新型基底上CO_2电还原及离子液体中Pt上吸附CO的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳氧小分子(C为O2和CO)一直是电化学催化中重要的研究对象。其中C02引发的“温室效应”己引起广泛关注,有效的CO2循环利用研究对于未来能源的可持续发展有着巨大的价值。CO作为电化学催化研究中最常见的分子之一,与燃料电池电极反应在内的众多表面过程息息相关。本文以常规电化学和现场光谱技术为主要手段,研究这两种小分子在新型基底上或新型介质中相关的表面吸附和反应过程,兼具基础研究与实际应用的意义。
     1.新型基底上RuO2电催化CO2的还原
     除实施节能减排外,有必要研究各种非生物途径转化CO2作为补充手段,实现碳资源的循环利用。其中电还原作为重要途径之一可以实现利用C02生成HCOOH、CH4等具有重要价值的还原产物。
     Ru02电极表面还原CO2的超电势较小,是一种重要的电极备选材料,辅以TiO2基底可有效地提高其催化稳定性。目前RuO2/TiO2材料主要采用高温热分解TiO2纳米粉末和Ru(Ⅲ)盐或Ru(Ⅲ)和Ti(Ⅳ)盐混合物来制备,该构建方法制备过程粗糙、催化剂均匀性差且电催化性能不够理想。
     对此,本工作首次采用循环伏安法制备了RuO2/TiO2复合型电极,并比较了TiO2纳米粒子和纳米管基底上电沉积的Ru02材料的催化性能。结果表明,利用循环伏安法能够可控地将RuO2均匀地沉积在TiO2基底的表面,其Ru的用量是热解法的1/30,而且所得电极的电催化性能显著提高,克服了传统方法中存在的诸多缺点。另外,此方法制备的Ru02为无定形态,电极表面C02的起始还原电位为-0.6 V (SCE),比热分解法制备的晶形RuO2催化剂正移了100mV,更有利于CO2的还原且能降低还原所需的能量。近一步的研究表明,TiO2纳米管较纳米粒子其比表面积更大,是更好的基底材料的备选类型。
     2.离子液体中Pt表面吸附CO的电化学光谱研究
     CO作为众多电化学反应的模型分子之一,在金属表面的吸、脱附及氧化等过程研究中具有重要意义。水相和少数有机溶剂体系中的相关工作较为完备,然而,这些溶剂自身的分解特性限制了可供研究的电位区间,支持电解质的引入也使体系变得复杂。离子液体仅含有阴、阳离子,体系简单,导电性高、电化学窗口宽,是研究CO在金属表面吸附性质的理想溶剂。目前关于离子液体中CO吸附性质的光谱研究仅局限在SFG技术,而且并不系统。另外,根据有效介质理论,表面光谱信号会因介质而改变,介质对红外信号强度是否有显著影响也需检验。
     为了研究介质对表面红外光谱信号的影响及拓宽电位区间便于进一步探索Pt表面吸附CO的性质,我们采用具有极宽电化学窗口的疏水性离子液体N-甲基丁基哌啶三氟甲烷磺酰亚胺盐(PiP14TNf2)为溶剂,以对界面反应十分敏锐的表面增强红外光谱(SEIRAS)技术为主要手段,将研究的电位区间拓展至4.1V。研究表明:离子液体和水相体系的红外光谱强度接近;低电位下Pt电极表面线性吸附和桥式吸附的CO (COL、COB)同时存在且信号强度相当。随着电位的升高,COB逐渐向COL转化;COL和COts的吸收频率随着电位的升高而蓝移,相应的Stark斜率在-1.0发V附近出现拐点;二者的表观红外吸收系数之比为1.22。
Small carbon-oxide compounds (CO2 and CO) have attracted for decades broad interests in electrocatalysis investigations for the following two reasons. On one hand, the global concern over the CO2 greenhouse effect has triggered the intense study on the recycled use of CO2 for the sustainable development of future energy. On the other hand, CO is one of the most important prototype adsorbates on metal electrodes for electrocatalysis, relevant to numerous surface reactions including those in the proton exchange membrane fuel cells. This thesis is mainly focused on the reduction process of CO2 on a new form of substrate and the adsorption properties of CO on Pt electrode in an ionic liquid medium by using the electrochemical and spectroscopic techniques, carrying with both fundamental and practical significances.
     1. Electroreduction of CO2 on electrodeposited RuO2 on TiO2
     Non-biological techniques for converting CO2 should be adopted as supplements to the policy of "energy-saving and controlled outlet". Electrochemical reduction is one of the promising methods for its mild conditions and the capability to convert CO2 effectively into formic acid, methanol and other small organic molecules as possible fuels.
     The conductive metallic oxide RuO2 has proved to be an effective material for electrochemical reduction of CO2. Its electrocatalytic activity was enhanced when RuO2 was formed on TiO2 substrate. Normally, the catalyst was prepared through thermal decomposition (TD) of an alcoholic solution containing Ru(III) and Ti(IV). However, the thus-prepared RuO2/TiO2 composites turned out to exhibit low utilization, inhomogeneous dispersion and low activity, preventing their wider applications, calling for a new and effective preparation tactics.
