热力作用下CO_2驱替残留煤层CH_4渗流吸附解吸置换规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国煤矿开采过程中由于煤层赋存条件和开采技术等因素制约而导致的大量残煤及煤层气资源滞留井下的现实和缓解温室气体CO2的减排压力,结合残煤受开采扰动影响引起应力场变化和残煤内部形成由块状散体和实体组成的复杂结构,对CO2注入残留煤层过程中渗流、扩散、吸附、驱替置换CH4影响显著的特点,并考虑了温度对于CH4/CO2吸附解吸的影响,本文采用实验研究、理论分析和数值模拟相结合的方法,开展了CO2注入残留煤层非等温渗流实验、CH4和CO2单组分气体及CH4/CO2二元混合气的非等温吸附解吸实验、CO2驱替置换CH4实验以及煤层注入CO2驱替CH4的数值模拟研究,在考虑热力作用下残留煤层注入CO2驱替CH4的机理和规律方面取得了如下研究成果:
     (1)根据CH4和CO2的非等温渗流实验,揭示了CH4和CO2的渗透性随孔隙压力、煤样体积应力和温度的变化规律,即CH4和CO2的渗透性随孔隙压力变化符合正指数变化规律,随体积应力变化符合负指数变化规律,温度越高,CH4和CO2的渗透性越小,并得出CH4和CO2气体在煤中的渗流规律为非达西渗流。相同渗流条件下,煤样中CO2的渗透能力要高于CH4渗透能力1个量级。
     (2)根据CH4的非等温吸附解吸实验,进一步验证了块状型煤等温条件下吸附和解吸是可逆的、吸附量与压力之间符合Langmuir方程和解吸实验出现滞后现象等吸附解吸特征;在不同温度条件下,吸附和解吸规律变化具有分区性,在10℃-30℃区间,温度越高,吸附量下降梯度越大,吸附平衡时10℃的吸附量约为30℃吸附量的4-5倍;在30℃-50℃区间,温度变化对于吸附量和解吸量的变化幅度影响较小。利用Langmuir方程拟合出CH4气体在不同温度条件下的吸附解吸方程。
     (3)根据CH4/CO2混合气的非等温吸附实验,揭示了混合气吸附量和解吸量随压力、温度及组分配比的变化规律。在同一温度条件下,混合气吸附量随压力的变化规律符合Langmuir方程,混合气中CO2浓度越大,混合气的吸附量越大,CO2的吸附能力明显大于CH4,吸附平衡时CO2的最大吸附量约为CH4最大吸附量的2倍,相同条件下型煤试件吸附实验所得的吸附量小于煤粉的吸附量。CO2的吸附率和CH4的解吸率与煤对不同组分气体的分离因子有关,CO2相对于CH4的分离因子越大,CO2的吸附率和CH4的解吸率越高。在30℃-60℃C区间,温度对于混合气的吸附量影响较小,同一组分混合气吸附平衡时在40℃吸附量出现最大值。
     (4)根据CO2驱替CH4实验,揭示了煤样体积应力、孔隙压力和温度对于CH4驱替量的影响规律。在相同温度条件下,CO2相对于CH4分离因子越大的煤,注入CO2孔隙压力越大、注入时间越长、煤层体积应力越小,驱替效果越明显;在20℃-50℃区间,相同条件下CH4的驱替量变化趋势为V20℃>V40℃>V30℃>V50℃因此可以得出20℃是CH4的合理驱替温度。
     (5)建立了热力条件下残留煤层注入CO2驱替CH4的渗流、扩散、吸附、解吸的力学模型,并进行了数值模拟计算,模拟结果表明:注入的CO2气体是通过减少煤层CH4的分压和CH4/CO2之间竞争吸附双重作用来提高CH4的抽采率,残留煤层注入CO2可以促进煤层中CH4的解吸,进而提高煤层CH4的采收率和达到CO2地下封存的目的;同时环境温度的变化,也会对CH4的解吸量产生影响,温度越高,CH4越容易解吸,模拟结果与实验一致。
According to the reality of large amount of residual coal and coal bed methane resources abandoned underground caused by the occurrence conditions in coal seams and the mining technology restrictions during the mining process and alleviating the pressure of the CO2emissions, combining with that the changed stress field induced by disturbance of mining residual coal and the complex construction composed of granular material in bulk and solid formed in residual coal have a obvious influence on seepage, diffusion, adsorption and CH4displacement-replacement during injecting CO2into coal seams, and considering temperature influence on CH4/CO2. adsorption-desorption, this paper carried out the non-isothermal seepage experiment of CO2, CH4/CO2single component and binary mixture non-isothermal adsorption experiment, CH4displacement-replacement experiment with CO2and its numerical simulation in coal seams during CO2injected with the combination method of theoretical analysis, experiment research and numerical simulation, the results on the displacement mechanism and migration law of CH4by injecting CO2into residual coal under coupled thermo-mechanical condition are as follows:
     (1) The CO2and CH4non-isothermal seepage experiment reveals the change rule of CH4/CO2permeability with pore pressure, coal sample volume stress and temperature, namely gas permeability satisfied the positive exponent change rule with the pore pressure change, satisfied the negative exponent change rule with the volume stress, the higher temperature the lower permeability of CO2and CH4, and the seepage rule of CO2and CH4in coal belongs to non-Darcy seepage, the permeability of CO2in coal is ten times larger than that of CH4in the same conditions.
