航空发动机制件报废模具激光熔覆修复组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对激光熔覆修复航空发动机制件报废高温锻压模具中使用热喷涂粉未开裂敏感性较大的缺点以及在高温(800℃以上)服役环境中,熔覆层容易开裂、脱落的问题,本文从材料合金化原理出发,综合考虑了激光熔覆过程中熔化与凝固的特点以及基材与粉末的物理化学特性,采用模具材料4Cr5W2SiV为基体,在不同工艺参数下激光熔覆HT-1合金粉末,对熔覆层组织和性能进行研究;最佳工艺下条件下,在HT-1合金粉末中添加不同含量稀土氧化物Y_2O_3研究Y_2O_3对激光熔覆HT-1合金粉末组织与性能的影响。
     借助OM,SEM、XRD、显微硬度计和磨损试验机等分析手段,对激光熔覆修复层的组织与性能进行研究,结果表明焦距f=330mm、激光功率P=3.5kW、扫描速度V=2mm/s、光斑尺寸D=15×2mm~2为最佳工艺,得到的熔覆层表面光滑致密、组织细小均匀、稀释率小、硬度高且与基体实现了良好的冶金结合。微观组织分析表明,熔覆试样由表及里分为三个不同的组织区域:熔覆层、热影响区、基体。在最佳工艺条件下,熔覆层内组织过渡良好,结合区白亮带组织为平面晶,在熔覆层底部为胞状晶,熔覆层中部至表面的组织是从树枝晶→柱状晶→等轴晶。
     当Y_2O_3添加量在0~3.0 wt.%变化时,随着Y_2O_3含量的增加,熔覆层组织逐渐变细,当Y_2O_3含量在1.0 wt.%时,熔覆层组织最细,然而,当Y_2O_3含量大于1.0 wt.%时,熔覆层组织随着Y_2O_3含量的增加而变粗大;当未添加Y_2O_3时,熔覆层内除了基体相α—Fe外,还有Fe_5C_2、Fe_2B、FeSi等相以及一定量的非晶相,保证了熔覆层有良好的硬度,耐磨性能。添加稀土氧化物Y_2O_3后,熔覆层中出现了少量的尖晶石类矿物质FeFe_2O_1;Y_2O_3添加量为1.0 wt.%时,熔覆层具有最高的硬度和耐磨性,当Y_2O_3含量大于1.0 wt.%时,熔覆层的硬度和耐磨性随着Y_2O_3含量的增加反而降低。
As to the problems for big cracking susceptibility caused by thermal spraying powders used in the failing aeroengine high-temperature forging mould repaired with laser cladding technology and easy abscission of coating caused in high-temperature service environment (>800℃) . In this paper, according to alloying principle of materials, the characteristics of melting and solidifying during laser cladding as well as physical and chemical character of substrate and powder are comprehensively considered. The mould steel 4Cr5W2SiV is used as substrate material under different technological parameters of laser cladding with alloy powder HT-1. The microstructure and properties of cladding coating have been invistigated. Under the condition of optimum technological parameters, the different contents of rare earth oxide Y_2O_3 added in the alloy powder HT-1, Effect of Y_2O_3 on microstructure and properties of alloy Powder HT-1 by laser cladding was studied.
     The microstructure and properties of coating prepared by laser cladding were studied by means of OM, SEM, XRD, Hardness Testmeter and Wear Testing Machine. The optimum technological parameter of broadband laser cladding is as followed: f=330mm, P=3.5kW, V=2mm/s, D=2×15mm~2. We obtained cladding coatings with good surface quality, fine microstructure, low dilution, high microhardness and good metallurgical combination interface with 4Cr5W2SiV substrate. The microstructure analysis results showed that, from the surface of the cladding specimen to the substrate, there are three distinct areas: the cladding area, the bonding area and the heat-affected zone in the substrate. Under the condition of optimum technological parameters, the transition of microstructure is smooth in cladding coating. The white bright band is plane crystals in the bonding zone. Cellular crystals are obtained in the bottom of cladding coating. The microstructure from the center to the surface of cladding coating transforms from dendrite crystals and columnar crystals to equia-xed crystals.