     In our present work, cyclic voltammetric method has been applied to deposit ultrathin amorphous RuO2 nanolayers uniformly on TiO2 nanoparticles and nanotubes substrates. The as-prepared RuO2/TiO2 composites were used for the electrocatalytic reduction of CO2. As compared to the traditional crystalline RuO2/TiO2 samples prepared by TD, the currently-prepared samples show a positive shift of 100 raV for the initial reduction potential and more than 70%higher reduction current density. Further analysis shows that the content of Ru on this electrode is less than 1/30 of that prepared by TD, HCOOH and CH4 are the main products, and TiO2 nanotubes have more significant coeffect as compared to TiO2 nanoparticles.
     2. ATR-SEIRAS study of the behavior of CO adsorbed at Pt electrode in ionic liquid
     The interfacial behavior of CO adlayer at metal electrodes has been extensively studied in aqueous electrolytes by using infrared spectroscopy. Only a few relevant reports were related to that in non-aqueous electrolytes consisting of salts and organic solvents, but none in room-temperature ionic liquids (RTILs) despite a low-sensitivity SFG measurement focused on the double layer structures of the RTIL/metal interface. RTILs have wide electrochemical windows, high ionic conductivities and simple compositions. On the other hand, surface enhanced IR absorption spectroscopy (SEIRAS) in ATR configuration is a highly sensitive tool for interfacial analysis. According to the effective dielectric medium theory, the SEIRAS enhancement may vary depending on the nature of a medium in which the metallic nanoparticle film is immersed. However, no specific investigation was designed to examine this point.
     In situ ATR-SEIRAS has been applied to investigate the CO adsorption at Pt electrode in a hydrophobic RTIL, i.e., Pip14TNf2, over the ever-widest stability potential window about 4.1 V. The combined electrochemical and spectroscopic measurements reveal that the Stark tuning rates of COL and COB are distinct at the turning point of ca.-1.0 V, in corroborating with the change of direction of the passing current, indicative of the different interfacial structures across-1.0 V. The gradual conversion of COb to COL over a wider potential range enables a reliable determination of the ratio of apparent adsorption coefficient of COL relative to that of COB (ca.1.22). In addition, a negligible difference in surface IR enhancement is found for CO adlayer at Pt electrode in aqueous 0.1 M HCIO4 and in the above RTIL.
引文
1. Hammouche, M.; Lexa, D.; Momenteau, M.; Saveant, J.M. Chemical Catalysis of Electrochemical Reactions-Homogeneous Catalysis of the Electrochemical Reduction of Carbon-Dioxide by Iron(O) Porphyrins-Role of the Addition of Magnesium Cations, Journal of the American Chemical Society,1991,113,8455.
    2. Lee, J.; Kwon, Y.; Machunda, R.L.; Lee, H.J. Electrocatalytic Recycling of CO2 and Small Organic Molecules, Chemistry-an Asian Journal,2009,4,1516.
    3. Ettedgui, J.; Diskin-Posner, Y.; Weiner, L.; Neumann, R. Photoreduction of Carbon Dioxide to Carbon Monoxide with Hydrogen Catalyzed by a Rhenium(Ⅰ) Phenanthroline-Polyoxometalate Hybrid Complex, Journal of the American Chemical Society,2011,133,188.
    4. Mcllveen-Wright, D.R.; Huang, Y.; Rezvani, S.; Mondol, J.D.; Redpath, D.; Anderson, M.; Hewitt, N.J.; Williams, B.C. A Techno-economic assessment of the reduction of carbon dioxide emissions through the use of biomass co-combustion, Fuel,2011,90,11.
    5. Rankin, M.A.; Cummins, C.C. Carbon Dioxide Reduction by Terminal Tantalum Hydrides: Formation and Isolation of Bridging Methylene Diolate Complexes, Journal of the American Chemical Society,2010,132,10021.
    6. Jessop, P.G.; Joo, F.; Tai, C.C. Recent advances in the homogeneous hydrogenation of carbon dioxide, Coordination Chemistry Reviews,2004,248,2425.
    7. Jessop, P.G.; Ikariya, T.; Noyori, R. Homogeneous Hydrogenation of Carbon-Dioxide, Chemical Reviews,1995,95,259.
    8. Gibson, D.H. The organometallic chemistry of carbon dioxide, Chemical Reviews,1996,96, 2063.
    9. Yin, X.L.; Moss, J.R. Recent developments in the activation of carbon dioxide by metal complexes, Coordination Chemistry Reviews,1999,181,27.
    10. Omae, I. Aspects of carbon dioxide utilization, Catalysis Today,2006,115,33.
    11. Gau, D.; Rodriguez, R.; Kato, T.; Saffon-Merceron, N.; de Cozar, A.; Cossio, F.P.; Baceiredo, A. Synthesis of a Stable Disilyne Bisphosphine Adduct and Its Non-Metal-Mediated CO2 Reduction to CO, Angewandte Chemie-International Edition,2011,50,1092.
    12. Morris, A.J.; McGibbon, R.T.; Bocarsly, A.B. Electrocatalytic Carbon Dioxide Activation:The Rate-Determining Step of Pyridinium-Catalyzed CO2 Reduction, Chemsuschem,2011,4,191.
