CO2 capture-Opportunities and challenges [M]//RUBIN E S, KEITH D W, GILBOY C F, et al. Greenhouse Gas Control Technologies 7. Oxford; Elsevier Science Ltd.2005:201-209.
    [67]Topper J. Carbon capture and storage in the international context [R],2007.
    [68]IEA. Oxy combustion processes for CO2 capture from power plant [M]. Cheltenham: International Energy Agency Greenhouse Gas R&D Programme,2005.
    [69]Versteeg P, Rubin ES. Technical and economic assessment of ammonia-based post-combustion CO2 capture [J]. Energy Procedia,2011,4:1957-1964.
    [70]Strube R, Manfrida G. CO2 capture in coal-fired power plants—Impact on plant performance [J]. International Journal of Greenhouse Gas Control(2011), doi:10.1016/j.ijggc.2011.01.008
    [71]Ramkumar S, Statnick RM, Fan LS. Calcium Looping Process For Clean Fossil Fuel Conversion [R],2009. http://www.co2captureandstorag.info/networks/loopingpdf/16%20septiembre/C27.pdf
    [72]Leithner R, Magda S, Apascaritei B.Carbon Capture from Fossil Fuel Fired Power Plants without Efficiency Loss [R],2009. http://www.combustion.org.uk/ECM_2009/P811385.pdf
    [73]Bosoaga A, Oakey J. CO2 capture using lime as sorbent in a carbonation/calcination cycle [R]. http://www.netl.doe.gov/publications/proceedings/07/carbon-seq/data/papcrs/pl 002a.pdf
    [74]Charitos A, Hawthorne C, Bidwe AR, et al. Hydrodynamic analysis of a 10kWth Calcium Looping Dual Fluidized Bed for post-combustion CO2 capture [J]. Powder Technology,2010, 200(3):117-127.
    [75]Romano M. Coal-fired power plant with calcium oxide carbonation for postcombustion CO2 capture [J]. Energy Procedia,2009,1 (1):1099-1106.
    [76]Duan L, Lin R, Deng S, et al. A novel IGCC system with steam injected H2/O2 cycle and CO2 recovery [J]. Energy Conversion and Management,2004,45 (6):797-809.
    [77]Gnanapragasam N, Reddy B, Rosen M. Reducing CO2 emissions for an IGCC power generation system:Effect of variations in gasifier and system operating conditions [J]. Energy Conversion and Management,2009,50 (8):1915-1923.
    [78]Rezvani S, Huang Y, McIlveen-Wright D, et al. Comparative assessment of coal fired IGCC systems with CO2 capture using physical absorption, membrane reactors and chemical looping [J]. Fuel,2009,88 (12):2463-2472.
    [79]Ordorica-Garcia G, Douglas P, Croiset E, et al. Technoeconomic evaluation of IGCC power plants for CO2 avoidance [J]. Energy Conversion and Management,2006,47 (15-16): 2250-2259.
    [80]Kaldis SP, Skodras G, Sakellaropoulos GP. Energy and capital cost analysis of CO2 capture in coal IGCC processes via gas separation membranes [J]. Fuel Processing Technology,2004,85 (5):337-346.
    [81]Huang Y, Rezvani S, McIlveen-Wright D, et al. Techno-economic study of CO2 capture and storage in coal fired oxygen fed entrained flow IGCC power plants [J]. Fuel Processing Technology,2008,89 (9):916-925.
    [82]Chen C, Rubin ES. CO2 control technology effects on IGCC plant performance and cost [J]. Energy Policy,2009,37 (3):915-924.
    [83]Davison J, Bressan L, Domenichini R. CO2 Capture in Coal-Based IGCC Power Plants [R], 2004. http://uregina.ca/ghgt7/PDF/papers/peer/448.pdf
    [84]Descamps C, Bouallou C, Kanniche M. Efficiency of an Integrated Gasification Combined Cycle (IGCC) power plant including CO2 removal [J]. Energy,2008,33 (6):874-881.
    [85]Kanniche M, Bouallou C. CO2 capture study in advanced integrated gasification combined cycle [J]. Applied Thermal Engineering,2007,27 (16):2693-2702.
    [86]Bonsu AK, Eiland JD, Gardner BF, et al. Impact of CO2 capture on Transport Gasifier IGCC Power Plant [R],2008.
