脉冲CO_2激光诱导空气等离子体的光谱诊断
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将高功率激光进行聚焦后,会引起被照射物质击穿产生高温高压等离子体,并伴随有强烈的冲击波效应和闪光。于是,研究者们开始将激光诱导等离子体的这些特性应用到航空航天、核能开发、工业监测、环境污染和生物工程等领域。同时,随着对激光诱导等离子体相关机理和特性研究的不断推进,激光诱导等离子体的相关应用也必将得到更为深入的发展。
     本论文利用脉冲CO2激光器在空气中聚焦诱导产生等离子体,从理论上和实验上对激光诱导等离子体的击穿、膨胀、辐射过程进行了比较系统的研究,并分析了激光与等离子体相互作用时的能量沉积过程。
     本论文首先对脉冲CO2激光诱导空气等离子体的击穿和演化过程进行了理论分析和实验观测。由于C02激光的单光子能量非常小,多光子吸收电离过程对等离子体中的电子增长几乎没有贡献,自然环境中存在的自由电子碰撞雪崩电离是空气击穿的主要机制。在实验上,利用ICCD相机窄门宽序列采样的方法,探测得到了轴向和径向空气等离子体在击穿过后的膨胀过程。同时,结合激光支持的球面爆轰波模型,研究了在不同焦距和入射激光能量下空气等离子体的膨胀过程。实验结果表明,在较长的焦距和较高的入射激光能量下,等离子体具有更大的体积和更快的膨胀速度;激光支持爆轰波的结束时间与等离子体吸收面的激光功率密度密切相关,激光功率密度越高,等离子体爆轰波结束的时间就越晚。另外,结合测量得到的等离子体波前面积,计算得到了在等离子体波前位置获得的推力。结果显示,采用长焦距击穿产生的等离子体在波前位置获得的推力要比短焦距的要大。
     随后,对激光诱导击穿空气等离子体的发射光谱进行了细致的实验研究和理论分析。
     在理论上,基于局域热力学平衡态下的等离子体发射光谱理论,并结合空气等离子体Saha电离平衡方程,计算了空气等离子体中的平衡组分和连续光谱。结果表明,随着温度升高,高电离态粒子的浓度越来越高,空气等离子体的电离度也随之升高;并且单原子结构的粒子占据了等离子体中的绝对比例,而分子结构的粒子几乎可以忽略不计;同时,随着电子温度和电子密度升高,等离子体的连续光谱会逐渐增强,但是总的看来,轫致辐射占据了空气等离子体中连续光谱的主导位置。
     另外,基于局域热力学平衡态下的等离子体发射光谱理论,并在光学薄的假设下,建立了空气等离子体的线状光谱模型和连续光谱模型。利用该模型对实验测得的空气等离子体发射光谱进行了拟合,并计算得到了电子温度和电子密度。
     在实验上,为了获得等离子体在激光脉冲作用时间内的演化过程,搭建了一套具有时间和空间分辨的激光诱导空气等离子体发射光谱诊断实验平台,实现了轴向和径向的时空分辨等离子体发射光谱诊断。利用时间分辨发射光谱诊断装置,测量得到了不同激光脉冲能量条件下激光诱导空气等离子体的发射光谱特性。结果表明,在高能量激光诱导产生的空气等离子体中,离子线状光谱能够维持的时间远比低能量激光诱导产生的等离子体短,并且高能量激光产生的等离子体会表现出更为强烈的连续光谱强度。
     轴向和径向的时空分辨空气等离子体发射光谱的诊断由成像光谱仪的狭缝耦合方式实现。实验中发现,空气等离子体在轴向上的光强逆着激光方向逐渐增大,而径向等离子体的光谱分布则出现了一个向外围“分离”的现象。通过利用本论文建立的线状光谱模型计算了电子温度和电子密度随着时间和空间的变化规律。结果表明,在抛物聚焦面中产生的空气等离子体会形成一层对CO2激光不透明的反射面,使激光能量不能穿透这层临界面而到达等离子体中心,因此会使激光发生反射而对这层临界面外围的等离子体进行二次加热,而最终形成等离子体辐射光强在径向上分离。
When a high power laser is focused on any material, an optical breakdown of the material will be occurred, and produces the high temperature and high pressure plasma, accompanying with a strong shock wave and spark. This laser induced plasma also attracts researchers'attention, and is applied widely in the aerospace, nuclear energy, industrial monitoring, environment pollution, biological engineering and other fields. With a deeper knowledge of the related mechanism and characteristics of laser induced plasma, these applications of laser induced plasma will get more and more in-depth development.