    13. Tsukahara, Y.; Wada, T.; Tanaka, K. Redox Behavior of Ruthenium(Bipyridine)(Terpyridine)(Carbonyl) Complex-modified Carbon Electrode and Reactivity toward Electrochemical Reduction of CO2, Chemistry Letters,2010,39,1134.
    14. Smith, R.D.L.; Pickup, P.G. Nitrogen-rich polymers for the electrocatalytic reduction of CO2, Electrochemistry Communications,2010,12,1749.
    15. Whipple, D.T.; Kenis, P.J.A. Prospects of CO2 Utilization via Direct Heterogeneous Electrochemical Reduction, Journal of Physical Chemistry Letters,2010,1,3451.
    16. Brennecke, J.E.; Gurkan, B.E. Ionic Liquids for CO2 Capture and Emission Reduction, Journal of Physical Chemistry Letters,2010,1,3459.
    17. Zhang, Z.F.; Xie, E.; Li, W.J.; Hu, S.Q.; Song, J.L.; Jiang, T.; Han, B.X. Hydrogenation of carbon dioxide is promoted by a task-specific ionic liquid, Angewandte Chemie-International Edition,2008, 47,1127.
    18. Yin, C.Q.; Xu, Z.T.; Yang, S.Y.; Ng, S.M.; Wong, K.Y.; Lin, Z.Y.; Lau, C.P. Promoting effect of water in ruthenium-catalyzed hydrogenation of carbon dioxide to formic acid, Organometallics,2001, 20,1216.
    19. Raja Angamuthu, P.B., Martin Lutz, Anthony L. Spek, Elisabeth Bouwman. Electrocatalytic CO2 conversion to oxalate by a copper complex, science,2010,327,313.
    20. Zhang, A.J.; Zhang, W.M.; Lu, J.X.; Wallace, G.G.; Chen, J. Electrocatalytic Reduction of Carbon Dioxide by Cobalt-Phthalocyanine-Incorporated Polypyrrole, Electrochemical and Solid State Letters, 2009,12, E17.
    21. Chaplin, R.P.S.; Wragg, A.A. Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation, Journal of Applied Electrochemistry,2003,33,1107.
    22. Innocent, B.; Liaigre, D.; Pasquier, D.; Ropital, F.; Leger, J.M.; Kokoh, K.B. Electro-reduction of carbon dioxide to formate on lead electrode in aqueous medium, Journal of Applied Electrochemistry, 2009,39,227.
    23. Isaacs, M.; Armijo, F.; Ramirez, G.; Trollund, E.; Biaggio, S.R.; Costamagna, J.; Aguirre, M.J. Electrochemical reduction of CO2 mediated by poly-M-aminophthalocyanines (M= Co, Ni, Fe): poly-Co-tetraaminophthalocyanine, a selective catalyst, Journal of Molecular Catalysis a-Chemical, 2005,229,249.
    24. Cheung, K.C.; Guo, P.; So, M.H.; Lee, L.Y.S.; Ho, K.P.; Wong, W.L.; Lee, K.H.; Wong, W.T.; Zhou, Z.Y.; Wong, K.Y. Electrocatalytic reduction of carbon dioxide by a polymeric film of rhenium tricarbonyl dipyridylamine, Journal of Organometallic Chemistry,2009,694,2842.
    25. Azuma, M.; Hashimoto, K.; Hiramoto, M.; Watanabe, M.; Sakata, T. Electrochemical Reduction of Carbon-Dioxide on Various Metal-Electrodes in Low-Temperature Aqueous KHCO3 Media, Journal of the Electrochemical Society,1990,137,1772.
    26. Yano, J.; Yamasaki, S. Pulse-mode electrochemical reduction of carbon dioxide using copper and copper oxide electrodes for selective ethylene formation, Journal of Applied Electrochemistry,2008,38, 1721.
    27. Ohkawa, K.; Noguchi, Y.; Nakayama, S.; Hashimoto, K.; Fujishima, A. Electrochemical Reduction of Carbon-Dioxide on Hydrogen-Storing Materials.3. The Effect of the Absorption of Hydrogen on the Palladium Electrodes Modified with Copper, Journal of Electroanalytical Chemistiy, 1994,367,165.
    28. Furuya, N.; Yamazaki, T.; Shibata, M. High performance Ru-Pd catalysts for CO2 reduction at gas-diffusion electrodes, Journal of Electroanalytical Chemistry,1997,431,39.
    29. Ishimaru, S.; Shiratsuchi, R.; Nogami, G. Pulsed electroreduction of CO2 on Cu-Ag alloy electrodes, Journal of'the Electrochemical Society,2000,147,1864.
    30. Pace, S.; Van Hoof, T.; Hou, M.; Buess-Herman, C.; Reniers, F. Surface composition of CuAu single crystal electrodes determined by a coupled UHV-electrochemical approach and a Monte-Carlo simulation, Surface and Interface Analysis,2004,36,1078.
    31. Mizukawa, T.; Tsuge, K.; Nakajima, H.; Tanaka, K. Selective production of acetone in the electrochemical reduction of CO2 catalyzed by a Ru-naphthyridine complex, Angewandte Chemie-International Edition,1999,38,362.
