2μm激光测风雷达外差探测方法与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“晴空”大气矢量风场测量一直是微波气象雷达发展的盲点。随着激光雷达技术和外差探测技术的迅速发展,基于多普勒效应的相干测风激光雷达已经成为大气矢量风场、大气湍流和局域风切变等测量的主要手段之一。相干测风激光雷达具有高分辨率和高精度的优点,而且由于激光与大气物质相互作用的特殊物理机制,它还具有极强的晴空探测能力,与微波气象雷达互补,可以构成“无缝隙”的大气遥感系统。因此,国内外各高端科研机构纷纷投入大量人力和物力进行研究和开发。
     目前,2μm相干测风激光雷达是国际测风激光雷达研究热点之一。本文围绕其所涉及的科学问题和关键技术,研究总结了大气后向散射信号的外差探测理论模型,提出了自由空间与光纤复合相干光学系统设计方法,研究了极微弱宽带中频信号提取与正交数字化处理的关键技术,最后搭建了一套2μm相干测风激光雷达外差探测实验系统,进行了实验验证。本论文主要研究内容包括以下几个方面:
     (1)系统地研究大气后向散射气象回波信号的外差探测理论,以此指导相干测风激光雷达系统设计。在考虑大气折射率湍流影响的条件下,利用菲涅尔衍射理论和光场的路径积分表达式,建立了相干测风激光雷达系统的外差效率的理论模型,分别给出了探测平面、接收平面和目标平面上外差效率的表达式,得到了相干探测激光雷达方程;根据相干激光雷达风速测量原理,给出了三维矢量风速的反演方法;建立了信噪比随本振光功率变化的理论模型,仿真结果表明:最佳本振光功率约为0.268mW;研究了三种相位失配和偏振态失配对外差效率的影响,针对于不同的情况给出了响应的仿真结果;探讨了高灵敏度平衡外差探测新方法,结果表明:可以明显克服本振光散粒噪声和提高外差探测的信噪比。
     (2)研究空间光与光纤高效耦合型相干光学系统设计方法,建立了一套收发合置相干光学系统。依据收发合置光学天线发射和接收光束的截断比理论,给出外差接收信号随截断比变化的数学表达式,研究结果表明:最佳光束截断比约为1.75;理论推导天线效率与外差效率之间的数学关系,仿真计算在弱湍流Cn~2=10~(-15)条件下光学天线效率约为0.51、在强湍流Cn~2=10~(-13)条件下约为0.03;利用ZEMAX软件优化设计与实现一套收发合置离轴卡塞格伦光学天线系统和预扩束系统,达到衍射极限水平;设计并实现一种耦合效率约为83%的2μm单模保偏光纤耦合器、2μm单模保偏光纤合束器、2μm单模保偏光纤分束器以及2μm收发偏振隔离光开关(即偏振分光棱镜+λ/4波片),克服光束在自由空间传输产生的退偏及本振光泄露问题。
     (3)研究极微弱宽带气象回波中频信号提取与正交数字解调技术。讨论了多脉冲积累法提取极微弱信号的方法,即对多脉冲气象回波信号进行中频直接采样、数字信号相干积累及功率谱非相干积累;针对于105MHz载频和30MHz带宽的中频信号,重点讨论正交混频低通滤波和奇偶抽取多相滤波的两种数字化处理算法,在64阶原型等纹波FIR滤波器设计基础上,以响应带宽和镜频抑制比为评价参数,比较分析7种FIR滤波器设计方案,从中优选出适合宽带信号数字处理算法。仿真结果表明:在回波信噪比为-13.24dB条件下,进行8ms的相参积累,信噪比增益可达19dB以上;先进行8ms短时相参积累,再进行非相参积累,当积累总时间超过20ms时,信噪比增益将达到18dB以上;1/2抽取64阶原型滤波器的多相滤波方案,不仅具有近似64阶原型FIR滤波器的镜频抑制比,而且数据输出速率减半,接收带宽约为采样率的25%以内,满足30MHz带宽中频信号的数字处理要求。
     (4)建立2μm相干激光测风雷达外差探测实验系统,验证上述理论模型、光学设计和极微弱信号提取算法的正确性。外差探测系统中激光发射机采用了波长2μm、单脉冲能量为2mJ、重复频率为100Hz、脉宽为300ns的固体Ho:YAG脉冲激光器;相干光学系统采用了150mm离轴卡塞格伦光学天线、偏振分束棱镜、/4波片、2μm单模保偏光纤耦合器等;接收机采用全光纤平衡式InGaAs光电探测器(响应带宽150MHz)和自研的中频信号采集卡。实验结果表明:设计加工的光学天线系统的波像差为0.052λ,预扩束系统的发散角为0.075mrad,达到了衍射极限水平;完成的2μm单模保偏光纤合束器、分束器和耦合器,不仅实现了外差探测系统偏振匹配,而且还实现了相位匹配及偏振态匹配;采用自研的2μm平衡式光电探测器检测微弱的外差信号,分别得到了16m处和96m处孔径为200mm合作目标的外差信号,信噪比分别为45.16dB和43.91dB。
The measurement of Atmospheric wind vector field clean-air has been a blindspot of microwave radar for a long time. As the development of lidar technologyand heterodyne technology, coherent wind lidar which based on Doppler effect hasbecame one of the effective means to study on Atmospheric wind vector field,atmospheric turbulence and local windshear.This method has many advantages,such as high accuracy, high resolution. Due to the special physical mechanis m ofthe interaction between laser and atmospheric material, coherent wind lidar has highdetection capability for clear-air and could make up for the shortage of microwaveradar, to form a seamless atmospheric remotely sensed system, and high endscientific research institutions abroad spend plenty of Manpower And MaterialResources on it one after another.