     (2) The CH4non-isothermal adsorption-desorption experiment verified the adsorption desorption characteristics that in isothermal condition, adsorption and desorption on block briquette is reversible, the adsorption quantity and pressure satisfied the Langmuir equation and lag phenomenon appeared in desorption experiments; in different temperature conditions, adsorption and desorption change rule has regionality. Between10℃to30℃, the higher temperature, the more adsorption quantity gradient declined, adsorption quantity at10℃is4-5times larger than that at30℃when adsorption was balance; Between30℃to50℃, temperature change has little influence on adsorption quantity and desorption quantity. Fitted the CH4adsorption-desorption equation with Langmuir equation in different temperature conditions.
     (3) CH4/CO2non-isothermal adsorption experiment revealed the change rule of gas mixture adsorption quantity and desorption quantity with the change of pressure, temperature and the component proportion. In the same temperature conditions, gas mixture adsorption quantity change rule with pressure satisfied Langmuir equation, the more CO2concentration in gas mixture, the more CO2quantity, the adsorption ability to CO2is obviously more than that to CH4in gas mixture, the max CO2adsorption quantity is two times than CH4when adsorption is balance. In the same conditions, the adsorption quantity got from the experiment on briquette sample was less than that on coal powder. CO2adsorption rate and CH4desorption rate are concerned with the separation factor of different gas components to coal, the larger CO2separation factor relative to CH4, the more CO2adsorption rate and CH4desorption rate would be. Between30℃to60℃, temperature has less influence on gas mixture adsorption, the max adsorption quantity appeared at40℃in gas mixture with the same component.
     (4) Gas displacement experiment revealed the CH4displacement quantity influence rule with coal sample volume stress, pore pressure and temperature. In the same temperature conditions, the coal with more separation factor on CO2relative to CH4, the larger injecting CO2pore pressure, the longer injecting time and the less volume stress in coal seams, the better displacement effect; Between20℃-50℃, the displacement quantity change tendency is V20℃> V40℃> V30℃> V50℃under the same conditions, so20℃is the rational displacement temperature.
     (5) Established the diffusion, seepage, adsorption and desorption mathematical model of CH4displacement by injecting CO2in residual coal under thermo-mechanical condition, and simulated numerically, the results show that:CO2injected improved the CH4extraction rate through the double effects of declining CH4pressure in coal seams and competitive adsorption between CH4and CO2, and then improved the CH4recovery efficiency and realized the purpose of CO2underground storage; Meanwhile, the surrounding temperature change could also influence CH4desorption quantity, the higher temperature, the easier CH4desorbed, the simulation results above is consistent with the experiment.
引文
[1]聂锐,王迪.中国能源消费的CO2排放变动及其驱动因素分析[J].中国矿业大学学报,2011,3(1):73-78.
