放电引发非链式脉冲DF激光机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于化学反应的DF激光器输出波段为3.5~4.2μm,处于大气红外传输窗口,其覆盖了众多原子及分子的吸收峰,因此在光谱学、激光雷达、大气监测及军事等诸多领域都有重要的应用价值和前景。DF激光器分为链式和非链式两种,链式DF激光器建立在链式化学反应上,其激光输出能量并不直接受注入能量的限制,因而能实现高能量、高效率激光输出,但链式反应激光器存在支链反应,有爆炸的危险。相反,非链式脉冲DF激光器具有无腐蚀性、反应可控不易爆炸、结构紧凑、操作简单、光束质量好等优点,并能实现高功率高能量激光输出,因而近年来受到广泛关注。本文采用理论和实验相结合的方法,对放电引发非链式脉冲DF激光机理进行了研究。
     放电引发非链式脉冲DF激光器通常采用SF6气体作为F原子来源,对F原子产生过程的分析是建立非链式脉冲DF激光器动力学模型的前提。本文根据SF6气体与电子各种相互碰撞过程的碰撞截面、电子能量阈值和各反应过程的速率常数数据,找出了影响F原子产出和影响SF6气体击穿的重要过程,并获得了SF6气体及SF6-D2混合气体的击穿机理。
     以SF6、D2为工作介质,根据非链式脉冲DF激光器的反应机理,采用速率方程理论,建立了非链式脉冲DF激光器动力学模型。采用Runge-Kutta法对该模型进行数值计算,得到了腔内各组分粒子数密度随时间的变化关系及DF分子各振动能级辐射跃迁激射光子情况。进而运用该模型研究了工作气体比例和输出镜反射率对DF激光器腔内光子数密度、单脉冲能量、脉冲宽度和输出功率的影响,得到了最佳气体比例和最佳输出镜反射率参数。
     搭建了非链式脉冲DF激光实验平台,采用紫外预电离的横向放电方式和稳定光学谐振腔,使用无毒无腐蚀性的SF6和D2作为工作物质,研究了工作气体比例、总气压、充电电压和输出镜反射率对放电引发非链式脉冲DF激光器输出能量的影响。实验发现SF6与D2的最佳比例为10:1,最佳输出镜反射率为30%,上述实验结果与动力学模型模拟结果一致。激光输出能量随充电电压线性增加,但电压过高时将引起弧光放电现象,导致能量下降。对于每个充电电压存在与之对应的最佳工作气压,即工作气体存在最佳E/P值。在最佳工作条件下(SF6:D2=10:1,R=30%),充电电压为39kV时,激光单脉冲输出能量达到最大值4.95J,此时激光脉冲宽度为148.8ns,峰值功率为33.27MW。对激光脉冲特性进行了测量,给出了激光脉冲特性与气体比例、总气压、充电电压及输出镜反射率之间的变化关系。使用DF激光谱线分析仪对激光输出谱线进行了测量,得到了20条P支跃迁谱线,激光能量集中在v=2振动能级上。此外,采用烧蚀光斑法对稳腔结构的激光光斑进行了测量,得到DF激光近、远场发散角分别为1mrad和6mrad,在相同条件下,采用非稳腔可将激光光束远场发散角压缩到1.2mrad。
Deuterium fluoride (DF) laser,based on chemical reactions, radiates in thespectral range3.5~4.2μm, which is the infrared atmospheric transparency windowcovering the absorption peaks of many atoms and molecules, so this laser hassignificant applications in many fields such as spectroscopy, laser radar transmitters,laser ranging, atmospheric monitoring, military, etc. DF laser can be divided into twotypes, one is the traditional chain reaction and the other is non-chain reaction, theformer’s output laser energy is not directly limited by the input energy, which meansit can reach high energy, high efficiency laser output. However due to the branchedchain reaction, chain DF laser has the risk of premature ignition and explosion. Onthe contrary non-chain pulsed DF laser has no risk of corrosion and explosion.Besides, it has other advantages, such as compact structure, easy operation, goodbeam quality, high peak power, high energy, etc. Non-chain DF laser becomes moreattractive due to all these advantages recently. The mechanism of non-chain pulsedelectric-discharge DF laser is studied theoretically and experimentally in this paper.
     Non-chain pulsed electric-discharge DF laser usually uses SF6gas as the donorof F atoms, so the analysis of the production process of F atoms is the premise of thebuilding of dynamical model. According to the impact cross sections, thresholdelectron energy and rate coefficients of different impact interactions between SF6 and electrons, the important processes which affect the generation of F atoms and thebreakdown of SF6are found, and the breakdown mechanism of pure SF6and SF6-D2mixture are obtained.
