CO_2激光共线差频产生太赫兹的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹科学与技术给成像与感测等应用领域和医药、化学与生命科学等基础研究领域带来深远的影响,而成为近年来热门的研究课题,而对如何获得太赫兹波辐射源的研究是其关键问题研究之一。获得在常温下稳定运转、相干和可调谐的太赫兹波辐射源的最有效的方法之一是利用非线性光学差频的方法,通过差频方法产生太赫兹有着广阔的应用前景。差频方法产生太赫兹的原理是利用两束波长接近的泵浦光在非线性光学晶体中满足相位匹配时差频产生波长在太赫兹区域的辐射源。而在共线差频时两束泵浦光的传播方向相同,这样能够有效地使用在晶体中作用的有效面积和长度来提高产生太赫兹的效率。
     本论文基于共线差频原理,以CO_2激光在非线性晶体中共线差频为研究对象,从理论上分析周期结构的非线性晶体通过共线差频如何有效产生太赫兹;相比其它激光,根据Manley-Rowe定理,理论上利用输出波长在10μm左右的CO_2激光差频能够更有效地产生太赫兹源。从实验方面利用自行搭建的双波长输出、正交偏振、可调谐的CO_2激光装置对GaSe晶体和周期反转的GaAs晶体片堆中共线差频产生太赫兹进行研究,并逐一展开论述和讨论。论文主要的内容如下:
     (1)理论上从描述光波与物质相互作用的三波耦合方程出发,推导出共线差频中准相位匹配时产生太赫兹的功率和转换效率的表达式,理论分析CO_2激光在周期反转的非线性晶体GaAs中产生太赫兹波源转换效率。提出可以利用CO_2激光进行准相位匹配共线差频表面辐射产生太赫兹的方法,推导出表面辐射产生太赫兹波源的转换效率的表达式,并具体提出竖直、倾斜和二维结构的周期性晶体的方案。理论上研究通过表面辐射提高太赫兹波源功率的方法,计算了共线准相位匹配周期性晶体的周期、匹配角和太赫兹波长之间的关系,发现随着周期性晶体的周期长度增加,所产生太赫兹波辐射源的波长增加。
     (2)为了获得共线差频实验中波长可调谐的CO_2激光,分析了CO_2气体激光器分子能级结构,探讨了光栅调谐技术,以此获得可调谐的CO_2激光器。基于光栅调谐理论,搭建了一台双波长输出、正交偏振的脉冲放电可调谐CO_2激光器装置,调谐出18组双波长输出时间同步波长,为共线差频产生太赫兹提供了泵浦源。仅用一台可输出双波长的可调谐CO_2激光器,在共线差频中产生太赫兹波辐射源是一种很有意义的应用,这可使太赫兹波辐射源发生器结构紧凑简单。
     (3)利用自行搭建可以在9.1-10.7μm之间调谐的一台正交偏振双波长输出的CO_2激光器的装置,研究了在非线性晶体GaSe中共线差频产生太赫兹波辐射源实验。对GaSe晶体的光学特性和相位匹配理论进行了分析。实验产生了波长范围在236.3-1104.5μm (0.27-1.3THz)的可调谐输出的窄带太赫兹波辐射源。在实验中对CO_2激光在GaSe晶体中的相位匹配角,相位匹配允许角进行分析,实验结果跟理论计算相符合。实验在243.6μm波长处获得太赫兹波的最大单脉冲能量为11nJ,其峰值功率182mW。
     (4)实验研究了周期性反转的GaAs晶体片堆在准相位匹配条件下,利用双波长输出的CO_2激光器共线差频产生太赫兹辐射源。分析了GaAs晶体片的晶向选取和厚度,利用光学键合法对GaAs晶体片进行键合,并对GaAs晶体片堆的CO_2激光透过率进行测量。实验产生了波长为319μm (0.94THz)的太赫兹,太赫兹最大单脉冲能量随晶体片数增加而增大,在GaAs晶体片数为10片时获得太赫兹波源的最大单脉冲能量为12nJ,其峰值功率200mW,该能量比GaSe中共线差频产生的太赫兹提高了10%。并提出可以利用一台双波长输出可调谐CO_2激光在扇形结构非线性晶体中共线差频,通过简单平移改变扇形结构非线性晶体的周期长度,就能实现太赫兹波可调谐输出的方案。
Terahertz (THz) science and technology attract world-wide research interest for itspotential applications including spectroscopy, pharmaceutical, chemicals, biomedicaldiagnostics, and so on. THz source is one of the key issues. Difference frequencygeneration (DFG) is one of the effective ways to produce stable operation, tunable andcoherent THz radiation at room temperature. The principle of nonlinear optical DFG THz isthe use of two similar wavelength laser beam matching DFG the wavelength of radiation inthe THz region. Due to the same propagation of the two beams, collinear DFG can acquireefficient THz using the area and length of in the crystal.