     In this dissertation, the laser induced air plasma was generated by the pulsed CO2laser focused in air. The theories and the experiments of laser induced air plasma breakdown, expansion, spectral radiation process had been investigated, and the energy deposition interaction between the pulsed laser and plasma was analyzed at the same time.
     Firstly, we investigated the optical breakdown and expansion of air plasma generated by pulsed CO2laser in both theory and experiment. Because of the small single photon energy of the CO2laser, the initial free electron produced from the multiphoton absorption ionization could be ignored, while the initial free electron was all produced by the avalanche ionization in laser field. The axial and radial laser induced air plasma expansions were detected by the sequential acquiring method of ICCD camera. Combined with the spherical laser supported detonation wave model, air plasma expansion processes with different focal length and different incident laser energy were investigated, the experimental results showed that air plasma had bigger volume and higher expansion rate when using the longer focal length and higher incident laser energy, and the termination of laser supported detonation wave was closely related to the laser power density in focusing area, the higher laser power density, the later termination of laser supported detonation wave. In addition, based on the measurement of the area of the plasma wave front, we calculated the thrust at the position in front of the plasma wave, which showed that the thrust generated by long focal length of plasma was bigger than the short focal length.
     Subsequently, we studied the laser induced air plasma by the spectroscopic diagnosis in both theory and experiment. Based on the assumption that the plasma in the local thermodynamic equilibrium state, and combining the Saha ionization of air plasma equilibrium equation, we calculated the equilibrium composition and continuous spectrum of air plasma radiation. With the increase of temperature, ionization state of air particle became more and more high, corresponding to the degree of ionization of air plasma also became more and more high, and the single atomic structure of the particle occupied absolute proportion of plasma, while the molecular structure of the particle were almost negligible. In addition, with the increase of electron temperature and electron density, the intensity of continuous spectrum would strengthen gradually; however, bremsstrahlung dominated the continuous spectrum in the air plasma.
     Furthermore, based on the emission spectra theory of the local thermodynamic equilibrium plasma, assuming the air plasma in optical thin, we established line spectra model and continuous spectra model of air plasma, and carried on the fitting of the emission spectra of air plasma to obtain the electron temperature and electron density in plasma.
     On the experiment, in order to obtain the evolution of the laser induced plasma in the stage of laser pulse duration, we built a time and space resolution of laser induced air plasma emission spectra diagnosis experiment platform, and realized the axial and radial directions respectively by the plasma emission diagnosis. By using time-resolved emission diagnosis device, different incident energy of laser induced air plasma emissions were measured, the results showed that the ion line spectrum radiation generated by higher energy laser could maintain longer time, and plasma produced by higher energy laser showed more intense continuum radiation.
     In addition, the emission spectra of the axial and radial air plasma were diagnosed by using the imaging spectrometer slit coupling method. In this space-resolved emission spectra diagnosis experiment, we found that the intensity of air plasma increased gradually against the direction of incident laser, and the spectral distribution of the radial plasma showed a "separation" phenomenon to the periphery. Then, the spatio-temporal evolution of the electron temperature and electron density in air plasma were calculated by the line spectra model we established, the results showed that air plasma would generate a layer which was opaque for CO2laser, and the laser energy could not penetrate this critical layer to arrive the plasma center, therefore, the reflected laser would heat the plasma outside this critical layer again, leading to the separation of the plasma radiation intensity on the radial direction.