     With SF6-D2as gas medium, according to the reaction mechanism in non-chainpulsed DF laser, a dynamical model for this laser is presented by using rate equationstheory. By solving this model with Runge-Kutta method, the dependence of speciesconcentration in laser cavity on time and the photons radiation by differentvibrational level of excited state DF molecules are obtained. Then the effects of theworking gas ratio and the reflectance of output mirror on photon number density,single pulse energy, pulse width, and output power are studied with this model. Theoptimum parameters of the working gas ratio and the reflectance of output mirror areattained based on the theory calculation.
     The experiment platform of non-chain pulsed DF laser is built, on which theinfluences of the ratio and total pressure of working gas, the charging voltage and thereflectance of output mirror on the output energy of non-chain pulsed DF laser areinvestigated. The experimental research is based on UV-preionized transversedischarge method with a stable optical resonator, and the working mixtures used arenon-toxic and non-corrosive SF6and D2. The results show that the optimum ratio ofSF6-D2and the reflectance of output mirror, respectively, are10:1and30%, whichagree well with the theoretical calculation. The laser energy increases linearly withcharging voltage, but there will occur the phenomenon of arc discharge when thecharging voltage is too high, which will decrease the laser energy. There exists anoptimum gas pressure for each certain charging voltage, that is working gas has theoptimum E/P value. The maximum single pulse energy of4.95J, pulse duration of148.8ns, and peak power of33.27MW are achieved under the best workingconditions (SF6:D2=10:1, R=30%) when the charging voltage is39kV. Theinfluences of the mixture ratio, total pressure, charging voltage and the reflectance ofoutput mirror on impulse characteristics of non-chain DF laser are researched. Byusing a DF laser spectrum analyzer,20P-branch transition lines are recorded for the output spectrum of DF laser, which the laser energy concentrates on v=2vibrationlevel. Besides, by measuring laser spot with the laser ablation method, the laserbeam divergence angles of1mrad and6mrad in near field and far field respectivelyare attained. By replacing the resonator with a non-stable optical resonator, the farfield laser beam divergence angle can be compressed to1.2mrad in the sameexperimental conditions.
引文
[1] J V V Kasper, G C Pimentel. HCl chemical laser [J]. Phys Rev Lett,1965,14:352-354.
    [2] K L Kompa, G C Pimentel. Hydrofluoric acid chemical laser [J]. J ChemPhys,1967,47(2):857-858.
    [3] T F Deutsch. Laser emission from HF rotational transitions [J]. Appl PhysLett,1967,11(1):18-20.
    [4] D S Perry, J C Polanyi. Energy distribution among reaction products. VI.F+H2, D2[J]. J Chem Phys1976,57(4):1574-1586.
    [5] O M Batovskii, G K Vasilev, E F Makarov, et al. Chemica laser operating onbrmched chain reactionof fluorine with hydrogen [J]. JEPT Lett,1969,9:200-202
    [6] N G Basov, L V Kulokov, E P Markin, et al. Emission spectrum of a chemicallaser using an H2+F2mixture [J]. JEPT Lett,1969,9:375-378.
    [7] N G Basov, E P Markin, A I Nikitin, et al. Branching Reactions and ChemicalLasers [J]. IEEE J Quant Electron,1970, QE-6(3):183-184.
    [8] L D Hess. Chain reaction chemical laser using H2-F2-He mixtures [J]. ApplPhys Lett,1971,19(1):1-3.
    [9] S N Suchard, R W F Gross, J S Whittier. Time-resolved spectroscopy of aflash-initiated H2-F2laser [J]. Appl Phys Lett,1971,19(10):411-413.
    [10] A N Chester, L D Hess. Study of the HF chemical laser by pulse-delaymeasurements [J]. IEEE J Quant Electron,1972, QE-8(1):1-13.
    [11] R K Pearson, J O Cowles, G L Hermann, et al. Pressure dependency of theNF3-H2transverse pulse-initiated HF chemica llaser [J]. IEEE J QuantElectron,1973, QE-9(1):202.
    [12] R Aprahamian, J H S Wang, J A Betts, et al. Pulsed electron-beam-initiatedchemical laser operating on the H2/F2chain reaction [J]. Appl Phys Lett,1974,24(5):239-242.
    [13] V I Igoshin. Numerical analysis of an HF-HCl chemical laser utilizing theCIF+H2chain reaction [J]. Sov J Quantum Electron,1979,9(3):315-320.
    [14] A A Stepanov, V L Shikanov, V A Shcheglov. Numerical analysis of achain-excited self-contained CW HF-HCl chemical laser utilizing anF-H2-ClF-He mixture [J]. Sov J Quantum Electron,1981,11(4):462-466.