    [87]王波.基于输运床气化炉的IGCC系统集成研究[博士].北京:中国科学院,2009.
    [88]高健IGCC中空气气化炉与氧气气化炉的对比研究[J].燃气轮机技术,2007,20(2):1-6.
    [89]高健,倪维斗,李政.一种新型二氧化碳准零排放的IGCC系统[J].燃气轮机技术,2007,20(3):1-5.
    [90]Chiesa P, Consonni S, Kreutz T, et al. Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. Part A:Performance and emissions [J]. International Journal of Hydrogen Energy,2005,30 (7):747-767.
    [91]Kreutz T, Williams R, Consonni S, et al. Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. Part B:Economic analysis [J]. International Journal of Hydrogen Energy,2005,30 (7):769-784.
    [92]Martelli E, Kreutz T, Consonni S. Comparison of coal IGCC with and without CO2 capture and storage:Shell gasification with standard vs. partial water quench [J]. Energy Procedia,2009,1 (1):607-614.
    [93]Fiaschi D, Carta R. CO2 abatement by co-firing of natural gas and biomass-derived gas in a gas turbine [J]. Energy,2007,32 549-567.
    [94]Rubin ES, Chen C, Rao AB. Cost and performance of fossil fuel power plants with CO2 capture and storage [J]. Energy Policy,2007,35 (9):4444-4454.
    [95]Rao AB, Rubin ES, Berkenpas MB. An intergrared modeling frame work for carbon management technologies [R]. Pittsburgh:U.S. Department of Energy National Technology Laboratory,2004.
    [96]Davison J. Performance and costs of power plants with capture and storage of CO2 [J]. Energy, 2007,(32):1163-1176.
    [97]DOE/NETL. Cost and Performance Baseline for Fossil Energy Plants [R],2010.
    [98]Kanniche o, Bouallou h. CO2 capture study in advanced integrated gasification combined cycle [J]. Applied Thermal Engineering,2007,27 (16):2693-2702.
    [99]Ryu H-J, Bae D-H, Jin G-T. Effect of Temperature on Reduction Reactivity of Oxygen Carrier Particles in a Fixed Bed Chemical-Looping Combustor [J]. Korean Journal of Chemical Engineering,2003,20 (5):960-966.
    [100]Wolf J, Anheden M, Yan J. Comparison of nickel- and iron-based oxygen carriers in chemical looping combustion for CO2 capture in power generation [J]. Fuel,2005,84 (7-8):993-1006.
    [101]郑瑛,王保文,宋侃,等.化学链燃烧技术中新型氧载体CaS04的特性研究[J].工程热物理学报,2006,27(3):531-533.
    [102]沈来宏,肖军,肖睿,等.基于CaS04载氧体的煤化学链燃烧分离CO2研究[J].中国电机工程学报,2007,27(2):69-74.
    [103]刘永卓.化学链燃烧过程钙基载氧体的研究[硕士]:青岛科技大学,2010.
    [104]Lyngfelt A, Leckner B, Mattisson T. A fluidized-bed combustion process with inherent CO2 separation:application of chemical-looping combustion [J]. Chemical Engineering Science, 2001,56 (10):3101-3113.
    [105]Naqvi R, Bolland O, Brandvoll O, et al. Chemical looping combustion analysis of natural gas fired power cycles with inherent CO2 capture [M].Proceedings of ASME Turbo Expo 2004, Power for Land, Sea and Air. Vienna, Australia.2004.
    [106]金红光.新颖化学链燃烧与空气湿化燃气轮机循环[J].工程热物理学报,2000,21(2):138-141.
    [107]狄藤藤,向文国,万俊松,等.零排放天然气化学链置换燃烧仿真研究[J].能源研究与利用,2006,(2):15-19.
    [108]Wolf J. CO2 Mitigation in Advanced Power Cycles-Chemical Looping Combustion and Steam-Based Gasification [Doctor]. Stockholm:KTH Chemical Engineering and Technology, 2004.
    [109]向文国,牟建茂,狄藤藤.两种煤气化工艺下Ni基载氧体链式燃烧联合循环性能模拟[J].中国电机工程学报,2007,27(29):28-33.
    [110]狄藤藤.煤气化链式燃烧联合循环[硕士].南京:东南大学,2006.