     In this thesis, CO_2laser collinear DFG are investigated for producing THz in nonlinearcrystals. The theory of efficient THz acquired for periodic crystals is introduced. Accordingto the Manley-Rowe relation, compared to other lasers, the maximum conversion efficiencycan be improved by mid-infrared CO_2laser for the wavelength running at10μm.Theexperiments are established pumped by one self-made CO_2laser with dual-wavelengthoutput based on collinear DFG in a stacked GaAs wafers and a GaSe crystal. The maincontents are as follows:
     (1) According to the coupled wave equation, the power and efficiency transfer amongthe three waves has been studied in the process of terahertz wave collinear DFG in quasiphase matched (QPM). Surface-emitted difference frequency generation (SEDFG) usingQPM has been proposed. We explore the generation of the high power conversionefficiency of THz wave in periodically-inverted crystals with mid-infrared CO_2laser byusing three schemes including perpendicular structure, slant-stripe structure andtwo-dimensional structure. The relations of the angle and the THz wavelength areconsidered. The relation of the grating period is increased when THz wavelength isincreased.
     (2) In order to obtain various THz waves, the wavelength of the CO_2laser must betuned. So grating tuning technology is used to obtain the wavelength tuning of CO_2laser. Adual-wavelength output, the orthogonal polarization pulses discharge tunable CO_2laser isestablished. Temporal waveforms of dual-wavelength CO_2laser pulses acquired18. Using a compact dual-wavelength CO_2laser around10μm as collinear DFG pumping source, weacquired a compact THz source.
     (3) Using one self-made CO_2laser with dual-wavelength output, orthogonalpolarization pulses can be tuned range of9.1-10.7μm, the experiment is success tocollinearly phase-matched DFG in a GaSe crystal. THz pulses have been generated at awavelength range of236.3-1104.5μm (0.27-1.3THz). THz pulses phase-matching angleand phase-matching conditions agrees with theoretical calculations. The maximum singlepulse energy of11nJ was generated at a wavelength of243.6μm (1.23THz),corresponding to a peak output power182mW.
     (4) Pumped by one self-made CO_2laser with dual-wavelength output based oncollinear QPM-DFG in a stacked GaAs wafers. GaAs wafers thickness and orientation isselected, and optically-contacted method is bonded to stacked GaAs wafers. We observedthat the QPM-GaAs wafers can effectively increase the THz generation power andefficiency by increasing the number of periods. The maximum single pulse energy of12nJwas generated at a frequency of0.94THz (319μm) by using ten GaAs wafers,corresponding to a peak output power200mW. The maximum single pulse energy isincreasing by10%than that of a GaSe crystal. The scheme for generation of tunable THzwave in fan out structure crystal with CO_2laser is proposed. The length of periodical crystalcan be change by a simple movement, and will be able to achieve tunable THz wave outputin this scheme.