    [15] A S Bashkin, N M Gorshunov, Y P Neshchimenko, et al. Feasibility ofconstruction of a chemical H2-CI2laser with a chain reaction mechanism [J].Sov J Quantum Electron,1981,11(1):103-105.
    [16] A S Bashkin, A N Oraevskif, V N Tomashov, et al. Investigation into thepossibility of obtaining high specific lasing parameters from an HF laserutilizing a chain reaction [J]. Sov J Quantum Electron,1982,12(3):387-389.
    [17] V I Lvov, A A Stepanov, V A Shcheglov. Hydrogen fluoride chain laser withan initiating reagent at a standing detonation wave [J]. Sov J QuantumElectron,1985,15(5):679-682.
    [18] M A Azarov, B S Aleksandrov, V A Drozdov, et al. Influence of the cavitylosses on the energy and spectral characteristics of a pulsed chemicalchain-reaction HF (DF) laser [J]. Quantum Electronics,2000,30(1):30-36.
    [19] M A Azarov, E A Klimuk, K A Kutumov, et al. Pulsed chemical HF laser witha large discharge gap [J]. Quantum Electronics,2004,34(11):1023-1026.
    [20] E A Klimuk, K A Kutumov, G A Troshchinenko. Electric-discharge pulsedF2+H2(D2) chain reaction HF/DF laser with a4.2L active volume [J].Quantum Electronics,2010,40(2):103-107
    [21] K L Kompa, J H Parker, G C Pimentel. UF6-H2hydrogen fluoride chemicallaser: operation and chemistry [J]. J Chem Phys,1968,49(10):4257-4264.
    [22] S N Suchard, G C Pimentel. Deuterium fluorium vibrational overtonechemical laser [J]. Appl Phys Lett,1971,18(12):530-531.
    [23] A V Belotserkovets, G A Kirillov, S B Kormer, et al. Chemical lasersutilizing N2F4+H2and N2F4+D2mixtures initiated by CO2laser radiation [J].Sov J Quantum Electron,1976,5(11):1313-1315.
    [24] O R Wood, T Y Chang. Transverse-discharge hydrogen halide lasers [J]. ApplPhys Lett,1972,20(2):77-79.
    [25] N Anderson, T Bearpark, S J Scott. An X-ray preionised self sustaineddischarge HF/DF laser [J]. Appl Phys B,1996,63(6):565-573.
    [26] H Brunet. Improved DF performance of a repetitively pulsed HF/DF laserusing a deuterated compound [C]. Proc of SPIE,1997,3092:494-497.
    [27] V V Apollonov, S Y Kazantsev, V F Oreshkin, et al. Feasibility ofincreasing the output energy of a non-chain HF(DF) laser [J]. QuantumElectronics,1997,27(3):207-209.
    [28] A Fridman. Plasma Chemistry [M]. New York: Cambridge University Press,2008, pp.811.
    [29] A A Podminogin. Hydrogen fluoride (deuterium fluoride) pulsed laser [J].Sov J Quantum Electron,1973,3(3):229-231.
    [30] R J Jensen, W W Rice. Thermally initiated HF chemical laser [J]. Chem PhysLett,1971,8(2):214-216.
    [31] K L Kompa, J Wanner. Study of some fluorine atom reactions using achemical laser method [J]. Chem Phys Lett,1972,12(4):560-563.
    [32] J H Parker, G C Pimentel. Hydrogen fluoride chemical laser emissionthrough hydrogen-atom abstraction from hydrocarbons [J]. J Chem Phys,1968,48(11):5273-5174.
    [33] T D Padrick, G C Pimentel. Hydrogen fluoride elimination chemical laserfrom N, N-difluoromethylamine [J]. J Chem Phys,1971,54(2):720-723.
    [34] J H Parker, G C Pimentel. Vibrational energy distribution through chemicallaser studies. I. Fluorine atoms plus hydrogen or methane [J]. J Chem Phys,1969,51(1):91-96.
    [35] J H Parker, G C Pimentel. Vibrational Energy Distribution through ChemicalLaser Studies. Ⅱ. Fluorine atoms plus chloroform [J]. J Chem Phys,1971,55(2):857-861.
    [36] R D Coombe, G C Pimentel. Temperature dependence of the vibrationalenergy distributions in the reactions F+H2and F+D2[J]. J Chem Phys,1973,59(1):251-257.
    [37] J H Parker, G C Pimentel. Some new UF6-RH hydrogen fluoride chemicallasers and a preliminary analysis of the chloroform system [J]. IEEE J QuantElectron,1970, QE-6(3):175.