引文
[1]Maker P D, Terhune R W, Savage C M. Optical Third Harmonic Generation. Quantum Electronics:Proceedings of the 3rd International Congress, edited by Grivet P and Bloembergen N. Columbia University Press, New York,1964,2:1559-1576
    [2]Davis E W, Mead F B. Review of laser lightcraft propulsion system. Beamed energy propulsion,5th International symposium, edited by A. V. Pakhomov. American Institute of Physics,2008, CP997:283-294
    [3]Oliveira A C, Minucci M A S, Toro P G P, et al. Drag Reduction by Laser-Plasma Energy Addition in Hypersonic Flow. Beamed energy propulsion,5th International symposium, edited by A. V. Pakhomov. American Institute of Physics,2008, CP997: 379-389
    [4]Lind J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Physics of Plasmas,1995,2(11): 3933-4024
    [5]Moses E I, Wuest C R. The National Ignition Facility:Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies. Fusion Science and Technology,2003,43(3):420-427
    [6]Noll R, Bette H, Brysch A, et al. Laser-induced breakdown spectrometry-applications for production control and quality assurance in the steel industry. Spectrochimica Acta Part B:Atomic Spectroscopy,2001,56(6):637-649
    [7]Barrette L, Turmel S. On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy:graphitic vs. total carbon detection. Spectrochimica Acta Part B:Atomic Spectroscopy,2001, 56(6):715-723
    [8]Kwaka J H, Kima G, Kima Y J, et al. Determination of Heavy Metal Distribution in PM10 During Asian Dust and Local Pollution Events Using Laser Induced Breakdown Spectroscopy (LIBS). Aerosol Science and Technology,2012,46(10): 1079-1089
    [9]Area G, Ciucci A, Palleschi V, et al. Detection of pollutants in liquids by laser induced breakdown spectroscopy technique. Geoscience and Remote Sensing Symposium, Pisa,1996,1:520-522
    [10]Baudelet M, Guyon L, Yu J, et al. Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria:A comparison to the nanosecond regime. Journal of Applied Physics,2006,99(8):084701
    [11]Morel S, Leone N, Adam P, et al. Detection of Bacteria by Time-Resolved Laser-Induced Breakdown Spectroscopy. Applied Optics,2003,42(30):6184-6191
    [12]Kantrowitz A. Propulsion to orbit by ground-based lasers. Astronautics and Aeronautics,1972,10(5):74-76
    [13]Salas M D. A Review of Hypersonics Aerodynamics, Aerothermodynamics and Plasmadynamics Activities within NASA's Fundamental Aeronautics Program.39th AIAAThermophysics Conference, AIAA,2007.4264
    [14]毛枚良,董维中,邓小刚等.强激光与高超声速球锥流场干扰数值模拟研究.空气动力学学报,2001,19(2):172-176
    [15]李倩,金星,曹正蕊等.激光等离子体点源减阻技术中入射能量对气动阻力的影响.推进技术,2010,31(3):377-380
    [16]Riggins D W, Nelson H F, Johnson E. Blunt-body wave drag reduction using focused energy deposition. AIAA journal,1999,37(4):460-467
    [17]Riggins D W, Nelson H F. Hypersonic flow control using upstream focused energy deposition. AIAA journal,1999,38(4):723-725
    [18]洪延姬,李倩,方娟等.激光等离子体减阻技术研究进展.航空学报,2010,31(1):93-101
    [19]Oliveira A C, Minucci M A S, Toro P G P, et al. Schieren visualization technique applied to the study of laser induced breakdown in lower density hypersonic flow. Beamed energy propulsion,4th International symposium, edited by K. Komurasaki, et al. American Institute of Physics,2006, CP830:504-509
    [20]Riggins D W, Barnett J T, Taylor T. Drag reduction and heat transfer mitigation for blunt bodies in hypersonic flight a survey of techniques.12th AIAA International space planes and hypersonic systems and technologies conference, AIAA,2003. 6968
    [21]Rohwetter P, Kasparian J, Stelmaszczyk K, et al. Laser-induced water condensation in air. Nature Photonics,2010,4:451-456