引文
[1] H. Rubens, E. F. Nichols. Heat rays of great wavelength. Phys. Rev.,1897,4:314~323
    [2]张存林.太赫兹感测与成像.北京:国防工业出版社,2008.2~5
    [3]许景周,张希成.太赫兹科学技术和应用.北京:北京大学出版社,2007.4~20
    [4] B. Ferguson,张希成.太赫兹科学与技术研究回顾.物理,2003,32(5):286~293
    [5]孙博,姚建铨.基于光学方法的太赫兹辐射源.中国激光,2006,33(10):1349~1359
    [6]张存林,牧凯军.太赫兹波谱与成像.激光与光电子学进展,2010,47:23001
    [7] S. Cibella, M. Ortolani, R. Leoni, et al. Wide dynamic range terahertz detector pixelfor active spectroscopic imaging with quantum cascade lasers. Appl. Phys. Lett.,2009,95:213501/1~3
    [8] R. Kuroda, M. Yasumoto, N. Sei, et al. Measurement of coherent terahertz radiationfor time-domain spectroscopy and imaging. Radiat. Phys. Chem.,2009,78(12):1102~1105
    [9] S. Ariyoshi, C. Otani, A. Dobroiu, et al. Terahertz imaging with a direct detectorbased on superconducting tunnel junctions. Appl. Phys. Lett.,2006,88:203503/1~3
    [10] Y. C. Sim. I. Maeng, J. H. Son. Frequency-dependent characteristics of terahertzradiation on the enamel and dentin of human tooth, Curr. Appl. Phys.,2009,9(5):946~949.
    [11] Y. C. Shen, T. Lo, P. F. Taday, et al. Detection and identification of explosives usingterahertz pulsed spectroscopic imaging. Appl. Phys. Lett.,2005,86:241116/1~3
    [12] H. B. Liu, Y. Q. Chen, X. C. Zhang. Characterization of anhydrous and hydratedpharmaceutical materials with THz time-domain spectroscopy. J. Pharm. Sci.,2007,96(4):927~934
    [13] L. Ho, R. Muller, M. Romer, et al. Analysis of sustained-release tablet film coatsusing terahertz pulsed imaging. J. Controlled Release,2007,119:253~261
    [14] J. F. Anthony, E. C. Bryan, F. T. Philip. Nondestructive analysis of tablet coatingthicknesses using terahertz pulsed imaging. J. Pharm. Sci.,2005,94(1):177~183
    [15] J. M. Madey. Stimulated emission of bremsstrahlung in a periodic magnetic field. J.Appl. Phys.,1971,42:1906~1909
    [16] G. L. Carr, M. C. Martin, W. R. McKinney, et al. High-power terahertz radiation fromrelativistic electrons. Nature,2002,420(6912):153~156
    [17] B. Xu, Q. Hu, M. R. Melloch. Electrically pumped tunable terahertz emitter based onintersubband transition. Appl. Phys. Lett.,1997,71:440
    [18] R. Kohler, A. Tredicucci, F. Beltram, et al. Terahertz semiconductor heterostructurelaser. Nature,2002,417(6885):156~159
    [19] B. Williams, S. Kumar, Q. Hu, et al. Operation of terahertz quantum-cascade lasersat164K in pulsed mode and at117K in continuous-wave mode. Optics Express,2005,13(9):3331~3339
    [20] B. S. Williams, S. Kumar, Q. Hu, et al. High-power terahertz quantum-cascade lasers.Electron. Lett.,2006,42(2):89~91
    [21] S. Fathololoumi, E. Dupont, C. W. I. Chan, et al. Terahertz quantum cascade lasersoperating up to200K with optimized oscillator strength and improved injectiontunneling. Optics Express,2012,20(4):3866~3876
    [22] J. B. Gunn. Microwave oscillations of current in semiconductors. Sol. St. Comm.,1963,1:88~92
    [23] R. L. Ives, C. Kory, M. Read, et al. Development of backward-wave oscillators forterahertz applications. SPIE,2003,5070:71~82