    [38] V V Apollonov, K N Firsov, S Y Kazantsev, et al. Scaling up of non-chain HF(DF) laser initiated by self-sustained volume discharge [C]. Proc of SPIE,2000,3886:370-381.
    [39] D J Spencer, H Mirels, T A Jacobs. Initial performance of a CW chemicallaser [J]. Opto-Electronics,1970,2(3):155-160.
    [40] D J Spencer, T A Jacobs, H Mirels, et al. Preliminary performance of a CWchemical laser [J]. Appl Phys Lett,1970,16(6):235-237.
    [41] R R Giedt. MESA Ⅱ1971Data Review [R]. TR-0073(3435)-1, TheAerospace Corporation, El Segundo, California,1971.
    [42] R A Meinzer, R H Hall, J V Bogaerde, et al. CW combustion-mixingchemical laser [C]. the6th International Quantum ElectrodynamicsConference, Kyoto, Japan,1970.
    [43] P Blaszuk, W Burwell, J Davis, et al. Laser source development [R]. UARLM911239-22-3, East Hartford,1973.
    [44] U K Sengupta, P K Das, K N Rao. Infrared laser spectra of HF and DF [J]. JMolec Spectrosc,1979,74:322-326.
    [45] H B Clayton, A Frank. Analysis of differential absorption lidar technique formeasurements of anhydrous hydrogen chloride from solid rocket motorsusing a deuterium fluorine laser [R]. NASA-TN-D-8390, Washington, UnitedStates,1977.
    [46] A A Serafetinides, K R Richwood, A D Papadopoulous. Performance studiesof novel design atmospheric pressure pulsed HF/DF laser [J]. Appl Phys B1991,52(1):46-54.
    [47] H Moore. Laser technology update: pulsed impulsive kill laser [C]. NDIA2000joint services small arms symposium,2000,2000:18-25.
    [48] S D Velikanov, A S Elutin, E A Kudryashov, et al. Use of a DF laser in theanalysis of atmospheric hydrocarbons [J]. Quantum Electronics,1997,27(3):273-276.
    [49] S D Velikanov, V P Danilov, N G Zakharov, et al. Fe2+: ZnSe laser pumpedby a nonchain electric-discharge HF laser at room temperature [J]. QuantumElectronics,2014,44(2):141-144.
    [50] L Richeboeuf, S Pasquiers, M Legentil, et al. The influence of H2and C2H6molecules on discharge equilibrium and F-atom production in aphototriggered HF laser using SF6[J]. J Phys D: Appl Phys,1998,31:373–389.
    [51] R Marchetti, E Penco, G Salvetti. Relative influence of hydrogen/deuteriumdonors and driving circuit parameters on the performance of a uv preionizedpulsed HF/DF laser [J]. J Appl Phys,1981,52(12):7047-7051.
    [52] H Brunet, M Mabru, J R Serra, et al. Pulsed HF chemical laser using a VUVphoto-triggered discharge [C]. Proc of SPIE,1990,1397:273-276.
    [53] A N Panchenko, V M Orlovskii, V F larasenko, et al. Efficient oscillationregimes of an HF laser pumped by a nonchain chemical reaction initiated bya self-sustained discharge [J]. Quantum Electronics,2003,33(5):401-407.
    [54] V F Tarasenko, V М Odovskii, A N Panchenko. Energy parameters andstability of the discharge in a nonchain self-sustained-discharge-pumped HFlaser [J]. Quantum Electronics,2001,31(12):1035-1037.
    [55] V M Orlowskii, A G Poteryaev, V F Tarasenko. CO2-lasers pumped byE-beam controlled discharge and E-beam ignited discharge [C]. InternationalConference on Lasers, McLean, USA,1997:754–760.
    [56] B M Kovalchuk, G A Mesyats, V M Orlovskii, et al. Wide-aperture CO2lasers pumped by electron-beam-controlled discharge [J]. Laser Physics,2006,16(1):13–22.
    [57] H Inagaki, F Kannari, A Suda, et al. High efficiency multikilojoule deuteriumfluoride (DF) chemical lasers initiated by intense electron beams [J]. J ApplPhys,1986,59(2):324-326.
    [58] T Letardi, P D Lazzaro, G Giordano, et al. Large area X-Ray preionizer forelectric discharge lasers [J]. Appl Phys B,1989,48(1):55-58.
    [59] T Arai, M Obara, T Fujioka. A cw X-ray preionizer for high-repetition-rategas lasers [J]. Appl Phys Lett,1980,36(4):235-237.
    [60] S J Scott. Experimental investigations on an X-ray preionizer test bed [J]. JAppl Phys,1988,64(2):537-543.
    [61] В Lacour, S Pasquiers, C Postel, et al. Importance of pre-ionisation for thenon-chain discharge-pumped HF laser [J]. Appl Phys B,2001,72(3):289-299.
