铝及铝合金表面激光熔覆制备铝钇合金涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝及铝合金是工业中用量最大的有色金属,在航空、航天、汽车、铁路运输业及动力机械等行业中得到了广泛应用。但由于硬度低,耐磨性较差,限制了其进一步应用。激光熔覆是近二十年来发展起来的一种表面强化技术,它具有许多常规方法无法比拟的优势,它可有效地提高铝及铝合金表面的硬度和耐磨性。
     本文采用CO_2激光器在铝及铝合金基体上涂覆了Y和Y-Al粉末涂层,采用预置粉末涂层法将粉末涂覆于基体表面,采用氩气保护激光熔池,加入一定量CaF2、LiF和MgF2作为造渣剂,在一定的激光熔覆处理工艺参数下,可以获得均匀连续、界面为冶金结合的致密涂层。涂层底部和中下部基相组织为胞状枝晶,中上部和顶部为细小枝晶或等轴晶。
     以稀土元素Y为熔覆材料的研究在国内目前不多。因为Y和Al的熔点相差很多,在激光熔覆加工过程中Y元素过渡比较困难。本文计算了激光熔覆深度和激光功率、光斑直径和涂层厚度的定量关系,探讨了在铝及铝合金2034表面熔覆铝钇合金涂层的可行性,并利用SEM、XRD、EDS、硬度实验、金相实验等方法研究了制备的熔覆层的组织及性能,同时比较了纯铝及2034铝合金激光熔覆后的涂层的组织和性能,结果表明,涂层硬度较纯铝提高了一倍多,但较2034要低,表明仅依靠激光熔覆Al-Y涂层对提高铝合金2034的表面性能有一定的局限性
Al and its alloy have a wide scope of applications in the field of aerospace, auto industries, transportation and power machine and so on due to its low density, high specific strength , etc. But its surface properties such as poor corrosion resistance and wear resistance restrict its wider application in the modern industries. Laser cladding can improve the surface properties of aluminum alloy, which is a new technique has been developed for about twenty years. It has some unique advantages compared with the general material processes.
     Al-Y alloys coatings have been obtained by CO_2 laser cladding in this paper. The first stage, we placed a layer of Y or Al+Y powers on base metal before laser irradiating, in process, Argon used as shielding gas and CaF2、LiF and MgF2 as slagging, both can protect the melting pool. The coatings have smooth and continuous surface, and get metallurgical bond to the substrate. In the bottom and near the base metal of the clad, the matrix grains are finely cellular or cell-dendrite. we get dendritic and equiaxial grains In middle and top of the clad zone.
     There is few research about the cladding materials like yttrium at home and abroad. The melting point of Y is much more the Al’s, so Y element transfer to the cladding zone is very difficult. In this paper we calculate the depth of the cladding zone, and discuss the feasibility of creating Al-Y alloys on the Al and Al2034. The microstructure, hardness and component of the cladding coatings zone have been analyzed and tested by use of a series of modern physical test means , such as SEM, XRD, EDS etc. and make a compare between the cladding zone of Al and Al2034. The result is the hardness of cladding zone on Al surface is one times than Al-base. But less than Al2034. The research show that it is limitative to improve the surface properties by cladding Al+Y power on Al2034.
引文
[1]吴一雷,李永伟,强俊等.超高强度铝合金的发展与应用.航空材料学报[J],1994,14 (1): 49-55
    [2]马勇.交通运输用新材料—铝合金[J].新材料产业, 2003,(8): 12-16
    [3]黄晓艳,刘波.舰船用结构材料的现状与发展[J]. SHIP&BOAT, 2003,(3): 21-24
    [4]孙丹丹,李文东.铝合金在汽车中的应用[J].山东内燃机, 2003, (1): 34-36
    [5]唐远景.我国铝及铝合金的应用及趋势浅析[J].轻金属, 1994, (5): 61-64
    [6] Watkims K G, Liu Z, Memahon M, et al.Influence Of The Overlapped Area On The Corrosion Behavior Of Laser Treated Aluminum Alloy [J]. Materials Science and Engineering, 1998, A 252: 292-300
    [7] Yilbas B S, Hashini M S J. Laser Treatment of Ti-6A1-4V Alloy Prior To Plasma Nitriding [J]. J of Metals Processing Technology, 2000,103: 304-309
    [8]赵新,金杰,姚健栓.激光表面改性技术的研究与发展[J].光电子.激光,2000, 11(3): 324-328
    [9] Arvinal A, Narendra B D. Elevation Of a Laser Surface Engineered Boride Coating In Various Accelerated Corrosion And Oxidation Environments[J]. Corrosion Prevention & Control, 1999,(12): 111-121
    [10]许越,纪红,陈湘.一种激光—稀土复合处理金属表面改性的新方法[J].高技术通讯, 2000,10(12): 71-73
    [11] JUAN D D. Surface modification of metals by high power laser[J]. Surface and Coating Technology,1998,100-101: 377-382
    [12]许越,纪红,韦永德.稀土元素在金属表面激光处理中的应用[J].稀土, 2001, 22(1): 54-57
    [13] Ehsan Toyserkani, Amir Khajepour, Stephen Corbin. Laser Cladding[M]. Washington, D.C: CRC Press, 2005
    [14]马春印.激光表面工程技术及应用[J].四川兵工学报, 2003, 24( 2): 25-41.