    [24] L. Ives, C. Kory, M. Read, et al. Development of terahertz backward wave oscillators.Conference Digest of the28th International Conference on Infrared and MillimeterWaves. Otsu, Japan,2003.249~250
    [25] M. Dyakonov, M. S. Shur. Shallow water analogy for a ballistic field effect transistor:new mechanism of plasma wave generation by dc current. Phys. Rev. Lett.,1993,71(15):2465~2468
    [26] W. Knap, Y. Deng, S. Rumyantsev, et al. Resonant detection of sub-terahertz andterahertz radiation by plasma waves in submicron field-effect transistors. Appl. Phys.Lett.,2002,81(24):4637~4639
    [27] Y. Deng, R. Kersting, J. Xu, et al. Millimeter wave emission from GaN high electronmobility transistor. Appl. Phys. Lett.,2004,84(1):70~72
    [28]许景周,张希成.太赫兹科学技术和应用.北京:北京大学出版社,2007.18~20
    [29]殷勇.360GHz返波管的研究.真空电子技术,2010,(5):1~3
    [30] T. Y. Chang, T. J. Bridges. Laser action at452,496, and541μm in optically pumpedCH3F. Opt. Commun.,1970,1(9):423~426
    [31] A. Semet, L. C. Johnson, D. K. Mansfield. D2O submillimeter laser. Plenumpublishing corporation,1983,7:231~246
    [32] A. D. Michele, G. Carelli, A. Moretti, et al.12CH3OH and13CH3OH optically pumpedby the10P and10HP bands of a pulsed CO2laser: new far-infrared laser emissionsand assignments. Appl. Phys. B,2006,83:495~497
    [33] L. Miao, D. Zuo, Z. Jiu, et al. An efficient cavity for optically pumped terahertzlasers. Opt. Commun.,2010,283(16):3171~3175
    [34] Z. X. Jiu, D. L. Zuo, L. Miao, et al. An Efficient Pulsed CH3OH Terahertz LaserPumped by a TEA CO2Laser. Chinese Phys. Lett.,2010,27(2):024211
    [35] Z. X. Jiu, D. L. Zuo, L. Mia o, et al. An Efficient High-energy Pulsed NH3TerahertzLaser. Journal of Infrared, Millimeter and Terahertz Waves,2010,31(12):1422~1426
    [36] D. H. Auston. Picosecond optoelectronic switching and gating in silicon. Appl. Phys.Lett.,1975,26(3):101~103
    [37] R. Huber, A. Brodschelm, F. Tauser, et al. Generation and field-resolved detection offemtosecond electromagenetic pulses tunable up to41THz. Appl. Phys. Lett.,2000,76(22):3191~3193
    [38] K. Liu, J. Xu, X. C. Zhang. GaSe crystals for broad band terahertz detection. Appl.Phys. Lett.,2004,85(6):863~865
    [39] J. T. Darrow, B. B. Hu, X. C. Zhang, et al. Subpicosecond electromagnetic pulsesfrom large-aperture photoconducting antennas. Opt. Lett.,1990,15(6):323~325
    [40] H. Hamster, A. Sullivan, S. Gordon, et al. Subpicosecond, electronmagnetic pulsesfrom intense laser-plasma interaction. Phys. Rev. Lett.,1993,71(17):2725~2728
    [41] D. J. Cook, R. M. Hochstrasser. Intense terahertz pulses by four-wave rectification inair. Opt. Lett.,2000,25(16):1210~1212
    [42] K. Kawase, J. Shikata, H. Ito. Terahertz wave parametric source. Journal of PhysicsD: Applied Physics,2002,35: R1~R14
    [43] K. Suizu, K. Kawase. Monochromatic-Tunable Terahertz-Wave Sources Based onNonlinear Frequency Conversion Using Lithium Niobate Crystal. IEEE J. SelectedTopics in Quantum Electronics,2008,14(2):295~306