     At present,2μm coherent wind lidar is one of focus in international wind lidarresearch. this paper focuses on the involved scientific issues and key technologies,then establishes the theoretical mode of backscatting signal of the atmospheric,proposes a method for coherent optical system consist of free space optical antennaand optic fiber receiver, solved the key technology of the very weak bandintermediate frequency(IF) signa l extracting and orthogonality digital signalprocessing, finally builds a2μm coherent lidar heterodyne experimental system andverified the feasibility by experiment. The main contents of this paper inc lude thefollowing aspects:
     Firstly, heterodyne detection theory of atmospheric backscatting signal isdiscussed, and it has been the designing principles of coherent wind lidar system. Inthe condition of considering the effect of atmospheric turbulence of refractive index,based on Fresnel diffraction theory and the path integral formulation of the lightfie ld, a theoretical model of the heterodyne efficiency for coherent lidar system isestablished, and express the heterodyne efficiency expressions of the detector plane,the receiver plane and target plane, and the equation of coherent lidar has been got.At the same time, according to the wind speed measurement principle of coherentlidar, express the inversion of three-dimensional wind speed. Established atheoretical model of this signal to noise ratio changes with optical local oscillatorpower and get the optimum optical local oscillator power is0.268mW bysimulation.
     Focused on the study of the influence of polarization mismatch and three phasemismatch to the heterodyne effic iency and get the simulation results for different circumstances. Discussed high sensitivity balanced heterodyne detection theory. Theresults showed that: the local oscillator optical shot noise is overcome better andsignal to noise ratio(SNR) of heterodyne detection is improved obviously.
     Secondly, coherent optical system consists of free space optical antenna andoptic fiber receiver system is discussed. According to the theory of truncated ratio ofmonostatic optical antenna and receive beams, a mathematical expression of theheterodyne received signal changes with truncation ratio is given, the results showthat: the optimum truncation ratio of monostatic optical antenna system is1.75, andit also provides a theoretical basis for the calculation of the antenna effic iency,obtained antenna effic iency under the conditions of weak turbulence(Cn~2=10~(-15)) is0.51and under the conditions of strong turbulence(Cn~2=10~(-13)) is0.03by simulation.Then we using the optical design software ZEMAX to designed a set of monostatic,off-axis Cassegrain coherent optical antenna system and beam expander system,which attached to the diffraction limit. At the same time, designed2μm single-modepolarization maintaining fiber coupler with coupling efficiency of83%,2μmsingle-mode polarization maintaining fiber combiners,2μm single-modepolarization maintaining fiber beam splitter and2μm transmitter-receiverpolarization isolation optical switch that is polarizing beamsplitter+/4wave plate.This device overcomes the depolarization phenomenon caused by the beamtransmission in free space and the leakage of local oscilla tor light impact on theheterodyne signal.
     Thirdly, worked on the extraction of very weak signals and processingorthogonal digital signals of weather echo signal. Discussed the multi-pulseintegration method for extremely weak echo IF signal which is sampling IF signaldirectly, coherent accumulating of digital signals and non-coherent accumulating ofpower spectrum.
     Countered the IF signal with carrier frequency of105MHz and bandwidth of30MHz, discussed two digital processing arithmetic such as low-pass filtering oforthogonal frequency mixing and polyphones filter method of even-odd extraction.Based on the designing of64-orders prototype FIR filter, using responsivebandwidth and image rejection ratio as evaluation parameters, compared seven FIRfilter, choosing the better one which is suitable for the bandwidth.
     Simulated result shows that: when the SNR of echo signa l is-13.24dB, SNRgains is above19dB by the coherent integration time above8ms. First short-timecoherent integration in8ms then non-coherent integration, SNR gains above18dBwhen the accumulated total time is more than20ms. Poly-phase filter of1/2extraction64-orders prototype filter not only has a image rejection ratio which is similar to the64-orders prototype FIR filter, but also has a half data output rate,receiving bandwidth is low than25%of the sampling rate, which is fit for the digitalprocessing of30MHz IF signal.
     Fourthly,2μm heterodyne experimental system for coherent wind lidar isestablished, verify the correctness of theoretical mode, optical designing and thearithmetic of very weak signa l extraction. The solid Ho:YAG pulsed laser as anheterodyne detection system detect light, the laser parameters are as follows:2μmwavelength, single pulse energy2mJ, repetition frequency of100Hz, the pulse widthis300ns. Coherent optical system consist on off-axis Cassegrain optical antennawith150mm, PBS,/4wave plate,2μm single-mode polarization maintainingfiber devise, etc. The receiver is2μm balanced InGaAs photodetector with150MHzresponsive bandwidth and self-research IF digital signal processing board.
     The results showed that: when the wave aberration of the optical antennasystem is0.052λ and the divergence of beam expander is0.075mrad, thus can meetthe diffraction limit of heterodyne detection system. Used of optical passivesingle-mode polarization maintaining fiber devices such as2μm single-modepolarization maintaining fiber combiners, optical fiber beamsplitter and coupler. Notonly to meet the polarization matching requirements of heterodyne detection system,but also to meet the phase matching requirements. The self-research2μm balancedphotodetector is used to detect weak heterodyne signal which is high sensitivity,wide bandwidth, and fast response. The heterodyne signal for the cooperationobjectives with aperture of200mm from the16m and96m is obtained, also signalto noise ratio of the heterodyne signal as45.16dB and43.91dB respectively.