    32. Bandi, A. Electrochemical Reduction of Carbon-Dioxide on Conductive Metallic Oxides, Journal of the Electrochemical Society,1990,137,2157.
    33. Bandi, A.; Kuhne, H.M. Electrochemical Reduction of Carbon-Dioxide in Water-Analysis of Reaction-Mechanism on Ruthenium-Titanium-Oxide, Journal Of The Electrochemical Society,1992, 139,1605.
    34. Popic, J.P.; Avramovlvic, M.L.; Vukovic, N.B. Reduction of carbon dioxide on ruthenium oxide and modified ruthenium oxide electrodes in 0.5 M NaHCO3, Journal of Electroanalytical Chemistry, 1997,421,105.
    35. Sullivan, B.P.; Krist, S.K.; Guard, H.E.E., eds. Electrochemical and Electrocatalytic Reduction of Carbon Dioxide. Vol.16.1993.1593.
    36. Hori, Y.; Murata, A.; Takahashi, R.; Suzuki, S. Electroreduction of CO2 to CH4 and C2H4 at a Copper Electrode in Aqueous-Solutions at Ambient-Temperature and Pressure, Journal of the American Chemical Society,1987,109,5022.
    37. Noda, H.; Ikeda, S.; Oda, Y.; Ito, K. Potential Dependencies of the Products on Electrochemical Reduction of Carbon-Dioxide at a Copper Electrode, Chemistry Letters,1989,289.
    38. Ikeda, S.; Takagi, T.; Ito, K. Selective Formation of Formic-Acid, Oxalic-Acid, and Carbon-Monoxide by Electrochemical Reduction of Carbon-Dioxide, Bulletin of the Chemical Society of Japan,1987,60,2517.
    39. Hara, K.; Kudo, A.; Sakata, T. Electrochemical Reduction of Carbon-Dioxide under High-Pressure on Various Electrodes in an Aqueous-Electrolyte, Journal of Electroanalytical Chemistry, 1995,391,141.
    40. Spataru, N.; Tokuhiro, K.; Terashima, C.; Rao, T.N.; Fujishima, A. Electrochemical reduction of carbon dioxide at ruthenium dioxide deposited on boron-doped diamond, Journal of Applied Electrochemistry,2003,33,1205.
    41. Qu, J.P.; Zhang, X.G.; Wang, Y.G.; Xie, C.X. Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode, Electrochimica Acta,2005,50,3576.
    42. Lim, D.H.; Lee, W.J.; Macy, N.L.; Smyrl, W.H. Electrochemical Durability Investigation of Pt/TiO2 Nanotube Catalysts for Polymer Electrolyte Membrane Fuel Cells, Electrochemical and Solid State Letters,2009,12, B123.
    43. Wang, M.; Guo, D.J.; Li, H.L. High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation, Journal of Solid State Chemistry,2005,178,1996.
    44. Xue, X.D.; Gu, L.; Cao, X.B.; Song, Y.Y.; Zhu, L.W.; Chem, P. One-pot, high-yield synthesis of titanate nanotube bundles decorated by Pd (Au) clusters for stable electrooxidation of methanol, Journal of Solid State Chemistry,2009,182,2912.
    45. Hu, C.C.; Huang, Y.H. Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors, Journal of the Electrochemical Society,1999,146,2465.
    46. Mo, Y.B.; Cai, W.B.; Dong, J.A.; Carey, P.R.; Scherson, D.A. In situ surface enhanced raman scattering of ruthenium dioxide films in acid electrolytes, Electrochemical and Solid State Letters,2001, 4, E37.
    47. Heineman, W.R.; Hawkridge, F.M.; Blount, H.N. Spectroelectrochemistry at Optically Transparent Electrodes.2. Electrodes under Thin-Layer and Semi-Infinite Diffusion Conditions and Indirect Coulometric Titrations, Electroanalytical Chemistry,1984,13,1.
    48. Durliat, H.; Comtat, M. Investigation of Electron-Transfer between Platinum and Large Biological Molecules by Thin-Layer Spectroelectrochemistry, Analytical Chemistiy,1982,54,856.
    49. Kaim, W.; Fiedler, J. Spectroelectrochemistry:the best of two worlds, Chemical Society Reviews, 2009,38,3373.
    50. Ashley, K.; Pons, S. Infrared Spectroelectrochemistry, Chemical Reviews,1988,88,673.
    51. Holze, R. Fundamentals and applications of near infrared spectroscopy in spectroelectrochemistry, Journal of Solid State Electrochemistry,2004,8,982.
    52. Hartstein, A.; Kirtley, J.R.; Tsang, J.C. Enhancement of the Infrared-Absorption from Molecular Monolayers with Thin Metal Overlayers, Physical Review Letters,1980,45,201.
    53. Wan, L.J.; Noda, H.; Wang, C.; Bai, C.L.; Osawa, M. Controlled orientation of individual molecules by electrode potentials, Chemphyschem,2001,2,617.
    54. Pronkin, S.; Wandlowski, T. Time-resolved in situ ATR-SEIRAS study of adsorption and 2D phase formation of uracil on gold electrodes, Journal of Electroanalytical Chemistry,2003,550,131.
    55. Osawa, M. Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS), Bulletin of the Chemical Society of Japan,1997,70,2861.