    [44] T. J. Edwards, D. Walsh, M. B. Spurr, et al. Compact source of continuously andwidely-tunable terahertz radiation. Opt. Express,2006,14:1582~1589
    [45] R. Aggarwal, B. Lax. Optical mixing of CO2lasers in the far-infrared. NonlinearInfrared Generation, Springer Berlin,1976,16:19~80
    [46] Y. J. Ding. High-Power Tunable Terahertz Sources Based on Parametric Processesand Applications. IEEE J. Selected Topics in Quantum Electronics,2007,13(3):705~720
    [47] F. Zernike, P. R. Berman. Generation of Far Infrared as a Difference Frequency.Phys. Rev. Lett.,1965,15(26):999~1004
    [48] R. Aggarwal, B. Lax. Optical mixing of CO2lasers in the far-infrared. NonlinearInfrared Generation, Springer Berlin,1976,16:19~80
    [49] F. Zernike. Quasi cw Generation of Far Infrared Difference Frequency. Bull. Am.Phys. Soc,1967,12:687~693
    [50] F. Zernike. Temperature-Dependent Phase Matching for Far-Infrared DifferenceFrequency Generation in InSb. Phys. Rev. Lett.,1969,22(18):931~933
    [51] N. V. Tran, C. K. N. Patel. Free-carrier magneto-optical effects in far-infrareddifference-frequency generation in semiconductors. Phys. Rev. Lett.,1969,22(10):463~466
    [52] A. J. Beaulieu. Transversely excited atmospheric pressure CO2lasers. Appl. Phys.Lett.,1970,16(12):504~505
    [53] R. L. Aggarwal, B. Lax, G. Favrot. Noncollinear phase matching in GaAs. Appl.Phys. Lett.,1973,22(7):329~330
    [54] B. Lax, R. L. Aggarwal, G. Favrot. Far-infrared step-tunable coherent radiationsource:70mu m to2mm. Appl. Phys. Lett.,1973,23(12):679~681
    [55] R. L. Aggarwal, B. Lax, H. R. Fetterman, et al. Cw generation of tunablenarrow-band far-infrared radiation. J. Appl. Phys.,1974,45(9):3972~3974
    [56] N. Matsumoto, T. Yajima. Far-Infrared Generation by Self-Beating of Dye LaserLight. Japanese Journal of Applied Physics,1973,12(1):90~97
    [57] K. H. Yang, J. R. Morris, P. L. Richards, et al. Phase-matched far-infrared generationby optical mixing of dye laser beams. Appl. Phys. Lett.,1973,23(12):669~671
    [58] S. Y. Tochitsky, J. E. Ralph, C. Sung, et al. Generation of megawatt-power terahertzpulses by noncollinear difference-frequency mixing in GaAs. J. Appl. Phys.,2005,98(2):26101
    [59] S. Y. Tochitsky, C. Sung, S. E. Trubnick, et al. High-power tunable,0.5-3THzradiation source based on nonlinear difference frequency mixing of CO2laser lines. J.Opt. Soc. Am. B,2007,24(9):2509~2516
    [60] K. Kawase, M. Mizuno, S. Sohma, et al. Difference frequency terahertz wavegeneration from4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of anelectronically tuned Ti:sapphire laser, Opt. Lett.,1999,24(15):1065~1067
    [61] W. Shi, Y. J. Ding. Continuously tunable and coherent terahertz radiation by meansof phase-matched difference-frequency generation in zinc germanium phosphide.Appl. Phys. Lett.,2003,83(5):848~850
    [62] W. Shi, Y. J. Ding, N. Fernelius, et al. Efficient, tunable, and coherent0.18-5.27THzsource based on GaSe crystal. Opt. Lett.,2002,27(16):1454~1456