     The content of Y_2O_3 varies from 0 wt. % to 3 .0 wt. %, as the content of Y_2O_3 increases, the grain size in coating gradually becomes finer. When the content of Y_2O_3 is up to 1.0 wt. %, the finest grain size is obtained. However, when the content of Y_2O_3 exceeds 1.0wt. %, the grain size in coating is coarser with increase of Y_2O_3. Without Y_2O_3 in coating, there are some phases such as Fe_2B、Fe_3C、FeSi and an amount of amorphous besides the main phaseα-Fe in coating, so good hardness and wear resistance of the cladding coating can be guaranteed. When addition of Y_2O_3 into coating, a new kind of phase FeFe_2O_4 appears in coating. When the content of Y_2O_3 is 1.0 wt. %, the highest hardness and wear resistance are obtained in coatings, when the content of Y_2O_3 exceeds 1.0 wt. %, the hardness and wear resistance of the coating adversely decrease with increase of Y_2O_3.
引文
[1]吴承建.金属材料学[M].北京:冶金工业出版社,2003
    [2]赵海云.熔覆合金设计及微观组织与性能研究[D].中国科学院力学研究所,2001
    [3]刘其斌,李宝增.航空发动机制件报废锻压模具激光熔覆修复研究[J].金属热处理,2007
    [4]王茂才,吴维驶.先进燃气轮机叶片激光修复技术[J].燃气轮机技术,2001,14(4):53-56
    [5]关桥.发动机叶片与部件修复工程中的焊接技术[J].航空工艺技术,1993,2,(4):93-95
    [6]刘其斌.激光加工技术及其应用[M].冶金工业出版社,2007
    [7]张永康.激光加工技术[M].北京:化学工业出版社,2004
    [8]胡传.表面处理手册[M].北京:北京工业大学出版社,2004
    [9]虞钢,虞和济.集成化激光智能加工工程[M].北京:冶金工业出版社,2002
    [10]DavidW.Gandy,Gregory J.Frederick,Artie J.Peterson,J.T.Stover;R.Viswanathan.Development of a laser-based/high strength weld filler process to extend repair limits on In-738 gas turbine blades[J].Fourth International EPRI Conference.2000,June:7-9
    [11]L.Sexton,S.Lavin,G.Byrne,A.Kennedy.Laser cladding of aerospace Materials.Journal of Materials Processing Technology[J],2002(122):63-68
    [12]L.Shepeleav,B.Medres,W.D.Kaplan et al.Laser cladding of turbine blades.Surface and Coating Technology[J],2000(125):45-48
    [13]雷宇,罗军明,万润根.Y_2O_3对45#钢表面激光熔覆镍基合金的影响[J].新技术新工艺,2007,8:64-65
    [14]沈以赴.稀土在激光熔覆涂层中的分布和行为[J].中国稀土学报,1997,15(4):344-349
    [15]许越,纪红.激光熔凝处理对纯铁渗稀土层组织与耐蚀性能的影响[J].中国稀土学报,2001,19(4):346-349