    [22]Henin S, Petit Y, Rohwetter P, et al. Field measurements suggest the mechanism of laser-assisted water condensation. Nature Communications,2011,2:456
    [23]Petit Y, Henin S, Kasparian J, et al. Production of ozone and nitrogen oxides by laser filamentation. Applied Physics Letters,2010,97(2):021108
    [24]Petit Y, Henin S, Kasparian J, et al. Influence of pulse duration, energy, and focusing on laser-assisted water condensation. Applied Physics Letters,2011,98(4):041105
    [25]Manning T J, Grow W R. Inductively coupled plasma-atomic emission spectrometry. Chemical Educator,1997,2(1):1-19
    [26]Jin Q, Zhu C, Border M W, et al. A microwave plasma torch assembly for atomic emission spectrometry. Spectrochimica Acta Part B:Atomic Spectroscopy,1991, 46(3):417-430
    [27]Ciucci A, Corsi M, Palleschi V, et al. New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy. Applied Spectroscopy,1999,53(8): 960-964
    [28]Ambartsumyan R V, Basov N G, Boiko V A, et al. Heating of matter by focused laser radiation. Soviet Journal of Experimental and Theoretical Physics,1965,21(6): 1061-1064
    [29]Barnes P A, Rieckhoff K E. Laser induced underwater sparks. Applied Physics Letters,1968,13(8):282-284
    [30]Meyerand R G, Jr, Haught A F. Gas Breakdown at Optical Frequencies. Physical Review Letters,1963,11(9):401-403
    [31]Meyerand R G, Jr, Haught A F. Optical-Energy Absorption and High-Density Plasma Production. Physical Review Letters,1964,13(1):7-9
    [32]Minck R W. Optical Frequency Electrical Discharges in Gases. Journal of Applied Physics,1964,35(1):252-254
    [33]Gili Dennis H, Dougal Arwin A. Breakdown Minima Due to Electron-Impact Ionization in Super-High-Pressure Gases Irradiated by a Focused Giant-Pulse Laser. Physical Review Letters,1965,15(22):845-847
    [34]Michelis C D. Gas breakdown produced by a train of mode-locked laser pulses. Optics Communications,1970,2(6):255-256
    [35]Ireland C L M, Yi A, Aaron J M, et al. Focal-length dependence of air breakdown by a 20-psec laser pulse. Applied Physics Letters,1974,24(4):175-177
    [36]Fradin D W, Bloembergen N, Letellier J P. Dependence of laser-induced breakdown field strength on pulse duration. Applied Physics Letters,1973,22(12):635-637
    [37]Lencioni D E. The effect of dust on 10.6μm laser induced air breakdown. Applied Physics Letters,1973,23(1):12-14
    [38]Pinnick R G, Chylek P, Jarzembski M, et al. Aerosol-induced laser breakdown thresholds:wavelength dependence. Applied Optics,1988,27(5):987-996
    [39]Sircar A, Dwivedi R K, Thareja R K. Laser induced breakdown of Ar, N2 and O2 gases using 1.064,0.532,0.355 and 0.266μm radiation. Applied Physics B:Lasers and Optics,1996,63(6):623-627
    [40]Niemz M H. Threshold dependence of laser-induced optical breakdown on pulse duration. Applied Physics Letters,1996,66(10):1181-1183
    [41]Chen Y L, Lewis J W L, Parigger C. Spatial and temporal profiles of pulsed laser-induced air plasma emissions. Journal of Quantitative Spectroscopy & Radiative Transfer,2000,67(12):91-103
    [42]Harilal S S, Harilal B. Experimental Studies of the Energy Absorption and Emission from Laser Induced Spark in Air. University of California, San Diego. Laser Plasma and Laser Matter Interactions Laboratory Internal Lab Report,2002, January 30: 1-16
    [43]Thiyagarajan M, Thompson S. Optical breakdown threshold investigation of 1064 nm laser induced air plasmas. Journal of Applied Physics,2012,111:073302
    [44]Raizer Y P. Breakdown and heating of gas by a laser beam. Uspekhi Fizicheskikh Nauk (U.S.S.R.),1965,87:29-64
    [45]Raizer Y P. Breakdown and heating of gases under the influence of a laser beam. Soviet Physics Uspekhi,1966,8(5):650-673