引文
[1] Teich M C. Homodyne Detection of Infrared Radiation from Moving DiffuseTarget[J]. IEEE,1969,57(5):786-792.
    [2] Huffaker R M. Laser Doppler Detection Systems for Gas VelocityMeasurements[J]. Appl Opt.,1970,21(9):1026-1039.
    [3] Huffaker R M, Jela lian A V. Laser-Doppler System for Detection of AircraftTrailing Vortices[J]. IEEE,1970,58(6):322-326.
    [4] Bilbro J W. Laser Doppler Velocimeter Wake Vortex Tests[C]. NASA-MSFCFinal Rep. No. NASA TMX-64988,(NTIS) Mar.1976.
    [5] Hall F F, Huffaker J R M, Hardesty R M, et al. Wind Measurement Accuracyof the NOAA Pulsed Infrared Doppler Lidar[J]. Appl. Opt.,1984,23(15):2503-2506.
    [6] Post M J, Richter R A, Hardesty R M. NOAA's Pulsed, Coherent IR DopplerLidar Characteristic Sand Data[J]. Proc. SPIE,1981,30(10):60-65.
    [7] Rotherme l J, Olivier L D. Remote Sensing of Multi-level Wind Fields withAirborne Scanning Coherent Doppler Lidar[J]. Opt. Exp.,1998,2(2):40-50.
    [8] Flamant P H, Werner C, K pp F, et al. WIND the joint French-Germanairborne Doppler lidar[J]. Proc. SPIE,2001,3865:119-126.
    [9] Kane T J, Kozlovsky W J, Byer R L, et al. Coherent Laser Radar at1.06μmUsing Nd:YAG Lasers[J]. Opt. Lett.,1987,12(4):239-241.
    [10] Kavaya M J, Henderson S W, Magee J R, et al. Remote Wind Profiling witha Solid-state Nd:YAG Coherent Lidar System[J]. Opt. Lett.,1989,14(15):776-778.
    [11] Chan K P, Killinger D K. Development of1and2μm Coherent DopplerLidars for Atmospheric Sensing[J]. Proc.SPIE,1991,1492:111-114.
    [12] Chan K P, Killinger D K. Short-pules Coherent Doppler Nd:YAG Lidar[J].Opt. Eng.,1991,14(15):776-785.
    [13] Asaka K, Yanagisawa T, Hirano Y.1.5-μm Eye-safe Coherent Lidar Systemfor Wind Velocity Measurement[J]. Proc. SPIE,2001,4153:321-328.
    [14] Augere B, Cariou J P. All-fiber1.5μm CW Coherent Laser Anemo meter forIn-flight Measurements[J]. Proc. SPIE,2003,5086:121-128.
    [15] Pearson G N, Roberts P J, Eacock J R, et al. Ana lys is of the Performance ofa1.548μm Coherent Pulsed Fiber Lidar for Aerosol BackscatterApplications[J]. Appl. Opt.,2002,41(30):6442-6450.
    [16] Huffaker R M, Reveley P A. Solid-state Coherent Laser Radar Wind FieldMeasurement Systems[J]. Appl Opt.,1998,35(16):863-873.
    [17] Russell T. Coherent Lidar Airborne Wind Sensor: Flight Test Results at2μmand10μm[J]. App. Opt.,1996,35(36):7117-7128.
    [18] Frehlich R G. Comparison of2μm and10μm Coherent Doppler LidarPerformance[J]. Journal of Atmospheric and Oceanic Technology.1995,12(4):415-420.
    [19] Yu J R, Trieu B C, Petrosb M, et al. Advanced2μm Solid-state Laser forWind and CO2Lidar Applications[J]. Proc. SPIE,2006,6409:64091C1-64091C11.
    [20] Henderson S W, Hale C P, Magee J R, et al. Eye-safe Coherent Laser RadarSystem at2.1μm Using Tm,Ho:YAG Lasers[J]. Opt. Lett.,1991,16(10):773-775.
    [21] Henderson S W, Hannon S M. Advanced Coherent Lidar System for WindMeasurements[J]. Proc. SPIE,2005,5887:588701-1-588701-10.
    [22] Ishii S, Mizutani K, Itabe T, et al. Development of2μm Airborne CoherentDoppler Lidar at NICT[J]. Proc. SPIE,2006,6409:64090J-1-64090J-8.
    [23] Koch G J, Petros M, Barnes B W, et al. Validar: a Testbed for Advanced2-micron Doppler Lidar[J]. Proc. SPIE,2004,5412:87-98.
    [24] Liu Z S, Wu D, Liu J T, et al. Low-Altitude Atmospheric Wind Measurementfrom the Combined Mie and Rayleigh Backscattering by Doppler Lidar withan Iodine Filter[J]. Appl. Opt.,2002,41(33):7079-7086.
    [25] Sun D S, Zhong Z Q, Zhou J, et al. Accuracy Analysis of the Fabry-PerotEtalon Based Doppler Wind Lidar[J]. Optical Review,2005,12(5):409-414.
    [26] Emmitt D G. Sparcle: an Approved Shuttle Mission to DemonstrateTropospheric Wind Sensing Using a Coherent2-micron Doppler Lidar[J].Proc. SPIE,1998,3439:31-38.
    [27] Emmitt D G. Sparcle: A Space-based Mission to Demonstrate GlobalMonitoring of Tropospheric Winds with a Doppler Lidar[J]. Proc. SPIE,1998,3504:144-151.