    [16]胡木林.激光熔覆材料相容性的研究进展[J].金属热处理,2001(1):1-8
    [17]Gnanamuthu D S,U.S.[P],3952180,April,20,1976
    [18]洪永昌,夏正文.不同基材和涂层激光重熔表面改性的研究现状与进展[J].电焊机,2005,35(11):6-12
    [19]杨胜群,孟庆武,耿林等.钛合金表面激光重熔镍包石墨涂层的研究[J].应用激光,2006,26(4):227-229
    [20]刘其斌,朱维东,董闯等.宽带激光熔覆工艺参数对梯度生物陶瓷复合涂层组织与烧结性的影响[J].生物医学工程学杂志.2005,22(6):1193-196
    [21]陈传忠,王佃刚,雷廷权等.激光熔覆HA生物陶瓷梯度涂层的微观组织结构[J].中国激光,2004,31(8):1022-1024
    [22]朱蓓蒂,曾烧雁,李红雨.激光熔覆处理对2Crl3钢腐蚀疲劳寿命的影响[J].中国激光,1996,(1):93-95
    [23]王昆林,张庆波.La_2O_3对Ni基合金激光熔覆层组织和耐磨性的影响
    [24]张庆茂,刘喜明,黄凤晓等.Ce对送粉激光熔覆层组织和性能的影响[J].金属热处理,2000,13(2):22-26
    [25]刘其斌,朱维东,陈江.高温合金激光表面熔覆钴基合金涂层组织与耐磨性,贵州工业大学学报2000(4)
    [26]刘其斌,朱维东,陈江.高温合金激光熔覆涂层中裂纹防止方法
    [27]刘其斌,王存山,夏元良.宽带激光熔覆铸造WCp/Ni基合金梯度复合涂层的组织和性能,钢铁研究学报2001(8)
    [28]刘其斌,陈佳,王存山等.带激光熔覆WCp/Ni基合金梯度复合涂层的组织和耐磨性,钢铁研究学报2002(6)
    [29]张燕萍,郭锐,刘其斌.热容量对激光熔覆Ni60B复合涂层组织的影响,现代机械,2004(6)
    [30]张庆茂,刘喜明,关振中.激光合金化的进展及智能控制[J].金属热处理,1999,12(11):1-3
    [31]邱巨峰.稀土在晶界存在形式及对晶界状态的影响[J].稀土,1983(4):58-67
    [32]张世宏,李明喜,李辉生.纳米弥散强化镍基合金激光熔覆层[J].热加工工艺,2006,35(6):17-19
    [33]许越,纪红,韦永德.稀土元素在金属表面激光处理中的应用[J],稀土,2001,22(1):50-54
    [34]欧阳家虎.周玉.Ti/Np镍基台金复合耐磨涂层的激光熔覆[J].中国激光,1995,(2):145
    [35]郑世安,王顺兴,赵涛.激光熔覆Ni基合金滁层的腐蚀磨损性能研究[J].中国表面工程,2000,(3):23-25
    [36]朱润生.自熔合金粉末的研究[J].粉末冶金工业,2000,10(2):7-14
    [37]胡木林,谢长生,王爱华.激光熔覆材料相容性的研究进展[J].金属热处理,2001,26(1):1-7
    [38]祝柏林,胡木林,陈俐.激光熔覆层开裂问题的研究现状[J].金属热处理,2007(7):1-4
    [39]张迪,单际国,任家烈.高能束熔覆技术的研究现状及发展趋势[J].激光技术, 2001,25(1):39-42
    [40]张三川,姚建铨,梁二军.激光熔覆进展与熔覆合金设计[J].激光技术,2002,26(3)204-207
    [41]NAGARATHNAMK,KOMVOPOULOSK.Microstrctural and micro-hardness Characteristics of laser-sysnthesized Fe-Cr-W-C coatings[J].Metallurgical and MaterialsTrans,1995,A26(8):2131-2139
    [42]谭文,刘文今,贾俊红.激光熔覆Fe-C-Si-B的研究[J].金属热处理,2000(1):13-15
    [43]陈俐,谢长生,胡木林.激光熔覆用铁基合金工艺性研究[J].焊接技术,2001,25(5):343-346
    [44]宋武林.激光熔覆层开裂行为及抑制方法的研究[D].武汉:华中理工大学,1996.9-90
    [45]贾俊红,钟敏霖,刘文今.Ti对Fe-C合金表面激光熔覆复合材料层组织和性能的影响[J].应用激光,2000,20(4):145-148
    [46]武晓雷,洪友士.激光熔覆铁基大厚度非晶合金表层的研究[J].材料热处理学报,2001,22(1):51-54