    [46]Gold A, Bebb H B. Theory of Multiphoton Ionization. Physical Review Letters,1965, 14(3):60-63
    [47]Keldysh L V. Ionization in the field of a strong electromagnetic wave. Soviet Journal of Experimental and Theoretical Physics,1965,20(5):1307-1314
    [48]Morgan C G. Laser-induced breakdown of gases. Reports on Progress in Physics, 1975,38(5):621-665
    [49]Kennedy P K. A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media:part I-Theory. IEEE Journal of Quantum Electronics,1995,31(12):2241-2249
    [50]Shen Y R. ThePrinciples of Nonlinear Optics. New York:Wiley,1984.528-539
    [51]Raizer Y P. Heating of a Gas by a Powerful Light Pulse. Soviet Journal of Experimental and Theoretical Physics,1966,21:1009-1017
    [52]Su F Y, Boni A A. Nonlinear model of laser supported deflagration waves. Physics of Fluids,1976,19(7):960-966
    [53]Nielsen P E. Hydrodynamic calculations of surface response in the presence of laser-supported detonation waves. Journal of Applied Physics,1975,46(10):4501-4505
    [54]Jumper E J. Transient analysis of a laser supported detonation wave using Whitham's rule. Physics of Fluids,1978,21(4):549-551
    [55]Jumper E J. Implications of applying a global energy balance to laser-supported and chemical detonation waves. Physics of Fluids,1984,27(9):2361-2364
    [56]Jackson J P, Nielsen P E. Role of radiative transport in the propagation of laser supported combustion waves. AIAA Journal,1974,12(11):1498-1501
    [57]Boni A A, Su F Y. Propagation of laser supported deflagration waves. Physics of Fluids,1974,17(2):340-342
    [58]Keefer D, Peters C, Crowder H. A re-examination of the laser-supported combustion wave. AIAA Journal,1985,23(8):1208-1212
    [59]Kemp N H, Root R G. Analytical study of laser-supported combustion waves in hydrogen. Journal of Energy,1979,3(1):40-49
    [60]Giuliani J L, Mulbrandon M, Hyman E. Numerical simulation of laser target interaction and blast wave formation. Physics of Plasmas,1989,1(7):1463-1476
    [61]Wang T S, Chen Y S, Liu J, et al. Advanced Performance Modeling of Experimental Laser Lightcraft. Journal of Propulsion and Power,2002,18(6):1129-1138
    [62]Wang T S, Rhodes R. Thermophysics Characterization of Multiply Ionized Air Plasma Absorption of Laser Radiation.33rd AIAA Plasmadynamics and Lasers Conference, Maui, Hawaii,2002.2203
    [63]Golovachov Y P, Kurakin Y A, Rezunkov Y A, et al. Numerical Analysis of Gasdynamic Aspects of Laser Propulsion. Beamed Energy Propulsion:1st International Symposium on Beamed Energy Propulsion, edited by A. V. Pakhomov. American Institute of Physics,2003, CP664:149-159
    [64]Mori K, Komurasaki K, Arakawa Y. Energy transfer from a laser pulse to a blast wave in reduced-pressure air atmospheres. Journal of Applied Physics,2004,95(11): 5979-5983
    [65]龚平,唐志平.大气呼吸模式激光推进的机理分析及数值模拟.爆炸与冲击,2003,23(6):501-508
    [66]Gong P, Tang Z P. Numerical Simulation for Laser Propulsion of Air Breathing Mode Considering Moving Boundaries and Multi-Pulses. Beamed energy propulsion:4th International Symposium on Beamed Energy Propulsion, American Institute of Physics,2005, CP830:87-94
    [67]李倩,洪延姬,曹正蕊.吸气式激光推进推力产生机理的数值模拟.爆炸与冲击,2006,26(6):550-555
    [68]Hong Y J, Song J L, Cui C Y, et al. Numerical study of energy conversion process in air-breathing laser propulsion. Applied Physics A:Materials Science & Processing, 2011,105(1):189-196
    [69]鄢昌渝,吴建军,刘洪刚等.激光参数对光船性能影响分析.航空学报,2009,30(2):193-199
    [70]鄢昌渝.激光等离子体相互作用机理与大气吸气式激光推进数值计算研究:[博士学位论文].长沙:国防科学技术大学,2008
    [71]窦志国,冯海兵,黄辉等.聚焦方向对吸气式激光推进冲量耦合系数的影响.推进技术,2010,31(1):111-122
    [72]柯发伟,金星,李倩等.点火形状对激光推力器推进性能的影响.装备指挥技术学院学报,2009,20(5):68-71