    [111]向文国,狄腾腾,肖军,等.具有C02分离的煤气化化学链置换燃烧初步研究[J].东南大学学报(自然科学版),2005,35(1):20-23.
    [112]向文国,狄腾腾,肖军,等.新型煤气化间接燃烧联合循环研究[J].中国电机工程学报,2004,24(8):170-174.
    [113]向文国,狄藤藤.Ni载体整体煤气化链式燃烧联合循环性能[J].化工学报,2007,58(7):1816-1821.
    [114]Jin H, Ishida M. A novel gas turbine cycle with hydrogen-fueled chemical-looping combustion [J]. International Journal of Hydrogen Energy,2000, (25):1209-1215.
    [115]洪慧,金红光,杨思.低温太阳热能与化学链燃烧相结合控制CO2分离动力系统[J].工程热物理学报,2006,27(5):729-732.
    [116]何鹏,洪慧,金红光,等.低温太阳热与甲醇化学链整合能量释放机理实验初探[J].工程热物理学报,2007,28(2):181-184.
    [117]Li F, Kim H, Sridhar D, et al. Coal Direct Chemical Looping (CDCL) Process for Hydrogen and Power Generation [R],2009. http://www.netl.doe.gov/technologies/coalpower/ewr/co2/pubs/5289%20Ohio%20State%20che mical%201ooping%20paper%20Clearwater%20jun09.pdf
    [118]金红光,洪慧,韩涛.化学链燃烧的能源环境系统研究进展[J].科学通报,2008,53(24):2994-3005.
    [119]Lobochyov K, Richter HJ. Combined Cycle Gas Turbine Power Plant with Coal Gasification and Solid Oxide Fuel Cell [J]. Journal of Energy Resources Technology,1996,118:285-292.
    [120]关键.新型煤气化燃烧利用系统机理研究[博士].杭州:浙江大学,2007.
    [121]Lin S-Y, Suzuki Y, Hatano H, et al. Developing an innovative method HyPr-RING to produce hydrogen from hydrocarbons [J]. Energy Conversion and Management,2002, (43):1283-1290.
    [122]Lin S, Harada M, Suzuki Y, et al. Process analysis for hydrogen production by reaction integrated novel gasification (HyPr-RING) [J]. Energy Conversion and Management,2005,46 (6):869-880.
    [123]Zoick HJ. Zero Emission Coal Power A New Concept [R]. http://www.netl.doe.gov/publications/proccedings/01/carbon_seq/2b2.pdf
    [124]王勤辉,沈洵,洛仲泱.新型近零排放煤气化燃烧利用系统[J].动力工程,2003,23(5):2711-2715.
    [125]关键,王勤辉,洛仲泱.新型近零排放煤气化燃烧系统的优化及性能预测[J].中国电机工程学报,2006,26(9):7-13.
    [126]肖云汉.煤制氢零排放系统[J].工程热物理学报,2001,22(1):13-15.
    [127]徐祥.IGCC和联产的系统研究[博士].北京:中国科学院,2007.
    [128]Lin S-Y. Progress of HyPr-RING Development for Hydrogen Production from Fossil Fuels [R]. http://www.cder.dz/A2H2/Medias/Download/Proc%20PDF/PARALLEL%20SESSIONS/%5B S06%5D%20Production%20-%20Hydrocarbons/14-06-06/249.pdf
    [129]Perdikaris N, Panopoulos KD, Fryda L, et al. Design and optimization of carbon-free power generation based on coal hydrogasification integrated with SOFC [J]. Fuel,2009,88 (8): 1365-1375.
    [130]闫跃龙,肖云汉,田文栋,等.含碳能源直接制氢的热力学分析和实验研究[J].工程热物理学报,2003,24(5):744-746.
    [131]乔春珍,肖云汉.碳制氢过程的比较及直接制氢分析[J].工程热物理学报,2005,26(5):729-732.
    [132]王峰.含碳能源直接制氢的实验研究[博士].北京:中国科学院,2007.
    [133]Rizeq G. Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2 Progress Reports [R]:DOE,2001-2004.
    [134]Harrison DP. Calcium enhanced hydrogen production with CO2 capture [J]. Energy Procedia, 2009,1(1):675-681.
    [135]Weimer T, Berger R, Hawthorne C, et al. Lime enhanced gasification of solid fuels: Examination of a process for simultaneous hydrogen production and CO2 capture [J]. Fuel, 2008,87(8-9):1678-1686.