    56. Osawa, M.; Ataka, K.; Yoshii, K.; Nishikawa, Y. Surface-Enhanced Infrared-Spectroscopy-the Origin of the Absorption Enhancement and Band Selection Rule in the Infrared-Spectra of Molecules Adsorbed on Fine Metal Particles, Applied Spectroscopy,1993,47,1497.
    57. Niklasson, G.A.; Granqvist, C.G. Optical-Properties and Solar Selectivity of Coevaporated Co-A12o3 Composite Films, Journal of Applied Physics,1984,55,3382.
    58. Yu, X.W.; Pickup, P.G. Recent advances in direct formic acid fuel cells (DFAFC), Journal of Power Sources,2008,182,124.
    59. Zhu, Y.; Kang, Y.Y.; Zou, Z.Q.; Zhou, Q.; Zheng, J.W.; Xia, B.J.; Yang, H. A facile preparation of carbon-supported Pd nanoparticles for electrocatalytic oxidation of formic acid, Electrochemistry Communications,2008,10,802.
    60.周志有.原位快速时间分辨显微FTIRS的建立及其对Pt微电极表面动态过程的研究,(厦门大学化学系)博士论文 厦门.2004.
    61. Lin, W.F.; Sun, S.G. In situ FTIRS investigations of surface processes of Rh electrode-Novel observation of geminal adsorbates of carbon monoxide on Rh electrode in acid solution, Electrochimica Acta,1996,41,803.
    62. Chang, S.C.; Weaver, M.J. Coverage-Dependent and Potential-Dependent Binding Geometries of Carbon-Monoxide at Ordered Low-Index Platinum Aqueous and Rhodium Aqueous Interfaces-Comparisons with Adsorption in Corresponding Metal Vacuum Environments, Surface Science,1990, 238,142.
    63. Park, S.; Wasileski, S.A.; Weaver, M.J. Some interpretations of surface vibrational spectroscopy pertinent to fuel-cell electrocatalysis, Electrochimica Acta,2002,47,3611.
    64. Chang, S.C.; Weaver, M.J. Insitu Infrared-Spectroscopy of CO Adsorbed at Ordered Pt(100)-Aqueous Interfaces-Double-Layer Effects Upon the Adsorbate Binding Geometry, Journal of Physical Chemistry,1990,94,5095.
    65. Watanabe, S.; Inukai, J.; Ito, M. Coverage and Potential-Dependent CO Adsorption on Pt(1111), (711) and (100) Electrode Surfaces Studied by Infrared Reflection-Absorption Spectroscopy, Surface Science,1993,293,1.
    66. Kizhakevariam, N.; Jiang, X.D.; Weaver, M.J. Infrared-Spectroscopy of Model Electrochemical Interfaces in Ultrahigh-Vacuum-the Archetypical Case of Carbon-Monoxide Water Coadsorption on Pt(111), Journal of Chemical Physics,1994,100,6750.
    67. Roth, J.D.; Weaver, M.J. Role of the Double-Layer Cation on the Potential-Dependent Stretching Frequencies and Binding Geometries of Carbon-Monoxide at Platinum Nonaqueous Interfaces, Langmuir,1992,8,1451.
    68. Kunimatsu, K.; Sato, T.; Uchida, H.; Watanabe, M. Role of terrace/step edge sites in CO adsorption/oxidation on a polycrystalline Pt electrode studied by in situ ATR-FTIR method, Electrochimica Acta,2008,53,6104.
    69. Cuesta, A.; Gutierrez, C. Study by Fourier transform infrared spectroscopy of the adsorption of carbon monoxide on a cobalt electrode at pH 3-14, Langmuir,1998,14,3390.
    70. Zou, S.Z.; Weaver, M.J. Potential-dependent metal-adsorbate stretching frequencies for carbon monoxide on transition-metal electrodes:Chemical bonding versus electrostatic field effects, Journal of Physical Chemistry 1996,100,4237.
    71. Yoshinobu, J.; Takagi, N.; Kawai, M. Site Conversion of Co on Ni(100)-Binding-Energy Difference and Role of Low-Energy Hindered Vibrations, Chemical Physics Letters,1993,211,48.
    72. Cuesta, A.; Gutierrez, C. Electroadsorption and electrooxidation of CO on anodic Ni oxide in acidic CO-free solution, Journal of Physical Chemistry B,1997,101,9287.
    73. Dederichs, F.; Friedrich, K.A.; Daum, W. Sum-frequency vibrational spectroscopy of CO adsorption on Pt(111) and Pt(110) electrode surfaces in perchloric acid solution:Effects of thin-layer electrolytes in spectroelectrochemistry, Journal of Physical Chemistry B,2000,104,6626.
    74. Chang, S.C.; Jiang, X.; Roth, J.D.; Weaver, M.J. Influence of Potential on Metal-Adsorbate Structure-Solvent-Independent Nature of Infrared-Spectra for Pt(111)/Co, Journal of Physical Chemistry,199),95,5378.
    75. Persson, B.N.J.; Ryberg, R. Vibrational Interaction between Molecules Adsorbed on a Metal-Surface-the Dipole-Dipole Interaction, Physical Review B,1981,24,6954.