    [62] V Puech, P Prigent, H Brunet. High-efficiency, high-energy performance of apulsed HF laser pumped by phototriggered discharge [J]. Appl Phys B,1992,55(2):183-185.
    [63] K Jayarama, A J Alcock. X-ray preionization of seif-sustained, transverseexcitation CO2laser discharges [J]. J Appl Phys,1985,58(5):1719-1726.
    [64] V V Apollonov, A A Belevtsev, K N Firsov, et al. Advanced studies onpowerful wide-aperture non-chain HF (DF) lasers with a self-sustainedvolume discharge to initiate chemical reaction [C]. Proc of SPIE,2003,5120:529-541.
    [65] V F Tarasenko, A N Panchenko. Efficient discharge-pumped non-chain HFand DF lasers [C]. Proc of SPIE,2006,6101:61011P1-61011P9.
    [66]柯常军,张阔海,孙科,等.重复频率放电引发的脉冲HF(DF)激光器[J].红外与激光工程,2007,36Supplement:36-38.
    [67]易爱平,刘晶儒,唐影,等.电激励重复频率非链式HF激光器[J].光学精密工程,2011,19(2):360-366.
    [68]黄珂,唐影,易爱平,等.非链式电激励脉冲HF激光器[J].红外与激光工程,2010,39(6):1026-1029.
    [69]阮鹏,谢冀江,潘其坤,等.非链式脉冲DF化学激光器反应动力学模型[J].物理学报,2013,62(9):094208-1--094208-8.
    [70] H Brunet, M Mabru, C Vannier. Repetitively-pulsed HF chemical laser withhigh average power [C]. Proc of SPIE,1992,1810:273-276.
    [71] B Lacour. High average power HF(DF) lasers [C]. Proc of SPIE,2000,4071:9-15.
    [72] V D Bulaev, V V Kulikov, V N Petin, et al. Experiment study of a nonchainHF laser on heavy hydrocarbons [J]. Quantum Electronics,2001,31(3):218-220.
    [73] Y N Aksenov, V P Borisov, B B Burtsev, et al. A400W repetitively pulsedDF laser [J]. Quantum Electronics,2001,31(4):290-292.
    [74] V D Bulaev, V S Gusev, S Y Kazantsev, et al. High power repetitively pulsedelectric-discharge HF laser [J]. Quantum Electronics,2010,40(7):615-618.
    [75] R L Kerber, G Emanuel, J S Whittier. Computer modeling and parametricstudy for a pulsed H2+F2laser [R]. Technical Report TR-0172(2753)-3, TheAerospace Corporation, EI Segundo,1972.
    [76] R L Kerber, J S Whittier. Simple model of a chain-reaction pulsed HF laser
    [R]. Technical Report AD-A043319, The Aerospace Corporation, EISegundo,1977.
    [77] J L Lyman. Computer model of the SF6-H2electrical discharge chemical laser[J]. Appl Opt,1973,12(11):2736-2747.
    [78]桑凤亭,周大正,金玉奇,等.化学激光[M].北京:化学工业出版社,2000,pp.17.
    [79]程亮,万重怡,周锦文,等.印刷板预电离小型TEA CO2激光器[J].中国激光,2002,A29(1):7-9.
    [80] O P Judd, J Y Wada. Investigations of a UV preionized electrical dischargeand CO2laser [J]. IEEE J Quant Electron,1974, QE-10(1):12-20.
    [81]周大正.高气压CO2激光器的技术分析与研究进展[J].激光杂志,1986,7(6):321-327.
    [82]陈冰.TEA-CO2激光器的几种典型的预电离技术[J].激光杂志,2003,24(5):33-35.
    [83] B Norris, A L S Smith. Compact sealed photo-preionized TEA CO2laserwithout heterogeneous catalysis or gas recycling [J]. Appl Phys Lett,1979,34(6):385-386.
    [84] A C I Chis, V Draganescu, D Dragulinescu, et al. Design and performance ofa high repetition rate TEA CO2laser [J]. J Phys E: Sci Instrum,1988,21:393-396.
    [85] H Seguin, J Tulip. Photoinitiated and Photosustained Laser [J]. Appl PhysLett,1972,21(2):415-416.
    [86] N H Burnett, A A Offenburger. Simple electrode configuration for UVinitiated high-power TEA laser discharges [J]. J Appl Phys,1973,44(8):3617-3618.
    [87] O P Judd. An efficient electrical CO2laser [J]. Appl Phys Lett,1973,22(3):95-96.
    [88] R Dumehin, M Michon, J C Farcy, et al. Extension of TEA CO2lasercapabilities [J]. IEEE J Quant Electron,1972, QE-8(2):163-165.