    [28] Reardon P J, Peters B R, Amzajerdian F. Thermal Considerations for theSPARCLE Optical System[J]. Opt. Lett.,1999,3707(4):244-255.
    [29] Singha U N, Wi11iamsByrda J A, Barnesa N P, et al. Diode-pumped2μmSolid State Lidar Transmitter for Wind Measurements[J]. Proc. SPIE,1997,3104:173-178.
    [30] Vaughan J M, Steinvall K O, Werner C, et al. Coherent Laser Radar inEurope[J]. IEEE,1996,84(2):205-226.
    [31] Totsuka M, Asai K. Estimation of Orbita l Doppler Shift Change due toNutation of Attitude for2-micrometer Coherent Doppler Lidar onISS/JEM(International Space Station-Japanese Experimental Module)[J].Proc. SPIE,2001,4153:394-398.
    [32] Klein B J, Degnan J J. Optical Antenna Gain1: Transmitting Antennas[J].Appl. Opt.,1974,13(9):2134-2140
    [33] Uo T, Toda T, Takano T. Proposal of a Shaped Optical Antenna Realized as aLower-order Aspheric Surface Approximation[J]. ElectronicsCommunications in Japan,2004,87(5):62-74
    [34] Wang K, Barkan A. Propagation Effects in Aperture-less Near-fie ld OpticalAntennas[J]. Appl. Phys. Lett.,2004,84(2):305-307.
    [35]董宏发,任凯湘.卡塞格伦天线系统的准光学分析[J].西安电子科技大学学报,1994,21(1):53-61
    [36]刘华,何毅,胡渝.自动跟瞄10.6μm光学天线的设计与调试[J].电子科技大学学报,1998,27(3):293-295.
    [37]李新华,陈佐龙,谷林林.卡塞格伦光学接收天线的设计[J].通信技术,2009,42(3):38-40.
    [38] Inkol R, Szwarc V, Desormeanx L, et al. A400Megasamp le Per SecondDigital Receiver[C]. IEEE Conference on ASIC,1996:235-238.
    [39] Serioja O T. Ka-band Direct Digital Receiver[J]. IEEE Transactions OnMicrowave Theory and Techniques,2004,50(11):2436-2442.
    [40] Chen C I H, George K, McCormiek W, et al. Design and Measurement of2.5GSPS Digital Receiver[C]. IEEE Conference on Instrumentation andMeasurement Technology,2003,1:258-263.
    [41] Yoshida H, Otaka S, Kato T, et al. A Software Defined Radio Receiver usingthe Direct Conversion Princ iple: Imple mentation and Evaluation[C]. IEEEInternationa l Symposium on Personal, Indoor and Mobile RadioCommunications,2000,2:1044-1048.
    [42] Christopher B H, Wesley P M. X-band Digital Receiver for the NewHorizons Spacecraft[C]. IEEE Aerospace Conference,2004,3:1479-1488.
    [43]李炯亮,吴嗣亮. HSP50216在数字中频接收机中的应用[J].电讯技术,2002,(3):32-34.
    [44]刘树彬,吴义宝,安琪.一个雷达中频信号数字复解调系统的实现[J].核电子学与探测技术,2003,23(4):364-366.
    [45]董晖,姜秋喜,毕大平,等.数字接收机中基于TMS320C6416的数字下变频技术[J].电子技术应用,2003,(3):49-51.
    [46] Fitzjarrald D. Airborne Doppler Lidar Wind Field Measurements[J].Meteorol. Soc.,1984,65(7):348-359.
    [47] Hannon S M. Airborne Doppler Lidar Turbulence Detection: ACLAIMFlight Test Results[J]. Proc. SPIE,1988,3707:234-241.
    [48] Emmitt G D. Investigation of Backscatter Wind Correlations Using anAirborne2-micron Coherent Doppler Wind Lidar[J]. Proc. SPIE,2003,5154:105-108.
    [49] Rütten W, Gellekum T, Jessen K. Investigation of Laser Doppler TechniquesUsing the Monte Carlo Metho[J]. Proc. SPIE,1996,2326:277-288.
    [50] Shen J L, Künne meyer R. Amplified Reference Pulse Storage forLow-coherence Pulsed Doppler Lidar[J]. Appl. Opt.,2006,45(32):8346~8349
    [51] Schwiesow R L, Cupp R E. Calibration of a CW Infrared Doppler Lidar[J].Appl. Opt.,1980,19(8):3168-3172.
    [52] Frehlich R, Hannon S M, Henderson S W. Coherent Doppler LidarMeasurements of Winds in the Weak Signa l Regime[J]. Appl. Opt.,1997,36(15):3491-3499.
    [53] Dreischuh T N, Gurdev L L, Stoyanov D V. Retrieving High-resolutionDoppler Velocity Profiles in10.6μm and2μm Coherent Lidars[J]. Proc. SPIE,2001,4397:481-485.
    [54] Koch G J, Beyon J Y, Barne B W, et al. High-energy2μm Doppler Lidar forWind Measurements[J]. Opt. Eng.,2007,11(46):11620-1-116201-14.
    [55] Chen S S, Yu J R, Petros M, et al. Double-pass Tm:Ho:YLF Amplifier at2.05μm for Spaceborne Eye-safe Coherent Doppler Wind Lidar and CO2Differential Absorption Lidar(DIAL)[J]. Proc. SPIE,2003,4893:217-222.
    [56] Horak P, Loh W H. On the Delayed Self-heterodyne InterferometricTechnique for Determining the Linewidth of Fiber Lasers[J]. Opt. Exp.,2006,14(9):3923-3928.