    [73]Mead F B, Jr., Myrabo L N, et al. Flight and Ground Tests of a Laser-Boosted Vehicle.34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 1998,3735:1-10
    [74]Myrabo L N, Messitt D G, Mead F B, Jr., et al. Ground and Flight Tests of a Laser Propelled Vehicle.36th AIAA Aerospace Sciences Meeting and Exhibit,1998,1001: 1-10
    [75]Schall W O, Bohn W L, Eckel H A, et al. Lightcraft experiments in Germany. High-Power Laser Ablation III, Proceedings of SPIE,2000,4065:472-481
    [76]Myrabo L N. Brief History of the Lightcraft Technology Demonstrator (LTD) Project. Beamed Energy Propulsion:1st International Symposium on Beamed Energy Propulsion, edited by A. V. Pakhomov. American Institute of Physics,2003, CP664: 49-60
    [77]郑义军,谭荣清,张阔海等.激光推进自由飞行实验.中国激光,2006,33(2):171-174
    [78]郑义军,谭荣清,柯常军等.脉冲能量对激光推进中冲量耦合系数的影响.中国激光,2006,33(12):1684-1687
    [79]郑义军.激光参量对激光推进中冲量耦合系数的影响:[博士学位论文].北京:中国科学院电子学研究所,2006
    [80]Gornushkina I B, Stevensona C L, Smith B W, et al. Modeling an inhomogeneous optically thick laser induced plasma:a simplified theoretical approach. Spectrochimica Acta Part B:Atomic Spectroscopy,2001,56(9):1769-1785
    [81]Gornushkina I B, Kazakovb A Ya, Omenetto N, et al. Radiation dynamics of post-breakdown laser induced plasma. Spectrochimica Acta Part B:Atomic Spectroscopy,2004,59(4):401-418
    [82]Gornushkina I B, Kazakovb A Ya, Omenetto N, et al. Experimental verification of a radiative model of laser-induced plasma expanding into vacuum. Spectrochimica Acta Part B:Atomic Spectroscopy,2005,60(2):215-230
    [83]Wester R, Noll R. Heuristic modeling of spectral plasma emission for laser-induced breakdown spectroscopy. Journal of Applied Physics,2009,106(12):123302
    [84]Hershkowitz N. How Langmuir probes work. In Plasma Diagnostics. Discharge parameters and chemistry, Vol.1, Academic Press, Boston,1989.182-231
    [85]Koopman D W. Langmuir Probe and Microwave Measurements of the Properties of Streaming Plasmas Generated by Focused Laser Pulses. Physics of Fluids,1971, 14(8):1707-1706
    [86]Hendron J M, Mahony C M O, T Morrow, et al. Langmuir probe measurements of plasma parameters in the late stages of a laser ablated plume. Journal of Applied Physics,1997,81(5):2131-2134
    [87]Weaver I, Martin G W, Graham W Q et al. The Langmuir probe as a diagnostic of the electron component within low temperature laser ablated plasma plumes. Review of Scientific Instruments,1999,70(3):1801-1805
    [88]Hansen T N, Schou J, Lunney J G. Langmuir probe study of plasma expansion in pulsed laser ablation. Applied Physics A:Materials Science & Processing,1999, 69(1):601-604
    [89]Jones J E, Wang T S. Time Dependent Measurements of Electron Temperature and Density in a Laser Lightcraft,37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Salt Lake City, Utah,2001.3796
    [90]Doggetta B, Joergensena C B, Lunney J G, et al. Behaviour of a planar Langmuir probe in a laser ablation plasma. Applied Surface Science,2005,247(1):134-138
    [91]Daiber J W, Spectra of laser-produced breakdown in gases. Bulletin of the American Physical Society,1965,10:477-481
    [92]Burgess D D, Fawcett B C, Peacock N J. Vacuum ultra-violet emission spectra from laser-produced plasmas. Proceedings of the Physical Society,1967,92(3):805-816
    [93]Daiber J W, Winans J G. Radiation from Laser-Heated Plasmas in Nitrogen and Argon. Journal of the Optical Society of America,1968,58(1):76-79
    [94]Korunchikov A I, Yankovskii A A. Factors affecting the spectrum of a plasma produced by a laser. Journal of Applied Spectroscopy,1967,7(4):386-389
    [95]Camacho J J, Poyato J M L, Diaz L, et al. Optical emission studies of nitrogen plasma generated by IR CO2 laser pulses. Journal of Physcis B:Atomic, Molecular and Optical Physics,2007,40(24):4573-4590