    [63] W. Shi, Y. J. Ding. Tunable coherent radiation from terahertz to microwave bymixing two infrared frequencies in a47-mm-long GaSe crystal. International journalof high speed electronics and systems,2006,16(2):589~593
    [64] Y. Jiang, Y. J. Ding. Efficient terahertz generation from two collinearly propagatingCO2laser pulses. Appl. Phys. Lett.,2007,91(9):91108
    [65]王卓,姚建铨. ZnGeP2晶体差频产生THz波的研究.科学技术与工程,2007,7(13):3101~3103
    [66] Y. Geng, X. Tan, X. Li, et al. Compact and widely tunable terahertz source based o na dual-wavelength intracavity optical parametric oscillation. Appl. Phys. B,2010,99(1):181~185
    [67] D. Zhang, Z. Lv, L. Sun, et al. Tunable terahertz wave generation in GaSe crystals:SPIE,2008,7277:727710
    [68] Y. Lu, X. Wang, L. Miao, et al. Efficient and widely step-tunable terahertzgeneration with a dual-wavelength CO2laser. Applied Physics B: Lasers and Optics,2011,103(2):387~390
    [69] Z. M. Rao, X. B. Wang, Y. Z. Lu. Tunable terahertz generation from one CO2laser ina GaSe crystal. Optics Communications,2011,284(23):5472~5474
    [70] J. A. Armstrong, N. Bloembergen, J. Ducuing, et al. Interactions between lightwaves in a nonlinear dielectric. Phys. Rev.,1962,127:1918~1939
    [71] A.Szilagyi, A. Hordvik, and H. Schlossberg. A quasi-phase-matching technique forefficient optical mixing and frequency doubling. Journal of Applied Phys.,1976,47(5):2025~2032
    [72] M. M. Fejer, G. A. Magel, Dieter H. Jundt, et al. Quasi-Phase-Matched SecondHarmonic Generation: Tuning and Tolerances. IEEE J. Quantum Electron.,1992,28(11):2631~2654
    [73] M. S. Piltch, C. D. Cantrell, R. C. Sze. Infrared second-harmonic generation innonbirefringent cadmium telluride. J. Appl. Phys.,1976,47:3514~3517
    [74] M.Yamada, N.Nada, M.Saitoh, et al. First-order quasi-phase matched LiNbO3waveguide periodically poled by applying an external field for efficient field bluesecond-harmonic generation. Appl. Phys. Lett.,1993,62:435~80436
    [75] L. Gordon, G. L. Woods, R. C. Dckardt, et al. Diffusion-bonded stacked GaAs forquasi-phase-matched second-harmonic generation of a carbon dioxide laser.Electronics Letters,1993,29:1942~1944
    [76] M. L. Bortz, M. A Arbore, and M. M. Fejer, Quasi-phase-matched optical parametricamplification and oscillation in periodically poled LiNbO3waveguides. Opt. Lett.,1995,20(1):49~51
    [77] J. Hellostrom, G. Karlsson, V. Pasiskevicius, et al. Optical parametric amplication inperiodically poled KTiOPO4seeded by an Er-Yb: glass microchip laser. Opt. Lett.,2006,26(6):352~354
    [78] M. Tiihonen, V. Pasiskevicius, and F. Laurell. Broadly tunable picosecondnarrowband pulses in a periodically-poled KTiOPO4parametric amplifier. Opt.Express,2006,14:8728~8736
    [79] B. Xu, N. B. Min, Experimental obervation of bistability and instability in atwo-dimensional nonlinear optical superlattice, Phys. Rev. Lett.,1993,71:3959~3962
    [80] L. Sun, Y. F. Chen, W. H. Ma, L. W. Wang, T. Yu, N. B. Min. Evidence offerroelectricity weakening in the polycrystalline PbTiO3thin films. Appl. Phys. Lett.1996,68:37283~730