    [89] V Hasson, H M Vonbergman. Simple and compact photo-preionizationstabilized excimer lasers [J]. Rev Sci histrum,1979,50(2):1542-1544.
    [90] Y C Qu, F M Liu, X Y Hu, et al. Miniature high-repetition-rate transverselyexcited atmospheric-pressure CO2laser with surface-wire-coronapreionization [J]. Infrared Physics&Technology,2000,41(3):139-142.
    [91]胡孝勇,曲彦臣,任德明,等.表面电晕预电离与火花预电离之比较[J].真空科学与技术,2002,22(5):382-384.
    [92] K R Rickwood. A semiconductive preionizer for transversely exeitedatmospheric CO2lasers [J]. J Appl Phys,1982,53(4):2840-2842.
    [93] J B Gridland. Effect of pressure on a semiconductor-preionised pulsed CO2laser [J]. J Phys E: Sci Instrum,1985,18:328-330.
    [94] P Rodin, U Ebert, W Hundsdorfer, et al. Superfast fronts of impact ionizationin initially unbiased layered semiconductor structures [J]. J Appl Phys2002,92(4):1971-1980.
    [95] A A Serafetinidest, K R Rickwood. Improved performance of small andcompact TEA pulsed HF lasers employing semiconductor preionisers [J]. JPhys E: Sci Instrum,1989,22(2):103-107.
    [96] H M Lamberton, P R Pearson. Improved excitation techniques foratmospheric pressure CO2lasers [J]. Electron Lett,1971,7(5-6):141-142.
    [97]梁蔚鹏.TEA CO2激光器高气压大体积放电的实验研究[D]:[硕士毕业论文].武汉:华中科技大学,2007.
    [98] G R Ernst, A G Boer. Construction and performance characteristics of A rapiddischarge TEA CO2laser [J]. Opt Commun,1978,27:106-110.
    [99] I Sauers, H W Ellis, L G Christophorou. Neutral decomposition products inspark breakdown of SF6[J]. IEEE Trans Electr Insul,1986,21(2):111-120.
    [100] EPRI. Study of Arc By-Products in GIS [R]. EPRI Final ReportEL-1646,1980.
    [101] K Hirooka, H Kuwahara, M Noshiro, et al. Decomposition products of SF6gas by high-current arc and their reaction mechanism [J]. Elec Eng Japan,1975,95:14-19.
    [102]王景儒.六氟化硫分解产物及其去除方法[J].有机氟工业,1994,4:7-11.
    [103] M Piemontesi, L Niemeyer. Sorption of SF6and SF6decomposition productsby activated alumina and molecular sieve13X [C]. IEEE InternationalSymposium on Electrical Insulation, Montreal, Quebec, Canada,1996:828-838.
    [104] C Beyer, H Jenett, D Klockow. Influence of reactive SFxgases on electrodesurfaces after electrical discharges under SF6atmosphere [J]. IEEETransactions on Dielectrics and Electrical Insulation,2000,7(2):234-240.
    [105] Y Qiu, E Kuffel. Comparison of SF6/N2and SF6/CO2gas mixtures asalternatives to SF6gas [J]. IEEE Transactions on Dielectrics and ElectricalInsulation,1999,6(6):892-895.
    [106]张晓星,姚尧,唐炬,等.SF6放电分解气体组分分析的现状和发展[J].高电压技术,2007,34(4):664-669.
    [107] M Iio, M Goto, H Toyoda, et al. Relative cross sections for electron-impactdissociation of SF6into SFx(x=1-3) neutral radicals [J]. Contrib Plasma Phys,1995,35(4-5):405-413.
    [108] M T Bernal, C F Mosquera, C A Raffo, et al. Model of pulseddischarge-iniciates HF chemical laser using SF6and C3H8mixture [C]. Procof SPIE,1999,3572:434-440.
    [109] A N Panchenko, V M Orlovskii, V F Tarasenko, et al. Efficient operationmodes of a non-chain HF-laser pumped by self-sustained discharge [C]. Procof SPIE,2003,5137:303-310.
    [110] M A Lieberman, A J Lichtenberg. Principles of Plasma Discharges andMaterials Processing [M]. New York: Wiley,1994.
    [111] R J V Brunt, J T Herron. Plasma chemical model for decomposition of SF6ina negative glow corona discharge [J]. Phys Scr,1994, T53:9–29.
    [112] H M Anderson, J A Merson, R W Light. A kinetic model for Plasma Etchingin a SF6/O2RF discharge [J]. IEEE Trans Plasma Sci,1986, PS-14:156–164.