    [96]Camacho J J, Santos M, Diaz L, et al. Optical emission spectroscopy of oxygen plasma induced by IR CO2 pulsed laser. Journal of Physics D:Applied Physics,2008, 41(21):215206
    [97]Camacho J J, Santos M, Diaz L, et al. Spectroscopy study of air plasma induced by IR CO2 laser pulses. Applied Physics A:Materials Science & Processing,2010,99(1): 159-175
    [98]Camacho J J, Diaz L, Santos M, et al. Time-resolved optical emission spectroscopy of laser-produced air plasma. Journal of Applied Physics,2010,107(8):083306
    [99]Parigger C, Lewis J W L, Plemmons D. Electron number density and temperature measurement in a laser-induced hydrogen plasma. Journal of Quantitative Spectroscopy and Radiative Transfer,1995,53(3):249-255
    [100]Yalcin S, Crosley D R, Smith G P, et al. Influence of ambient conditions on the laser air spark. Applied Physics B:Lasers and Optics,1999,68(1):121-130
    [101]Glumac N, Elliott G, Boguszko M. Temporal and Spatial Evolution of a Laser Spark in Air. AIAA Journal,2005,43(9):1984-1994
    [102]Joshi S, Yalin A P, Angola A D, et al. A Time Resolved Spectroscopic Study of Laser Generated Plasmas in Air at High Pressures.41st Plasmadynamics and Lasers Conference, Chicago, Illinois, AIAA,2010.4309
    [103]Harilal S S. Spatial and Temporal Evolution of Argon Sparks. Applied Optics,2004, 43(19):3931-3937
    [104]Harilal S S, Bindhu C V, Issac R C, et al. Electron density and temperature measurements in a laser produced carbon plasma. Journal of Applied Physics,1997, 82(5):2140-2146
    [105]Harilal S S, Shay B O, Tillack M S, et al. Spectroscopic characterization of laser-induced tin plasma. Journal of Applied Physics,2005,98(11):013306
    [106]Aragon C, Penalba F, Aguilera J A. Spatial characterization of laser-induced plasmas: distributions of neutral atom and ion densities. Applied Physics A:Materials Science & Processing,2004,79(4):1145-1148
    [107]Aguilera J A, Aragon C. Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions:Comparison of local and spatially integrated measurements. Spectrochimica Acta Part B:Atomic Spectroscopy, 2004,59(12):1861-1876
    [108]Aguilera J A, Aragon C. Multi-element Saha-Boltzmann and Boltzmann plots in laser-induced plasmas. Spectrochimica Acta Part B:Atomic Spectroscopy,2007, 62(4):378-385
    [109]李小银,林兆祥,刘煜炎等.激光大气等离子体光谱特性实验研究.光学学报,2004,24(8):1051-1056
    [110]林兆祥,吴金泉,龚顺生.激光击穿氮气等离子体光谱的时间特性.光学与光电技术,2005,3(1):22-25
    [111]林兆祥,吴金泉.激光氧气等离子体光谱的时间演化研究.光谱学与光谱分析,2006,26(6):994-997
    [112]吴金泉,宋述燕,张文艳等.激光大气等离子体电子温度的空间分布特性.中南民族大学学报(自然科学版),2006,25(3):43-46
    [113]林兆祥,陈波,吴金泉等.激光大气等离子体的电子密度空间分布特性研究.光谱学与光谱分析,2007,27(1):18-22
    [114]吴金泉,林兆祥,宋述燕等.激光大气等离子体的空间分布特性.强激光与粒子束,2007,19(5):759-762
    [115]唐晓闩,李春燕,朱光来等.激光诱导Al等离子体中电子密度和温度的实验研究.中国激光,2004,31(6):687-692
    [116]张保华,刘文清,崔执凤.激光诱导Co等离子体电子密度的空间演化特性.中国激光,2008,35(10):1485-1490
    [117]张凌,唐志平,董慧峰等.“烧蚀模式”激光推进等离子体的光谱诊断.原子与分子物理学报,2007,24(6):1123-1130
    [118]余亮英,程祖海,左都罗等.空气呼吸模式CO2激光等离子体光谱观察.应用光学,2007,28(6):751-755
    [119]Lu H, Cheng Z H, Zuo D L, et al. Experimental research on plasma induced by TEA CO2 laser propulsion. Plasma Science and Technology,2008,10(2):203-206
    [120]李桂春.气动光学.北京:国防工业出版社,2007.32-63
    [121]Shimamura K, Hatai K, Kawamura K, et al. Internal structure of laser supported detonation waves by two-wavelength Mach—Zehnder interferometer. Journal of Applied Physics,2011,109(8):084910
    [122]福田章雄.Characterization of post laser supported detonation by interferometry:[修士学位论文].东京:东京大学,2004
    [123]Doyle L A, Martin G W, Williamson T P, et al. Three-dimensional electron number densities in a titanium PLD plasma using interferometry. IEEE Transactions on Plasma Science,1999,27(1):128-129