    76. Gilman, S. Mechanism of Electrochemical Oxidation of Carbon Monoxide+Methanol on Platinum.2. Reactant-Pair Mechanism for Electrochemical Oxidation of Carbon Monoxide+ Methanol, Journal of Physical Chemistry,1964,68,70.
    77. Anderson, M.R.; Blackwood, D.; Richmond, T.G.; Pons, S. The Effect of Solvent Type on the Infrared-Spectrum of Carbon-Monoxide Adsorbed at Platinum-Electrodes, Journal of Electroanalytical Chemistry,1988,256,397.
    78. Russell, A.E.; Blackwood, D.; Anderson, M.R.; Pons, S. Sniftirs Study of the Behavior of the Spectrum of Carbon-Monoxide Adsorbed on a Platinum-Electrode in Alcoholic Solvents, Journal of Electroanalytical Chemistry,1991,304,219.
    79. Jiang, X.D.; Weaver, M.J. The Role of Interfacial Potential in Adsorbate Bonding-Electrode Potential-Dependent Infrared-Spectra for Saturated Co Adlayers on Pt(110) and Related Electrochemical Surfaces in Varying Solvent Environments, Surface Science,1992,275,237.
    80. Baldelli, S. Probing electric fields at the ionic liquid-electrode interface using sum frequency generation spectroscopy and electrochemistry, Journal of Physical Chemistry B,2005,109,13049.
    81. Anderson, M.R.; Blackwood, D.; Pons, S. The Behavior of the Infrared-Spectrum of Carbon-Monoxide Adsorbed at Platinum-Electrodes from Non-Aqueous Solvents, Journal of Electroanalytical Chemistry,1988,256,387.
    82.孙玉华,曹佩根,郑军伟,顾仁敖,姚建林,任斌,田中群.非水乙腈体系中CO在铂电极表面吸附的SERS研究光谱学与光谱分析2002,22,33.
    83. Lambert, D.K. Vibrational Stark-Effect of Co on Ni(100), and Co in the Aqueous Double-Layer-Experiment, Theory, and Models, Journal of Chemical Physics,1988,89,3847.
    84. Nanbu, N.; Sasaki, Y.; Kitamura, F. In situ FT-IR spectroscopic observation of a room-temperature molten salt vertical bar gold electrode interphase, Electrochemistry Communications,2003,5,383.
    85. Nanbu, N.; Kato, T.; Sasaki, Y.; Kitamura, F. In situ SEIRAS study of room-temperature ionic liquid vertical bar gold electrode interphase, Electrochemistry,2005,73,610.
    86. Bozzini, B.; Bund, A.; Busson, B.; Humbert, C.; Ispas, A.; Mele, C.; Tadjeddine, A. An SFG/DFG investigation of CN-adsorption at an Au electrode in 1-butyl-l-methyl-pyrrolidinium bis(trifluoromethylsulfonyl) amide ionic liquid, Electrochemistry Communications,2010,12,56.
    87. Baldelli, S. Surface structure at the ionic liquid-electrified metal interface, Accounts of Chemical Research,2008,41,421.
    88. Santos, V.O.; Alves, M.B.; Carvalho, M.S.; Suarez, P.A.Z.; Rubim, J.C. Surface-enhanced Raman scattering at the silver electrode/ionic liquid (BMIPF6) interface, Journal of Physical Chemistry B, 2006,110,20379.
    89. Yuan, Y.X.; Niu, T.C.; Xu, M.M.; Yao, J.L.; Gu, R.A. Probing the adsorption of methylimidazole at ionic liquids/Cu electrode interface by surface-enhanced Raman scattering spectroscopy, Journal of Raman Spectroscopy,2010,41,516.
    90. Takamuku, T.; Kyoshoin, Y.; Shimomura, T.; Kittaka, S.; Yamaguchi, T. Effect of Water on Structure of Hydrophilic Imidazolium-Based Ionic Liquid, Journal of Physical Chemistry B,2009,113, 10817.
    91. Niu, T.C.; Yuan, Y.X.; Yao, J.L.; Lu, F.; Gu, R.A. Structure of water at ionic liquid/Ag interface probed by surface enhanced Raman spectroscopy, Science China-Chemistry,2011,54,200.
    1. J.Robinson, R.G.R.P.L.M.P.D.P. Instrumental methods in electrochemistry,1985.
    2. Wada, M. Observation of Dynamic Image of Pt/Ti Thin Film at High Temperature by In-Situ FE-SEM, Journal of the Japan Institute of Metals,2009,73,943.
    3. Waldvogel, H.P.; Scharli, M. Angle-Resolved X-Ray Photoelectron-Spectroscopy Study from It-Tase2 and from 2h-Tase2 Single-Crystals, Journal of Electron Spectroscopy and Related Phenomena, 1984,34,115.
    4. 姜晓明.掠入射X射线衍射和散射实验技术及其应用,物理,1996,25,623.
    5. 崔树范.掠人射X射线衍射在表而、界而和薄膜材料结构研究中的应用,物理,1993,22,87.
    6. Chalmers, J.M.; Griffiths, P.R. Handbook of Vibrational Spectroscopy.2002, Chichester, U.K.: John Wiley & Sons.
    7. 严彦刚,Extending and Application of Surface-enhanced Infrared Absorption Spectroscopy on Pt Group Electrodes(博士论文),in化学系:2008,复旦大学:上海.