    [81] Y. Zhu, X. Zhang, Y. Lu, Y. Chen, S. Zhu, and N. Min, New type of polariton in apiezoelectric superlattice, Phys. Rev. Lett.,2003,90:053903
    [82] S. J. B. Yoo, C. Caneau, R. Bhat, et al. All optical wavelength by Quasi-phase-matchedDFG in AlGaAs waveguides. Appl. Phys. Lett.,1996,68:2609~2611
    [83] Y. S. Lee, T. Meade, V. Perlin, H. Winful, et al. Generation of narrow-band terahertzradiation via optical rectification of femtosecond pulses in periodically poled lithiumniobate. Appl. Phys. Lett.,2000,76:2505~2507
    [84] C. Weiss, G. Torosyan, J.P. Meyn, et al. Tuning characteristics of narrowband THzradiation generated via optical rectification in periodically poled lithium niobate.Optics Express,2001,8(9):497~502
    [85] Y. Ding, J. B. Khurgin, A new scheme for efficient generation of coherent andincoherent submillimeter to THz waves in periodically poled lithium niobate. OpticsCommunications,1998,148:105~109
    [86] Y. J. Ding, I. B. Zotova. Coherent and tunable terahertz oscillators, Generators andamplifiers. Journal of Nonlinear Optical Physics&Materials.2002,11(1):75~97
    [87] I. Tomita, H. Suzuki, H. Ito, et al. Terahertz-wave generation from quasi-phase-matched GaP for1.55μm pumping. Appl. Phys. Lett.,2006,88:071118
    [88] K. L. Vodoppyanov, M. M. Fejer, X. Yu, et al. Terahertz-wave generation inquasi-phase-matched GaAs. Appl. Phys. Lett.,2006,89:141119
    [89] Y. Jiang, Y. J. Ding, I. B. Zotova. Power scaling of widely-tunable monochromaticterahertz radiation by stacking high-resistivity GaP plates. Appl. Phys. Lett.,2010,96(3):31101
    [90] E. B. Petersen, W. Shi, A Chavez-Pirson, et al. Efficient parametric terahertzgeneration in quasi-phase-matched GaP through cavity enhanced different-frequencygeneration. Appl. Phys. Lett.,2011,98:121119
    [91] Y. Jiang, Y. J. Ding, I. B. Zotova. Power scaling of coherent terahertz pulses bystacking GaAs wafers. Appl. Phys. Lett.,2008,93(24):241102
    [92] S. E. Trubnick, S.Y. Tochitsky, C. Joshi. Fabrication and characterization ofTeflon-bonded periodic GaAs structures for THz generation. Opt. Express,2009,17:2385~2391
    [93] D. N. Nikogosyan. Nonlinear Optical Crystals: A Complete Survey. Berlin: Springer,2005.208~209
    [94] T. Skauli, P. S. Kuo, K. L. Vodopyanov, et al. Improved dispersion relations forGaAs and applications to nonlinear optics. J. Appl. Phys.,2003,94(10):6447~6455
    [95]陈家壁,彭润玲.激光原理及应用.(第二版).北京:电子工业出版社,2010.122~135
    [96] G. Herzberg.分子光谱与分子结构第二卷.(第一版).王鼎昌.北京:科学出版社,1986.56~62
    [97] W. J. Witteman. The laser.(First Edition). Berlin: Springer Verlag,1986.1~22
    [98] P. K. Cheo. Handbook of molecular lasers. M. Dekker,1987.1~92
    [99]巴音贺希格,高键翔,齐向东等.10.6μm激光器一级输出高衍射效率闪耀光栅的研制.光电子激光,2004,15(10):1137~1140
    [100] T. M. Hard. Laser wavelength selection and output coupling by a grating. Appl.Optics,1970,9(8):1825~1830
    [101]苗亮.高能量光泵太赫兹气体激光器研究:[博士学位论文].武汉:华中科技大学图书馆,2012
    [102]许德富,李育德,陈梅.双光栅调谐TEA CO2激光器输出光脉冲的时空特性研究.激光与红外,2009,39(1):25~27