    [124]郑峰,张宏超,陆建等.激光等离子体干涉条纹的图像处理方法研究.南京理工大学学报(自然科学版),2009,33(5):668-671
    [125]Zhang H C, Lu J, Shen Z H, et al. Investigation of 1.06μm laser induced plasma in air using optical interferometry. Optics Communications,2009,282(9):1720-1723
    [126]Morgan F, Evans L R, Morgan C G. Laser beam induced breakdown in helium and argon. Journal of Physics D:Applied Physics,1971,4(2):225-235
    [127]Stricker J, Parker J G. Experimental investigation of electrical breakdown in nitrogen and oxygen induced by focused laser radiation at 1.064μm. Journal of Applied Physics,1982,53(2):851-855
    [128]Phuoc T X. Laser-induced spark ignition fundamental and applications. Optics and Lasers in Engineering,2006,44(5):351-397
    [129]Docchio F. Lifetimes of Plasmas Induced in Liquids and Ocular Media by Single Nd:YAG Laser Pulses of Different Duration. Europhysics Letters,1988,6(5):407-412
    [130]Ireland C L M, Morgan C G. Gas breakdown by a short laser pulse. Journal of Physics D:Applied Physics,1973,6(6):720-729
    [131]泽尔道维奇 ЯЪ,康巴涅耶茨A C著.爆震原理.徐华舫译.北京:高等教育出版社,1958.126-159
    [132]陆建,倪晓武,贺安之.激光与材料相互作用学.北京:机械工业出版社,1996.111-134
    [133]Mori K, Komurasaki K, Arakawa Y. Influence of the focusing f number on the heating regime transition in laser absorption waves. Journal of Applied Physics,2002, 92(10):5663-5667
    [134]Ushio M, Komurasaki K, Kawamura K, et al. Effect of laser supported detonation wave confinement on termination conditions. Shock Waves,2008,18(1):35-39
    [135]Palmer T A, Debroy T. Enhanced dissolution of nitrogen during gas tungsten arc welding of steels. Science and Technology of Welding and Joining,1998,3(4): 190-203
    [136]Kramida A, Ralchenko Y, Reader J, et al. NIST Atomic Spectra Database. On line, NIST,2012.1-20
    [137]Ma S, Gao H, Wu L. Modified Fowler-Milne method for the spectroscopic determination of thermal plasma temperature without the measurement of continuum radiation. Review of Scientific Instruments,2011,82(1):013104
    [138]Menart J, Heberlein J, Pfender E. Line-by-line method of calculating emission coefficients for thermal plasmas consisting of monatomic species. Journal of Quantitative Spectroscopy and Radiative Transfer,1996,56(3):377-398
    [139]Holtgreven W L. Plasma diagnostics. New York:American Institute of Physics Press, 1995.521-573
    [140]Griem H R. Plasma Spectroscopy. New York:McGraw-Hill Book Company,1964. 88-91
    [141]Sobelman I I, Vainshtein L A, Yukov E A. Excitation of atoms and broadening of spectral lines. New York:Springer-Verlag Berlin Heidelbery,1981.239-298
    [142]Heading D J, Wark J S, Lee R W, et al. Comparison of the semiclassical and modified semiempirical method of spectral calculation. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics,1997,56(1):936-946
    [143]Hermann J, Leborgne C B, Hong D. Diagnostics of the early phase of an ultraviolet laser induced plasma by spectral line analysis considering self-absorption. Journal of Applied Physics,1998,83(2):691-696
    [144]Colon C, Medina A A. Application of a laser produced plasma:Experimental Stark widths of single ionized lead lines. Spectrochimica Acta Part B:Atomic Spectroscopy,2006,61(7):856-863
    [145]Hora H. Laser Plasmas and Nuclear Energy. New York:Plenum Press,1975.131-203
    [146]Cristoforettia G, Giacomob A D, Aglio M D, et al. Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy:Beyond the McWhirter criterion. Spectrochimica Acta Part B:Atomic Spectroscopy,2010,65(1):86-95
    [147]Drawin H W. Validity conditions for local thermodynamic equilibrium. Zeitschrift fur Physik,1969,228(2):99-119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700