    [15]关振中主编.激光加工手册[M].北京:中国计量出版社, 1998.3: 45-46
    [16] Liu Y, Koch J, Mazumder J, et al. Microstructure and Properties of Laser-Clad NiAlloy FP-5 on A1 Alloy AA333 [J]. Metall《Mater.Trans.B》,1994, 25B(3): 425-434
    [17] T. T. Wong, Liang G Y, B.L. He, et al. Wear resistance of laser-clad Ni-Cr-B-Si alloy on aluminium alloy [J]. Journal of Materials Processing Technology, 2000,10(3): 142-146
    [18] Liang G Y, Su J Y. The microstructure and tribological characteristics of laser-clad Ni-Cr-A1 coatings on aluminium alloy [J]. Materials Science and Engineering, 2000,29(4): 207-212
    [19] Dubourg L, Hlawka F. Study of aluminium-copper-iron alloys: application for laser cladding[J]. Surface and Coatings Technology ,2002, 20(2): 329-332
    [20]董世运,韩杰才,王茂才等.激光熔覆铜合金的组织特征及结晶过程分析[J].金属热处理,2003, 28(3): 1-3
    [21]梁工英,贺柏龄.铝合金激光熔覆Ni-WC涂层的组织及耐磨性[J].中国激光,1998, 25(10): 950-954
    [22]张松,张春华.铝合金表面激光熔覆SiC颗粒增强表层金属基复合材料的组织及空泡腐蚀性能[J].材料工程, 2002(2): 47-48
    [23]朱宏,金忠华.铝及铝合金激光焊接技术的研究现状[J].电子工艺技术, 1997.7,18(4): 129-133
    [24] W.W.Duley. Laser Welding[M]. A Wiley-Interscience Publication,1999: 3-9
    [25] Huntington C A, Engar T W. Laser Welding of Aluminum and Aluminum Alloys. [J]. W.J. 1983: 105-107
    [26]刘俊.铝合金激光焊接工艺特点.现代制造工程,2003(3): 55-56
    [27]黄延禄,杨福华,梁工英等.用原位法测定铝合金对激光的吸收率[J].中国激光,2003.5, 30(5): 450-453
    [28] H. G. Dreehsen, C. Hartwich, J. H. Schaefer, et al. Measurement of the optical constants of A1 above the melting point atλ=10.6μm[J]. Appl. Phys,1984, 56(1): 238-240
    [29] Wang X C, Laoui T, Bonse J, et al. Direct Selective Laser Sintering Of Hard Metal Powders: Experimental Study and Simulation. International Journal of Advance Manufacture Technology, 2002,19: 351-357
    [30]刘江龙,邹至荣编著.高能束热处理[M].北京:机械工业出版社,1997.8: 248-253
    [31]余先涛.铝合金表面激光熔覆Ni基合金及其摩擦学特性研究[D].武汉理工大学工学博士论文,2005: 23-24
    [32]邹德宁,雷永平,苏俊义.激光表面重熔过程中流体流动和传热的数值模拟.中国激光. 2001,28(1): 81-84
    [33]张士林,任颂赞.简明铝合金手册[M].上海:上海科学技术文献出版社,2000.12: 11-12
    [34] Akihisa Inoue, Amorphous nanoqusicrystalline and nanocrystalline in Al-base systems[J]. Progress in materials science,1998,43: 365-520
    [35] Kyuhong Lee, Duk-Hyun Nam, Sunghak Lee, et al. Hardness and wear Resistance of Zr-Based Bulk Metallic Glass/Ti Surface Composites Fabricated by High-energy Electron Beam Irradiation[J]. Surface and Coatings Technology, 2006, 201(3-4): 1620-1628
    [36]谭文,刘文今,贾俊红.激光熔覆Fe-C-Si-B的研究[J].金属热处理,2000.1: 15-17
    [37]王建华,易丹青,卢斌等.钇对2618合金组织及性能的影响[J].中国稀土学报,2002,20(2): 150-153
    [38]李慧中,张新明,陈明安等.钇对2519铝合金铸态组织的影响[J].中南大学学报(自然科学版), 2005.8,36(4): 546-549
    [39] CHEN Chang-jun, WANG Dong-sheng, WANGMao-cai. Laser surface cladding of ZM5 Mg2base alloy with Al + Y powder[J]. Trans. Nonferrous Met. Soc. China. 2004,14(6): 1091-1094
    [40] YUE TM, WANGA H, MAN H C. Corrosion resistance enhancement of magnes- ium ZK60/SiC composite by ND: YAG laser cladding[J]. Scripta Materialia, 1999, 40(3): 303-311.
    [41]余先涛.铝合金表面激光熔覆Ni基合金及其摩擦学特性研究[D].武汉理工大学工学博士学位论文,2005: 34-35
    [42]陈洪蒸.金属材料物理性能手册[M].北京:冶金工业出版社, 1986
    [43]肖亚庆,唐桂林.稀土在6063铝合金中存在形式和对组织性能的影响[J].轻合金加工技术,1996,24(11): 33-36. Xiao Ya-qing, Tang Gui-lin. Existence and effect of rare-earth on microstructure and properties of 6063 aluminum alloy[J]. Manufacturing Technology of Light Alloys, 1996 ,24 (11): 33 -36.
    [44] Shuhong Liu, Yong Du, Honghui Xu, Cuiyun He, Julius C. Schuster. Experimental investigation of the Al–Y phase diagram[J]. Journal of Alloys and Compounds, 414 (2006): 60-65
    [45]杨洗陈.激光熔池中物理输运过程研究.天津工业大学学报[J],2002,21(4): 1-7
    [46]曾令民,郑建宣.钇对A l-Cu-M g三元系α相区及硬铝性能的影响[J ].中国稀土学报,1989,7(4): 77-78
    [47]左铁钏.高强铝合金的激光加工[M].北京:国防工业出版社, 2002: 59-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700