    [57] Hannon S M, Henderson S W. Performance of a2μm Coherent DopplerLidar for Wind Measuments[J]. Journal of Atmospheric and OceanicTechnology,1994,11(10):1517-1528.
    [58] Sasano Y. Tropospheric Aerosol Extinction Coeffic ient Profiles Derivedfrom Scanning Lidar Measurements over Tsukuba, Japan, from1990to1993[J]. Appl. Opt.,1996,35(24):4941-4952.
    [59] Amzajerdian F, Kavaya M J, Singh U, et al.2-micron Coherent DopplerLidar For Space-based Global Wind Field Mapping[J]. IEEE,2003,1:515-517.
    [60] Kohei M, Toshikazu I, Shoken I, et al. Wind Profile Measurements byCoherent Doppler Lidar[J]. Journal of the Nationa l Institute of Informationand Communications Technology,2004,51(1):167-176.
    [61] Belmonte A. Influence of Atmospheric Phase Compensation on OpticalHeterodyne Power Measurements[J]. Opt. Exp.,2008,16(9):6756-6767.
    [62] Imaki M, Kobayashi T. Ultravio let High-spectral-resolution Doppler Lidarfor Measuring Wind Field and Aerosol Optical Properties[J]. Appl. Opt.,2005,44(28):6023-6030.
    [63] Dashen R. Path Integrals for Waves in Random Media[J]. J. Math. Phys.,1979,20(5):894-921.
    [64] Frehlich R G, Kavaya M J. Coherent Laser Radar Performance for GeneralAtmospheric Refractive Turbulence[J]. Appl. Opt.,1991,30(36):5325-5352.
    [65]何毅.外差探测系统的相位匹配研究[J].中国激光,1997,24(10):930-935.
    [66] Hunt J M, Holmes J F, Amzajerdian F. Optimum Local Oscillator Levels forCoherent Detection Using Photoconductors[J]. Appl. Opt.,1988,27(15):3135-3141.
    [67] Holmes J F, Rask B J. Optimum Optical Local-oscillator Power Levels forCoherent Detection with Photodiodes[J]. Appl. Opt.,1995,34(6):927-933.
    [68]田竹梅.激光外差测量中的光学失配问题[J].太原师范学院学报,2007,6(4):75-78.
    [69] Tanaka K, Ohta N. Effects of Tilt and Offset of Signa l Fie ld on HeterodyneEfficiency[J]. Appl. Opt.,1987,26(4):627-632.
    [70]徐静,毛红敏.大气湍流引起激光外差探测空间相干性退化研究[J].激光与红外,2007,37(12):1245-1250.
    [71] Hassebo Y Y, Gross B, Oo M, et al. Polarization-Discrimination Techniqueto Maximize the Lidar Signal-to-noise Ratio for Daylight Operations[J]. Appl.Opt.,2006,45(22):5521-5531
    [72] Gatt P. Coherent Laser Radar Atmospheric Turbulence Sensor[J]. Proc. SPIE,1998,3381:220-230.
    [73] Cao X Y, Gilles R, Nathalie R, et al. Comparison of the Relationshipsbetween Lidar Integrated Backscattered Light and AccumulatedDepolarization Ratios for Linear and Circular Polarization for Water Droplets,Fogoil, and Dust[J]. Appl. Opt.,2009,48(21):4130-4141.
    [74]白世武,龚育良.空间准直性对激光外差干涉信噪比的影响[J].光学仪器,1994,16(1):1-5.
    [75] Joshi A, Becker D, Wree C, et al. Coherent Optical Receiver System withBalanced Photodetection[J]. Proc. SPIE,2006,6243:62430E-1-62430E-14.
    [76] Painchaud Y, Poulin M, Morin M, et al. Performance of Balanced Detectionin a Coherent Receiver[J]. Opt. Exp.,2009,7(5):3659-3672.
    [77] Chou C, Tsai H M, Liao K Y, et al. Optical Activity Measurement by Use ofa Balanced Detector Optical Heterodyne Interferometer[J]. Appl. Opt.,2006,45(16):3733-3739.
    [78] Abbas G L, Chan V W S, Yee T K. Local-oscillator Excess-noiseSuppression for Homodyne and Heterodyne Detection[J]. Opt. Lett.,1983,8(8):419-421.
    [79] Rubin M A, Kaushik S. Squeezing the Local Oscillator does not ImproveSigna l-to-Noise Ratio in Heterodyne Laser Radar[J]. Opt. Lett.,2007,32(11):1369-1371.
    [80] Wang J Y. Detection Effic iency of Coherent Optical Radar[J]. Appl Opt.,1984,23(19):3421-3427.
    [81] Mujat C, Dogariu A. Bandwidth Dependence of the Heterodyne Effic iencyin Low Coherence Interferometry[J]. Opt. Exp.,2004,7(12):1335-1340.
    [82] Frehlich R G, Kavaya M J. Coherent Laser Radar Performance for GeneralAtmospheric Reftactive Turbulence[J]. Appl. Opt.,1991,30(36):5325-5352.
    [83] Yuen H P, Chan V W S. Noise in Homodyne and Heterodyne Detection[J].Opt. Lett.,1983,8(3):177-179.
    [84] Dorrer C. Single-shot Measurement of the Electric Field of OpticalWaveforms by Use of Time Magnification and Heterodyning[J]. Opt. Lett.,2006,31(4):540-542.
    [85] Belmonte A. Analyzing the Efficiency of a Practical Heterodyne Lidar in theTurbulent Atmosphere: Telescope Parameters[J]. Opt. Exp.,2003,11(17):2041-2046.