    [103] W. Chongyi, Z. Jinwen, W. Fu, et al. Independently controllable multiline emissionfrom a TEA CO2laser. Applied Physics B: Lasers and Optics,1984,35(3):123~126
    [104] S. C. Mehendale, R. G. Harrison. Synchronized dual-wavelength single-modeemission from a TEA CO2laser. Opt. Lett.,1985,10(12):603~605
    [105]卢彦兆.基于CO2激光的可调谐中红外及THz差频产生技术研究:[博士学位论文].武汉:华中科技大学图书馆,2011
    [106] Y. Lu, X. Wang, X. Zhang, et al. Pulse behavior of a short pulse discharged TEACO2laser. P Lu, K Midorikawa, B Wilhelmi, et al. SPIE,2008,7276:72760T
    [107]巴音贺希格,高键翔,齐向东等.10.6μm激光器一级输出高衍射效率闪耀光栅的研制.光电子激光,2004,15(10):1137~1140
    [108]李忠华,李育德,廖均梅等.具有时间同步性的双脉冲TEA CO2激光器实验研究.激光与红外,2007,37(1):37~40
    [109] D. N. Nikogosyan. Nonlinear Optical Crystals. Complete-Survey, New York:Springer,2005.75~114
    [110] K. L. Vodopyanov, L. A. Kulevskii, V. G. Voevodin, et al. High efficiency middleIR parametric superradiance in ZnGeP2and GaSe crystals pumped by an erbiumlaser. Opt. Commun.,1991,83(5-6):322~326
    [111] Y. J. Ding, W. Shi. Widely-tunable, monochromatic and high-power terahertzsources and their applications. Journal of Nonlinear Optical Physics&Materials,2003,12(4):557~585
    [112] K. Allakhverdiev, N. Fernelius, F. Gashimzade, et al. Anisotropy of opticalabsorption in GaSe studied by midinfrared spectroscopy. J. Appl. Phys.,2003,93(6):3336~3339
    [113] S. Das, C. Ghosh, O. G. Voevodina, et al. Modified GaSe crystal as a parametricfrequency converter. Applied Physics B: Lasers and Optics,2006,82(1):43~46
    [114] C. W. Chen, T. T. Tang, S. H. Lin, et al. Optical properties and potential applicationsof GaSe at terahertz frequencies. J. Opt. Soc. Am.B,2009,26(9):58~65
    [115]王继扬译.非线性光学晶体一份完整的总结.北京:高等教育出版社,2009.243~255
    [116] C. J. Johnson, G. H. Sherman, R. Weil. Far Infrared Measurement of the DielectricProperties of GaAs and CdTe at300K and8K. Appl. Opt.,1969,8(8):1667~1671
    [117] R. H. Stolen. Far-infrared absorption in high resistivity GaAs. Appl. Phys. Lett.,1969,15(2):74~75
    [118] K. L. Vodopyanovm, M. M. Fejer, X. Yu, et al. Terahertz-wave generation inquasi-phase-matched GaAs. Appl. Phys. Lett.,2006,89:203503/1~3
    [119] L. A. Gordon, G. L. Woods, R. C. Eckardt, et al. Diffusion-bonded stacked GaAs forquasi-phase-matched second-harmonic generation of a carbon dioxide laser. Electron.Lett.,1993,29:1942~1943
    [120] L. A. Eyres, P. J. Tourreau, T. J. Pinguet, et al. All-epitaxial fabrication of thick,orientation-patterned GaAs films for nonlinear optical frequency conversion. Appl.Phys. Lett.,2001,79:904~906
    [121] Y. S. Lee, W. C. Hurlbut, K. L. Vodopyanov, et al. Generation of multicycle terahertzpulses via optical rectification in periodically inverted GaAs structures. Appl. Phys.Lett.,2006,89:181104
    [122]刘云飞.金属栅网的亚毫米散射特性研究:[博士学位论文].南京:南京航空航天大学图书馆,2004
    [123]张铁犁.周期极化晶体准相位匹配光学参量产生的研究:[硕士学位论文].天津:天津大学图书馆,2005
    [124] S. N. Zhu, Y. Y. Zhu, N. B. Ming. Quasi-Phase-Matched Third-Harmonic Generationin a Quasi-Periodic Optical Superlattice. Science,1997,278:843~846

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700