    [47]王新林,漆海滨,石世宏.激光熔覆石化阀门密封面熔覆层裂纹控制的研究[J].激光技术,2002,26(5):359-363
    [48]周卓华.铸造镍基高温合金激光熔凝、熔覆的开裂行为研究[D].武汉:华中理工学,1996.17-35
    [49]HERNANDEZ J,VANNES A.Laser surface cladding and residual stress[A]Proceedings of the 3rd International Conference on Lasers in Manufactuing[C].Paris:Springer-Verlag,1986.181-190
    [50]李春彦,张松,康煜平.综述激光熔覆材料的若干问题[J].激光杂志,2002,(3):5-9
    [51]杨扬.CO2激光束几种聚焦方案的比较[J].激光杂志1999,20(2):6-9
    [52]周炳琨,高以智,陈家骅等.激光原理[M].北京:国防工业出版社,1980
    [53]李俊昌.激光热处理优化控制研究[M].北京:冶金工业出版社,1995
    [54]姚宁娟,侯立群,左铁钏.大面积激光熔覆的工艺研究[J].中国表面工程,2002,2(55):1-3
    [55]刘怀喜,闫耀辰,马润香.激光熔覆Ni基合金的工艺和组织研究[J].2005,11(6):33-35
    [56]马乃恒,梁工英,苏俊义.激光熔覆工艺参数对TiCp/Al表层复合材料的影响[J].中国有色金属学报,2001,12:1041-1044
    [57]赵海鸥,李春华.激光熔覆工艺特性及裂纹敏感性研究[J].金属热处理2001(1):18-20
    [58]栾景飞,胡建东.激光熔覆参数对灭铸铁激光熔覆层裂纹的影响[J].应用激光,2000,20(2):53-56
    [59]袁斌,龚知本,沈书泊等.新的多道搭接熔覆方法的初步研究[J].激光杂志,1999,20(5):54-56
    [60]王东升,于志青,晁明举等.V_2O_5和工艺参数对镍基合金激光熔覆层裂纹敏感性的影响激光杂志[J].2005,26(6):81-84
    [61]束德林.工程材料力学性能[M].机械工业出版社,2006
    [62]谢建新.材料加工新技术与新工艺学[M].北京:冶金工业出版社,2004
    [63]徐洲.材料加工原理[M].北京:科学出版社(第二版),2004
    [64]钱九红,李喜坤.激光熔覆稀土陶瓷涂层进展[J].稀土,2006,27(4):70-74
    [65]贺自强,王新林,全白云.非晶态合金的强韧性及其研究进展[J].金属热处理,2007,32(5):31-37
    [66]钟敏建,何正明,沈伟星等.纳米晶Fe5C2/α-Fe双相复合材料结构与磁性的研究[J].材料科学与工程学报,2005,4
    [67]赖祖涵,晁月盛,滕功清.Fe78813Si9纳米晶合金的晶体结构[J].基础科学,1998,3
    [68]武玉英,刘相法,姜炳刚等.Al-Si-Fe-CU-Mg-Ni合金中复合Fe-Si相的研究[J].铸造,2005,54(10):959-962
    [69]符寒光,符志强.耐磨铸造Fe-B-C合金的研究[J].金属学报,2006,42:545-548
    [70]孙桓.机械原理[M].西北工业大学出版社,1990
    [71]周玉.陶瓷材料学[M].哈尔滨工业大学出版社,1995
    [72]贺自强,王新林,全白云.非晶态合金的强韧性及其研究进展[J].金属热处理,2007,32(5):31-37
    [73]汤光平,黄文荣,杨家林.Crl2MoV模具钢的激光熔覆[J].金属热处理,2002,27(4):13-19
    [74]尚丽娟,李超,周述仁等.铈对激光熔覆钴基自熔合金的改性[J].金属热处理学报,1995,16(2):53-56
    [75]赵高敏,王昆林,刘家浚.La_2O_3对激光熔覆铁基合金层硬度及其分布的影响[J].金属学报,2004,40(10):1115-1120
    [76]崔忠圻.金属学与热处理[M].北京:机械工业出版社,2000
    [77]冶军.美国镍基高温合金[M].北京:科学出版社,1978
    [78]张维平,刘硕,马玉涛.激光熔覆颗粒增强金属基复合材料涂层强化机制[J].材料热处理学报,2005,26(1):70-73
    [79]匡建新,汪新衡,刘安民.稀土对激光熔覆金属陶瓷复合层的影响[J].润滑与密封,2007,32(6):87-89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700