    [86] Wang J Y. Optimum Truncation of a Lidar Transmitted Beam[J]. Appl. Opt.,1988,27(21):4470-4474.
    [87] Rye B J, Frehlich R G. Optima l Truncation and Optical Effic iency of anApertured Coherent Lidar Focused on an Incoherent Backscatter Target [J].Appl. Opt.,1992,31(15):2891-2900.
    [88] Klein B J, Degnan J J. Optical Antenna Gain.1: Transmitting Antennas[J].Appl. Opt.,1974,13(9):2134-2141.
    [89] Degnan J J, Klein B J. Optical Antenna Gain.2: Receiving Antennas[J]. Appl.Opt.,1974,13(10):2397-2401.
    [90] Chambers D. Modeling of Heterodyne Efficiency for Coherent Laser Radarin the Presence of Aberrations[J]. Opt. Exp.,1997,1(3):60-67.
    [91]何毅.相干式CO2激光成像雷达光学系统[J].光学学报,1999,19(8):1079-1083.
    [92]郭冠军,邵芸.激光散斑效应对激光雷达探测性能的影响[J].物理学报,2004,53(7):2089-2094.
    [93]何丽,范国滨.卡赛格林望远系统与激光束参数匹配[J].强激光与粒子数,2008,20(1):49-53.
    [94]冉英华,杨华军,徐权,等.卡塞格伦光学天线偏轴及性能分析[J].物理学报,2009,58(2):946-951.
    [95]赵延仲,宋丰华.1.06μm脉冲激光高倍率变焦的扩束发射光学系统设计[J].红外与激光工程,2007,36(6):891-896.
    [96]胡明勇,迟如利,孙东松,等.1.06μm测风激光雷达扩束系统的设计[J].量子电子学报,2006,23(4):467-470.
    [97]赵延仲,宋丰华.高斯光束的激光变焦扩束光学系统设计[J].装备指挥技术学院学报,2007,18(5):85-90.
    [98]邱锋,胡渝.光学天线光中比对外差效率的影响[J].电子科技大学学报,1989,18(6):552-558.
    [99]张玉侠.基于空间光通信卡塞格伦天线弊端的讨论[J].红外与激光工程,2005,34(5):560-563.
    [100]何毅.卫星光通信关键技术与演示系统光学天线[J].电子科技大学学报,1998,27(5):482-486.
    [101]邓瑜.共轴双反射光学夫线系统的优化设计[J].激光技术,1989,14(2):54-57.
    [102]左保军,张爱红.激光外差探测光学系统参量的确定[J].哈尔滨工业大学学报,2001,33(5):655-658.
    [103]李正值.红外光学系统[M].北京:电子工业出版社,1986:104-135.
    [104]迟如利,胡明勇.接收光路光束发散角对多普勒激光测风雷达测量精度的影响[J].激光与红外,2006,23(3):325-330.
    [105]何毅,吴健.激光雷达扫描视场角和角分辨本领研究[J].光电工程,1999,26(5):13-18.
    [106]李晓彤.几何光学和光学设计[M].浙江:浙江大学出版社,1999:185-192.
    [107]Rye B J, Frehlich R G. Optima l Truncation and Optical Effic iency of anApertured Coherent Lidar Focused on an Incoherent Backscatter Target[J].Appl. Opt.,1992,31(15):2891-2899.
    [108]Rye B J. Primary Aberration Contribution to Incoherent BackscatterHererodyne Lidar Returns[J]. Appl. Opt.,1982,21(5):839-845.
    [109]Tanaka K, Ohta N. Effects of Tilt and Offset of Signa l Fie ld on HeterodyneEfficiency[J]. Appl. Opt.,1987,26(4):627-632.
    [110]Rye B J. Antenna Parameters for Incoherent Backscatter HeterodyneLidar[J]. Appl. Opt.,1979,18(9):1390-1399.
    [111]Sonnenschein C M, Horrigan F A. Signa l to Noise Relations hips for Coaxia lSystems that Heterodyne Backscatter from the Atmosphere[J]. Appl. Opt.,1971,10(7):1600-1605.
    [112]Siegman A E. The Antenna Properties of Optical Heterodyne Receivers [J].IEEE,1966,54(10):1350-1356.
    [113]Robert W G, Joseph C P. Single-Mode Fiber Coupling Efficiency withGraded-Index Rod Lenses[J]. Appl. Opt.,1994,33(16):3440-3445.
    [114]Frehlich R G. Velocity Error for Coherent Doppler Lidar with PulseAccumulation[J]. Journal of Atmospheric and Oceanic Technology,2004,21(6):905-920.
    [115]Frehlich R G, Yadlowsky M J. Performance of Mean-Frequency Estimatorsfor Doppler Radar and Lidar[J]. Journal of Atmospheric and OceanicTechnology,1994,11(10):1217-1230.
    [116]祝依龙,范红旗,马博韬,等.相参脉冲雷达中频信号通用采集系统设计[J].系统工程与电子技术,2009,31(3):489-496.
    [117]张超.雷达信号的中频相关检测和时差提取[J].电子对抗技术,2001,16(3):1-8.
    [118]梁兵.雷达中频信号采样及数字相干检波的工程实现[J].舰船电子对抗,2005,28(1):40-44.
    [119]察豪,刘冬利.雷达频信号直接采样与正交相干检波的设计与实现[J].现代雷达.2001,(3):38-41.