    [136]Chen S, Wang D, Xue Z, et al. Calcium looping gasification for high-concentration hydrogen production with CO2 capture in a novel compact fluidized bed:Simulation and operation requirements [J]. International Journal of Hydrogen Energy(2011), doi:10.1016/j.ijhydene.2010.12.130
    [137]Florin N, Harris A. Hydrogen production from biomass coupled with carbon dioxide capture: The implications of thermodynamic equilibrium [J]. International Journal of Hydrogen Energy, 2007,32 (17):4119-4134.
    [138]Hanaoka T. Hydrogen production from woody biomass by steam gasification using a CO2 sorbent [J]. Biomass and Bioenergy,2005,28 (1):63-68.
    [139]Kinoshita C. Production of hydrogen from bio-oil using CaO as a CO2 sorbent [J]. International Journal of Hydrogen Energy,2003,28:1065-1071.
    [140]Xu X, Xiao YH, Qiao CZ. System design and analysis of a direct hydrogen from coal system with CO2 capture [J]. Energy & Fuels,2007,21 (3):1688-1694.
    [141]张荣光,那永洁,吕清刚.循环流化床煤气化平衡模型研究[J].中国电机工程学报,2005,25(18):80-85.
    [142]Watkinson AP, Lucas JP, Lim CJ. A prediction of Performance of Commercial Coal Gasifier [J]. Fuel,1991,70 (4):519-527.
    [143]Cevasco R, Parente J, Traverso A. Off-desing and Transient Analysis of Saturators for Humid Air Turbine Cycles [M]. Vienna, Australia; In:Proceedings of ASME Turbo Expo.2004.
    [144]张丽丽.煤制燃料气燃气轮机建模及性能分析[硕士].北京:中国科学院,2010.
    [145]GE. Heavy duty gas turbine products [R],2009. http://www.gepower.com/prod serv/products/gas turbines cc/en/downloads/GEA12985H.pdf
    [146]Gopinathan R. GE Gas Turbine for Lean Gaseous Fuels [R],2006.
    [147]GateCycle User's Guide [M]. In:GE-Enter Software Inc,2003.
    [148]Brdar RD, Jones RM. GE IGCC Technology and Experience with Advanced Gas Turbines [R].
    [149]PRO/II Casebook Air Separation Plant [M]. In:Simulation Science Inc,1993.
    [150]Zhu Y. Evaluation of Gas Turbine and Gasifier-based Power Generation System [Doctor]. Raleigh:North Carolina State University,2004.
    [151]Maurstad O. An Overview of Coal based Integrated Gasification Combined Cycle(IGCC) Technology [R],2005. Report No.:MIT LFEE 2005-002 WP
    [152]焦树建.论“热电联产”型燃气-蒸汽联合循环的特性[J].燃气轮机技术,2001,14(4):12-20.
    [153]Kanniche O, Bouallou H. CO2 capture study in advanced integrated gasification combined cycle [J]. Applied Thermal Engineering 2007,2007,27 (16):2693-2702.
    [154]Desideri U, Paolucci A. Performance modeling of a carbon dioxide removal system for power plants [J]. Energy Conversion and Management,1999, (40):1899-1915.
    [155]林民鸿,张全文,胡新田.NHD法脱硫脱碳净化技术[J].化学工业与工程技术,1995,16(3):11-17.
    [156]黄斌,许世森,郜时旺.燃煤电厂CO2捕集系统的技术与经济分析[J].动力工程,2009,29(9):864-874+867.
    [157]Carbo MC, Jansen D, Dijkstra JW. Pro-combustion decarbonisation in IGCC:Abatement of both steam requirement and CO2 emissions [M]. The Sixth Annual Conference on Carbon Capture and Sequestration. Pittsburgh PA, USA.2007.
    [158]NETL. Texaco Gasifier IGCC Base Cases [R],2000. PED-IGCC-98-001
    [159]电力规划设计总院.火电厂工程限额设计参考造价指标(2009年水平)[M].北京:中国电力出版社,2010.
    [160]张斌.多联产能源系统中二氧化碳减排的研究[博士].北京:清华大学,2005.
    [161]Jaeger H. Would IGCC compete in a carbon-constrained world? [J]. Gas Turbine World,2010, 40(4):10-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700