    8. Bloembergen, N. Non-Linear Optics and Spectroscopy, Science,1982,216,1057.
    1. Zhang, A.J.; Zhang, W.M.; Lu, J.X.; Wallace, G.G.; Chen, J. Electrocatalytic Reduction of Carbon Dioxide by Cobalt-Phthalocyanine-Incorporated Polypyrrole, Electrochemical and Solid State Letters, 2009,12, E17.
    2. Bandi, A.; Kuhne, H.M. Electrochemical Reduction of Carbon-Dioxide in Water-Analysis of Reaction-Mechanism on Ruthenium-Titanium-Oxide. Journal of The Electrochemical Society,1992, 139,1605.
    3. Spataru, N.; Tokuhiro, K.; Terashima, C.; Rao, T.N.; Fujishima, A. Electrochemical reduction of carbon dioxide at ruthenium dioxide deposited on boron-doped diamond. Journal of Applied Electrochemistry,2003,33,1205.
    4. Bandi, A. Electrochemical Reduction of Carbon-Dioxide on Conductive Metallic Oxides, Journal of the Electrochemical Society,1990,137,2157.
    5. Popic, J.P.; Avramovlvic, M.L.; Vukovic, N.B. Reduction of carbon dioxide on ruthenium oxide and modified ruthenium oxide electrodes in 0.5 M NaHCO3, Journal of Electroanalytical Chemistry, 1991,421,105.
    6. Qu, J.P.; Zhang, X.G.; Wang, Y.G.; Xie, C.X. Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode, Electrochimica Acta,2005,50,3576.
    7. Tian, Y.; Wang, XT.; Zhang, D.; Shi, X.; Wang, S.L. Effects of electron donors on the performance of plasmon-induced photovoltaic cell, Journal of Photochemistry and Photobiology a-Chemistry,2008,199,224.
    8. Luo, Y.P.; Liu, H.Q.; Rui, Q.; Tian, Y. Detection of Extracellular H2O2 Released from Human Liver Cancer Cells Based on TiO2 Nanoneedles with Enhanced Electron Transfer of Cytochrome c, Analytical Chemistry,2009,81,3035.
    9. Huang, L.; Peng, R.; Yu, H.; Wang, H.J.; Yang, J.; Li, Z. The influence of ultrasound on the formation of TiO2 nanotube arrays, Materials Research Bulletin,2010,45,200.
    10. Paramasivalm, I.; Macak, J.M.; Schmuki, P. Photocatalytic activity of TiO2-nanotube layers loaded with Ag and Au nanoparticles, Electrochemistry Communications,2008,10,71.
    11. Wang, M.; Guo, D.J.; Li, H.L. High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation, Journal of Solid State Chemistry,2005,178,1996.
    12. Lee, Y.H.; Oh, J.G.; Oh, H.S.; Kim, H. Novel method for the preparation of carbon supported nano-sized amorphous ruthenium oxides for supercapacitors, Electrochemistry Communications,2008, 10,1035.
    13. Mo, Y.B.; Cai, W.B.; Dong, J.A.; Carey, P.R.; Scherson, D.A. In situ surface enhanced raman scattering of ruthenium dioxide films in acid electrolytes, Electrochemical and Solid State Letters,2001, 4, E37.
    14. Hu, C.C.; Huang, Y.H. Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors, Journal of the Electrochemical Society,1999,146,2465.
    15. Chaplin, R.P.S.; Wragg, A.A. Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation, Journal of Applied Electrochemistiy,2003,33,1107.
    1. Cuesta, A.; Gutierrez, C. Study by Fourier transform infrared spectroscopy of the electroadsorption of CO on the ferrous metals.1. Iron, Journal of Physical Chemistry,1996,100, 12600.
    2. Cuesta, A.; Perez, M.D.P.; Rincon, A.; Gutierrez, C. Adsorption isotherm of CO on Pt(111) electrodes, Chemphyschem.2006.7,2346.
    3. Kunimatsu, K.; Sato, T.;Uchida, H.; Watanabe, M. Role of terrace/step edge sites in CO adsorption/oxidation on a polycrystalline Pt electrode studied by in situ ATR-FTIR method, Electrochimica Acta,2008,53,6104.
    4. Gomez, R.; Climent, V.; Feliu, J.M.; Weaver, M.J. Dependence of the potential of zero charge of stepped platinum (111) electrodes on the oriented step-edge density:Electrochemical implications and comparison with work function behavior, Journal of Physical Chemistry B,2000,104,597.
    5. Park, S.; Wieckowski, A.; Weaver, M.J. Electrochemical infrared characterization of CO domains on ruthenium-decorated platinum nanoparticles, Journal of the American Chemical Society,2003,125, 2282.
    6. Cuesta, A.; Gutierrez, C. Study by Fourier transform infrared spectroscopy of the adsorption of carbon monoxide on a cobalt electrode at pH 3-14, Langmuir,1998,14,3390.
    7. Cuesta, A.; Gutierrez, C. Study by Fourier transform infrared spectroscopy of the adsorption of carbon monoxide on a nickel electrode at pH 3-14, Langmuir,1998,14,3397.