    [120]王业坤,盛骥松.利用软件无线电实现雷达信号的中频相干处理[J].舰船电子对抗,2003,26(6):18-20.
    [121]马玲,吴莉.雷达中频信号数字化研究及实现[J].信息化研究,2010,36(2):35-37.
    [122]Liu H, Ghafoor A. A New Quadrature Sampling and Processing Aproach[J].IEEE Trans on ASSP,1992,27(7):711-747.
    [123]贺应红. Mie散射激光雷达实验系统设计与大气消光系数反演方法研究
    [D].四川:四川大学硕士论文,2004:17-18.
    [124]王迎强.相干多普勒激光雷达技术[J].雷达科学与技术,2007,5(2):100-105.
    [125]王忠凯.基于CO2激光器的多普勒测速研究[D].四川:四川大学硕士论文,2006:18-19.
    [126]Henderson S W, Suni P J M, Hale C P, et al. Coherent Laser Radar at2μmUsing Solid-state Lasers[J]. IEEE,1993,31(1):4-15.
    [127]Yu J R, Braud A, Petros M.600mJ Double Pulsed2-micron Laser[J]. Opt.Lett.,2003,28(7):540-542.
    [128]Adams L E, Bondurant R S. Adaptive Spatia lly Injection-locked HeterodyneReceiver[J]. Opt. Lett.,1993,18(3):226-228.
    [129]Singh U N, Wi11ia ms-Byrd J A, Barnes N P, et al. Diode-Pumped2μm SolidState Lidar Transmitter for Wind Measurements[J]. Proc. SPIE,1997,3104:173-178.
    [130]Hale C P, Hobbs J W, Henderson S W, et al. Eye-safe2-micron MasterOscillators for Precision Ve locity Measurements[J]. Proc. SPIE,2000,4035:354-361.
    [131]刘华,何毅,胡渝.自动跟瞄10.6μm光学天线的设计与调试[J].电子科技大学学报,1998,27(3):293-295.
    [132]Bartle ft K G, She C Y. Remote Measurement of Wind Speed Using a Dua lBeam Backscatter Laser Doppler Velocimeter[J]. Appl. Opt.,1976,15(8):1980-1983.
    [133]Hughes A J, Pike E R. Remote Measurement of Wind Speed by LaserDoppler Systems[J]. Appl. Opt.,1973,12(3):597-601.
    [134]Rod F. Effects of Refractive Turbulence on Ground-based Verification ofCoherent Doppler Lidar Performance[J]. Appl. Opt.,2000,39(24):4237-4246.
    [135]Kameyama S, Ando T, Asaka K, et al. Compact All-fiber Pulsed CoherentDoppler Lidar System for Wind Sensing[J]. Appl. Opt.,2007,16(11):1953-1962.
    [136]Ashby N. Relativistic Effects in Earth-Orbiting Doppler Lidar ReturnSignals[J]. JOSA. A,2007,24(11):3530-3546.
    [137]Ghibaudo J B, Krawczyk R. Water Vapor, Temperature and Wind VelocityMeasurements from Space Using2μm Tm:Ho:YAG[J]. Proc. SPIE,1992,1714:258-269.
    [138]Singh U N, Kavaya M, Koch G, et al. Solid-state2-micron Laser TransmitterAdvancement for Wind and Carbon Dioxide Measurements from Ground,Airborne, and Spacebased Lidar Systems[J]. Proc. SPIE,2008,7111:711104-1-711104-7.
    [139]Chen S S, Yu J, Petros M, et al. Joule Level Double-Pulsed Ho:Tm:LuLFMaster Oscillator Power Amplifier(MOPA) for Potential Spaceborne LidarApplications[J]. Proc. SPIE,2005,5653:175-185.
    [140]Feneyrou P, Lehureau J C, Barny H. Performance Evaluation for Long-rangeTurbulence-detection using Ultraviolet Lidar[J]. Appl. Opt.,2009,48(19):3750-3759.
    [141]Wang Z J, Liu Z S, Liu L P, et al. Iodine-filter-based Mobile Doppler Lidarto Make Continuous and Full-azimuth-scanned Wind Measurements: DataAcquis ition and Analysis System, Data Retrieval Methods, and ErrorAnalysis[J]. Appl. Opt.,2010,49(36):6960-6978.
    [142]Pierce R M, Roark S E. Wind Speed Measurements of Doppler-shiftedAbsorption Lines using Two-beam Interferometry[J]. Applied Optics,2012,51(12):1853-1864.
    [143]Xia H Y, Dou, X K, Sun DS. Mid-altitude Wind Measurements with MobileRayleigh Doppler Lidar Incorporating System-leve l Optical FrequencyControl Method[J]. Opt. Exp.,2012,20(14):15286-15300.
    [144]Vance J D. Two-photon Absorption Dispersion Spectrometer for1.53μmEye-safe Doppler LIDAR[J]. Opt. Lett.,2012,37(13):2457-2459.
    [145]Rodrigo P J, Pedersen C. Field Performance of an All-semiconductor LaserCoherent Doppler Lidar[J]. Opt. Lett.,2012,37(12):2277-2279.
    [146]Pierce R M, Roark S E. Wind Speed Measurements of Doppler-shiftedAbsorption Lines Using Two-beam Interferometry[J]. Appl. Opt.,2012,51(12):1853-1864.
    [147]Sakimura T, Watanabe Y, Ando T.1.5-μm High-gain and High-power LaserAmplifier using a Er,Yb:glass Planar Waveguide for Coherent DopplerLIDAR[C]. CLEO: Science and Innovations (CLEO: S and I),2012,CTu2D.7.