    [113] V H Dibeler, F L Mohler. Dissociation of sulfur hexafluoride, carbontetrafluoride, and silicon tetrafluoride by electron impact [J]. J Res Natl BurStand1948,40:25-29.
    [114] R K Asundi, J D Craggs. Electron capture and ionization phenomena in SF6and C7F14[J]. Proc Phys Soc,1964,83(4):611-618.
    [115] A P Hitchcock, M J V Wiel. Absolute oscillator strengths (5-63eV) for photoabsorption and ionic fragmentation of SF6[J]. J Phys B: At Mol Opt Phys,1979,12(13):2153-2169.
    [116] T Stanski, B Adamczyk. Measurements of dissociative ionization crosssection of SF6by using double collector cycloidal mass spectrometer [J]. IntJ Mass Spectrom Ion Physics,1983,46:31-34.
    [117] D Margreiter, G Walder, H Deutsch, et al. Electron impact ionization crosssections of molecules: Part I. Experimental determination of partialionization cross sections of SF6: a case study [J]. Int J Mass Spectrom IonProcesses,1990,100:143-156.
    [118] R Rejoub, D R Sieglaff, B G Lindsay, et al. Absolute partial cross sectionsfor electron-impact ionization of SF6from threshold to1000eV [J]. J Phys B:At Mol Opt Phys,2001,34:1289–1297.
    [119] L E Kline, D K Davies, C L Chen, et al. Dielectric properties for SF6and SF6mixtures predicted from basic data [J]. J Appl Phys,1979,50(11):6789-6796.
    [120] R Geballe, M A Harrison. Basic Processes of Gaseous Electronics [M].Berkeley, Los Angeles: University of California Press,1955, pp.415.
    [121] M A Harrison, R Geballe. Simultaneous measurement of ionization andattachment coefficients [J]. Phys Rev1953,91(1):1-7.
    [122] M Shimozuma, H Itoh, H Tagashira. Measurement of the ionisation andattachment coefficients in SF6and air mixtures [J]. J Phys D: Appl Phys,1982,15:2443-2449.
    [123] Y Qiu, D M Xiao. Ionization and attachment coefficients measured in SF6/Arand SF6/Kr gas mixtures [J]. J Phys D: Appl Phys,1994,27:2663-2665.
    [124] J d Urquijo-Carmona, C Cisneros, I Alvarez. Measurement of ionisation,positive ion mobilities and longitudinal diffusion coefficients in SF6at highE/N.[J]. J Phys D: Appl Phys,1985,18:2017-2022.
    [125] J d Urquijo-Carmona, I Alvarez, C Cisneros. Time-resolved study of chargetransfer in SF6[J]. J Phys D: Appl Phys,1986,19:L207-L210.
    [126] L G Christophorou, D L McCorkle, J G Carter. Cross sections for electronattachment resonances peaking at subthermal energies [J]. J Chem Phys,1971,54(1):253-260.
    [127] R K Curran. Low-energy process for F-formation in SF6[J]. J Chem Phys,1961,34:1069-1070.
    [128] A J Ahearn, N B Hannay. The formation of negative ions of sulfurhexafluoride [J]. J Chem Phys,1953,21(1):119-124.
    [129] R N Compton, L G Christophorou, G S Hurst, et al. Nondissociative electroncapture in complex molecules and negative-ion lifetimes [J]. J Chem Phys,1966,45(12):4634-4639.
    [130] F C Fehsenfeld. Electron attachment to SF6[J]. J Chem Phys,1970,53(5):2000-2004.
    [131] L G Christophorou, D L Mccorkle, J G Carter. Erratum: cross sections forelectron attachment resonances peaking at subthermal energies [J]. J ChemPhys,1972,57:2228.
    [132] C L Chen, P J Chantry. Photon-enhanced dissociative electron attachment inSF6and its isotopic selectivity [J]. J Chem Phys,1979,71(10):3897-3907.
    [133] M Fenzlaff, R Gerhard, E Illenberger. Associative and dissociative electronattachment by SF6and SF5Cl [J]. J Chem Phys,1988,88(1):149-155.
    [134] J P Novak, M Frechette. Transport coefficients of SF6and SF6-N2mixturesfrom revised data [J]. J Appl Phys,1984,55(1):107-119.
    [135] H X Wan, J H Moore, J K Olthoff, et al. Electron scattering and dissociativeattachment by SF6and its electrical-discharge by-products [J]. PlasmaChemistry and Plasma Processing,1993,13(1):1-16.
    [136] T Yoshizawa, Y Saki, H Tagashira, et al. Boltzmann equation analysis of theelectron swarm development in SF6[J]. J Phys D: Appl Phys,1979,12:1839-1852.