    8. Severson, M.W.; Stuhlmann, C.; Villegas, I.; Weaver, M.J. Dipole-Dipole Coupling Effects Upon Infrared-Spectroscopy of Compressed Electrochemical Adlayers-Application to the Pt(111)/CO System, Journal of Chemical Physics,1995,103,9832.
    9. Jiang, X.D.; Weaver, M.J. The Role of Interfacial Potential in Adsorbate Bonding-Electrode Potential-Dependent Infrared-Spectra for Saturated CO Adlayers on Pt(110) and Related Electrochemical Surfaces in Varying Solvent Environments, Surface Science,1992,275,237.
    10. Roth, J.D.; Weaver, M.J. Role of the Double-Layer Cation on the Potential-Dependent Stretching Frequencies and Binding Geometries of Carbon-Monoxide at Platinum Nonaqueous Interfaces, Langmuir,1992,8,1451.
    11. Nanbu, N.; Kato, T.; Sasaki, Y.; Kitamura, F. In situ SEIRAS study of room-temperature ionic liquid vertical bar gold electrode interphase, Electrochemistry,2005,73,610.
    12. Nanbu, N.; Sasaki, Y.; Kitamura, F. In situ FT-IR spectroscopic observation of a room-temperature molten salt vertical bar gold electrode interphase, Electrochemistry Communications,2003,5,383.
    13. Baldelli, S. Surface structure at the ionic liquid-electrified metal interface, Accounts of Chemical Research,2008,41,421.
    14. Santos, V.O.; Alves, M.B.; Carvalho, M.S.; Suarez, P.A.Z.; Rubim, J.C. Surface-enhanced Raman scattering at the silver electrode/ionic liquid (BMIPF6) interface, Journal of Physical Chemistry B, 2006,110,20379.
    15. Yuan, Y.X.; Niu, T.C.; Xu, M.M.; Yao, J.L.; Gu, R.A. Probing the adsorption of methylimidazole at ionic liquids/Cu electrode interface by surface-enhanced Raman scattering spectroscopy, Journal of Raman Spectroscopy,2010,41,516.
    16. Takamuku, T.; Kyoshoin, Y.; Shimomura, T.; Kittaka, S.; Yamaguchi, T. Effect of Water on Structure of Hydrophilic Imidazolium-Based Ionic Liquid, Journal of Physical Chemistry B,2009,113, 10817.
    17. Bozzini, B.; Bund, A.; Busson, B.; Humbert, C.; Ispas, A.; Mele, C.; Tadjeddine, A. An SFG/DFG investigation of CN-adsorption at an Au electrode in 1-butyl-l-methyl-pyrrolidinium bis(trifluoromethylsulfonyl) amide ionic liquid, Electrochemistry Communications,2010,12,56.
    18. Baldelli, S. Probing electric fields at the ionic liquid-electrode interface using sum frequency generation spectroscopy and electrochemistry, Journal of Physical Chemistry B,2005,109,13049.
    19. Yan, Y.G.; Li, Q.X.; Huo, S.J.; Ma, M.; Cai, W.B.; Osawa, M. Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at platinum group metal-electrolyte interfaces, Journal of Physical Chemistry B,2005,109,7900.
    20. Miyake, H.; Ye, S.; Osawa, M. Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry, Electrochemistry Communications,2002,4,973.
    21.陈婉珍.现代近红外光谱分析技术.2000.
    22.蒋先明.简明红外光谱识谱法,1992.
    23.王宗明.实用红外光谱学,1982.
    24. Shiroishi, H.; Ayato, Y.; Kunimatsu, K.; Okada, T. Study of adsorbed water on Pt during methanol oxidation by ATR-SE1RAS (surface-enhanced infrared absorption spectroscopy), Journal of Electroanalytical Chemistry,2005,581,132.
    25. Pronkin, S.; Wandlowski, T. ATR-SEIRAS-an approach to probe the reactivity of Pd-modified quasi-single crystal gold film electrodes, Surface Science,2004,573,109.
    26. Zhu, Y.M.; Uchida, H.; Watanabe, M. Oxidation of carbon monoxide at a platinum film electrode studied by Fourier transform infrared spectroscopy with attenuated total reflection technique, Langmuir, 1999,15,8757.
    27. Anderson, M.R.; Blackwood, D.; Richmond, T.G.; Pons, S. The Effect of Solvent Type on the Infrared-Spectrum of Carbon-Monoxide Adsorbed at Platinum-Electrodes, Journal of Electroanalytical Chemistry,1988,256,397.
    28. Anderson, M.R.; Blackwood, D.; Pons, S. The Behavior of the Infrared-Spectrum of Carbon-Monoxide Adsorbed at Platinum-Electrodes from Non-Aqueous Solvents, Journal of Electroanalytical Chemistry,1988,256,387.
    29. Yoshinobu, J.; Takagi, N.; Kawai, M. Site Conversion of CO on Ni(100)-Binding-Energy Difference and Role of Low-Energy Hindered Vibrations, Chemical Physics Letters,1993,211,48.
    30.周志有.原位快速时间分辨显微FTIRS的建立及其对Pt微电极表面动态过程的研究,(厦门大学化学系)博士论文 厦门.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700