    [148]Zhu X P, Liu J Q, Bi D C, et al. Development of All-solid Coherent DopplerWind Lidar. Chinese Optics Letters[J],2012,10(1):012801-012803.
    [149]Liu Y, Liu J Q, Chen W B. Eye-safe, Single-frequency Pulsed All-fiberLaser for Doppler Wind Lidar[J]. Chinese Optics Letters,2011,9(9):090604-090607.
    [150]Piracha M U, Nguyen D, Ozdur I, et al. Simultaneous Ranging andVelocimetry of Fast Moving Targets using Oppositely Chirped Pulses from aMode-locked Laser[J]. Opt. Exp.,2011,19(12):11213-11219.
    [151]Kawahara T D, Kitahara T, Kobayashi F, et al. Sodium Temperature Lidarbased on Injection Seeded Nd:YAG Pulse Lasers using a Sum-frequencyGeneration Technique[J]. Opt. Exp.,2011,19(4):3553-3561.
    [152]Dong J H, Cha H K, Kim D H, et al. Doppler LIDAR Measurement of Windin the Stratosphere[J]. Journal of the Optical Society of Korea,2010,14(3):199-203.
    [153]Tang L, Shu Z F, Dong J H, et al. Mobile Rayle igh Doppler Wind Lidarbased on Double-edge Technique[J]. Chinese Optics Letters,2010,8(8):726-731.
    [154]Rodrigo P J, Pedersen C. Reduction of Phase-induced Intensity Noise in aFiber-based Coherent Doppler Lidar using Polarization Control[J]. Opt. Exp.,2010,18(5):5320-5327.
    [155]Liu Z S, Bi D C, Song X Q, et al. Iodine-filter-based High SpectralResolution Lidar for Atmospheric Temperature Measurements[J]. Opt. Lett.,2009,34(18):2712-2714.
    [156]Shen, Fahua; Cha, Hyunki; Dong, Jihui, et al. Design and PerformanceSimulation of a Molecular Doppler Wind Lidar[J]. Chinese Optics Letters,2009,7(7):593-597.
    [157]Huang, Wentao; Chu, Xinzhao; Wiig, Johannes, et al. Field Demonstrationof Simultaneous Wind and Temperature Measurements from5to50km with aNa Double-edge Magneto-optic Filter in a Multi-frequency Doppler Lidar[J].Opt. Lett.,2009,34(10):1552-1554.
    [158]Rodrigo P J, Pedersen C. Doppler Wind Lidar using a MOPA SemiconductorLaser at Stable Single-frequency Operation[C]. The European Conference onLasers and Electro-Optics (CLEO/Europe),2009, CH2_1.
    [159]Huang W T, Chu X Z, Willia ms B P. Na double-edge magneto-optic filter forNa Lidar Profiling of Wind and Temperature in the Lower Atmosphere[J]. Opt.Lett.,2009,34(2):199-201.
    [160]Hansen R S, Pedersen C. All Semiconductor Laser Doppler Anemometer at1.55μm[J]. Opt. Exp.,2008,16(22):18288-18295.
    [161]Sun X T, Liu J Q, Zhou J, et al. Frequency Stabilization of aSingle-frequency All-solid-state Laser for Doppler Wind Lidar[J]. ChineseOpt. Lett.,2008,6(9):679-680.
    [162]Liu Z S, Liu B Y, Wu S H, et al. High Spatia l and Temporal ResolutionMobile Incoherent Doppler Lidar for Sea Surface Wind Measurements[J]. Opt.Lett.,2008,33(13):1485-1487.
    [163]Zhu J S, Chen Y B, Yan Z A, et al. Rlationship Between the AerosolScattering Ratio and Temperature of Atmosphere and the Sensitivity of aDoppler Wind Lidar with Iodine Filter[J]. Chinese Optics Letters,2008,6(6):449-453.
    [164]Ma Z F, Zhang C X, Ou P, et al. Application of Fiber Interferometer inCoherent Doppler Lidar[J]. Chinese Optics Letters,2008,6(4):261-263.
    [165]Ashby N. Relativistic Effects in Earth-orbiting Doppler Lidar ReturnSignals[J]. JOSA A,2007,24(11):3530-3546.
    [166]Xia H Y, Sun D S, Yang Y H, et al. Fabry-Perot Interferometer Based MieDoppler Lidar for Low Tropospheric Wind Observation[J]. Appl. Opt.,2007,46(29):7120-7131.
    [167]Ansmann A, Wandinger U, LeRille O, et al. Particle Backscatter andExtinction Profiling with the Spaceborne High-spectral-resolution DopplerLidar ALADIN: Methodology and Simulations[J]. Appl. Opt.,2007,46(26):6606-6622.
    [168]Hill, Christopher A; Harris, Michael; Rid ley, Kevin D. Fiber-based1.5μmLidar Vibrometer in Pulsed and Continuous Modes[J]. Appl. Opt.,2007,46(20):4376-4385.
    [169]She C Y, Yue J, Yan Z A, et al. Direct-detection Doppler wind measurementswith a Cabannes–Mie lidar: A. Comparison Between Iodine Vapor Filter andFabry–Perot Interferometer Methods[J]. Appl. Opt.,2007,46(20):4434-4443.
    [170]She C Y, Yue J, Yan Z A, et al. Direct-detection Doppler WindMeasurements with a Cabannes–Mie Lidar: B. Impact of Aerosol Variation onIodine Vapor Filter Methods[J]. Appl. Opt.,2007,46(20):4444-4454.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700