    [137] H Itoh, M Shimozuma, H Tagashira. Boltzmann equation analysis of theelectron swarm development in SF6and nitrogen mixtures [J]. J Phys D:Appl Phys,1980,13:1201-1209.
    [138] J P Novak, M Frechette. Calculation of SF6transport coefficients fromrevised data [J]. J Phys D: Appl Phys,1982,15:L105-L110.
    [139] M S Dincer, G R G Raju. Monte Carlo simulation of the motion of electronsin SF6in uniform electric fields [J]. J Appl Phys,1983,54(11):6311-6316.
    [140] M Hayashi, T Nimura. Importance of attachment cross-sections of F-formation for the effective ionisation coefficients in SF6[J]. J Phys D: ApplPhys,1984,17:2215-2223.
    [141] H Itoh, T Matsumura, K Satoh, et al. Electron transport coefficients in SF6[J].1993,26:1975-1979.
    [142] A V Phelps, R J V Brunt. Electrontransport, ionization, attachment, anddissociation coefficients in SF6and its mixtures [J]. J Appl Phys,1988,64(9):4269-4277.
    [143] H Itoh, M Kawaguchi, K Satoh, et al. Development of electron swarms inSF6[J]. J Phys D: Appl Phys,1990,23:299-303.
    [144] L B Loeb. Basic Processes of Gaseous Electronics [M]. Berkeley: Universityof California Press,1960, pp.5.
    [145] C Riccardi, R Barni, F D Colle, et al. Modeling and diagnostics of an SF6RFplasma at low pressure [J]. IEEE Trans Plasma Sci,2000,28:278-287.
    [146] L B Loeb, J M Meek. The mechanism of electrical spark [M]. Stanford,California: Stanford University Press,1941.
    [147] H Raether. Electron Avalanches and Breakdown in Gasses [M]. London:Betterworths,1964, pp.124-148.
    [148] P Osmokrovic. Electrical breakdown of SF6at small values of the product pd[J]. IEEE Trans Power Delivery,1989,4(4):2095-2099.
    [149]李正瀛.强电负性气体特征值与临界击穿场强的研究[J].高电压技术,1992,65(3):13-17.
    [150] N H Malik, A H Qureshi. Breakdown mechanisms in sulphur-hexafluoride [J].IEEE Trans Electr Insul,1978,13(3):135-145.
    [151] T Nitta, Y Shibuya. Electrical breakdown of long gaps in sulfur hexafluoride
    [C]. Switchgear Committee of the I-EEE Power Group for presentation at theIEEE Summer Power Meeting and EHV Conference, Los Angeles, Calif,1970: Paper70TP582-PWR:2095-2099.
    [152] Y P Raizer. Gas Discharge Physics [M]. Berlin Heidelberg: Springer-Verlag,1991, pp.56.
    [153] W H Flygare. Molecular relaxation [J]. Acc Chem Res,1968,1(4):121-127.
    [154] C B Moore. Vibration-rotation energy transfer [J]. J Chem Phys,1965,43(9):2979-2986.
    [155] H K Shin. De-excitation of molecular vibration on collision:vibration-to-rotation energy transfer in hydrogen halides [J]. J Phys Chem,1971,75(8):1079-1090.
    [156] R C Millikan, D R White. Systematics of vibrational relaxation [J]. J PhysChem,1963,39(12):3209-3213.
    [157] R L Wilkins. Mechanisms of energy transfer in hydrogen fluoride systems [J].J Chem Phys,1977,67(12):5838-5854.
    [158] N G Basov, V T Galochkin, V I Igoshin. Spectra of stimulated emission in thehydrogen-fluorine reaction process and energy transfer from DF to CO2[J].Appl Opt,1971,10(8):1814-1820.
    [159] K L Kompa. Chemical lasers [M]. Berlin: Springer-Verlag,1973, pp.19.
    [160] E Arunan, D W Setser. Vibration-rotational Einstein coefficients for HF/DFand HCL/DCL [J]. J Chem Phys,1992,97(3):1734~1741.
    [161]程丽.电激励烷基碘化物产生碘激光机制研究[D]:[博士毕业论文].哈尔滨:哈尔滨工业大学,2007.
    [162]柯常军,万重怡,吴谨.气体组份和峰化电容对脉冲HF激光输出特性的影响[J].中国激光,2003,30(1):1-4.
    [163]罗威,袁圣付,邹前进,等. DF/HF化学激光器高振动态基频谱线机理分析[J].红外与毫米波学报,2012,31(3):239-242.
    [164] N Cohen. A review of rate coefficients in the D2-F2chemical laser system [R].TR-0077(2603)-3, The Aerospace Corporation, El Segundo, California,1972.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700