    [2]廖华,魏一鸣.“十二五”中国能源和碳排放预测与展望[J].战略与决策研究,2011,26(2):150-153.
    [3]张洪涛,文冬光,李义连,等.中国CO2地质埋存条件分析及有关建议[J].地质通报,2005,24(12):1107-1110.
    [4]梁冰,孙可明.低渗透煤层气开采理论及其应用[M].北京:科学出版社,2006.
    [5]冯增朝.低渗透煤层瓦斯强化抽采理论及应用[M].北京:科学出版社,2008.
    [6]叶建平,秦勇,林大扬.中国煤层气资源[M].徐州:中国矿业大学出版社,1998.
    [7]Yu H,Yuan J,Guo W, et al.A preliminary laboratory experiment on coalbed methane displacement with carbon dioxide injection[J]. In-ternational Journal of Coal Geology,2008.73: 156-166.
    [8]Pinia R,Ottigera S,Stortib G,et al.Pure and competitive adsorptionof CO2,CH4 and N2 on coal for ECBM[J], Energy Procedia,2009((1):1705-1710.
    [9]Schreurs H C E.荷兰煤层气开发应用CO2注入技术的可行性-潜力与经济性评价[A].见:2002年第三届国际煤层气论坛论文集[C].徐州:中国矿业大学出版社,2002:79-87.
    [10]张子戌,刘高峰,张小东等.煤炭学报[J].CH4/CO2不同浓度混合气体的吸附-解吸实验,2009,34(4):551-555.
    [11]林刚,陈莉纯.温室气体CO2的收集、存储与再利用[J].低温与特气,1999,2:14-19.
    [12]Stevens S H.CO2 injection for enhanced coal bed methane recovery:project screening and design[A].In:Proc.ofthe 1999 Int. CBMSymp.[C].Tuscaloosa, Alabama:[s. n.],1999:15-22.
    [13]Reeves S R. The Coal-seq project:key results from field, laboratory, and modeling studies[A]. In:Proc. of the 7th International Conference on Greenhouse Gas Control Technologies(GHGT 7)[C]. Oxford, UK:Elsevier Science,2004:544-548.
    [14]于洪观,范维唐,孙茂远,等.高压下煤对CH4/CO2二元气体吸附等温线的研究[J].煤炭转化,2005,28(1):43-47.
    [15]杨胜来,崔飞飞,杨思松,等.煤层气渗流特征实验研究[J].中国煤层气,2005,2(1):36-39.
    [16]梁冰,刘建军,范厚彬,等.非等温条件下煤层中瓦斯流动的数学模型与数值解法[J].岩石力学与工程学报,2000,19(1):1-5.
    [17]梁冰.温度对煤的瓦斯吸附性能影响的实验研究[J].黑龙江矿业学院学报,2000,10(3):20-22.
    [18]梁冰,高红梅,兰永伟.岩石渗透率与温度关系的理论分析和实验研究[J].岩石力学与工程学报,2005,24(12):2009-2012.
    [19]张广洋,胡耀华,姜德义.煤的瓦斯渗透性影响因素的探讨[J].重庆大学学报,1995,]8(3):27-30.
    [20]张广洋,胡耀华,姜德义等.煤的渗透性实验研究[J].贵州工学院学报,1995,24(4):65-68.
    [21]曹树刚,李勇,郭平等.型煤与原煤全应力-应变过程渗流特性对比研究[J].岩石力学与工程学报,2010,29(2):899-906.
    [22]徐增辉,刘光廷,叶源新,等.温度对软岩渗透系数影响[J].中国矿业大学学报,2009,38(4):523-527.
    [23]胡耀青,赵阳升,杨栋,等.温度对褐煤渗透特性影响的实验研究[J].岩石力学与工程学报,2010,29(8):1585-1590.
    [24]王登科,魏建平,尹光志.复杂应力路径下含瓦斯煤渗透性变化规律研究[J].岩石力学与工程学报,2012,31(2):303-310.
    [25]SomertonW.H. Effect of stress on permeability of coal[J]. Int.J.RockMeck.Mech.Min.Sci.& Geomech.Abstr.1975,12(2):151-158.
    [26]Enever J R E, Henning A.The Relationship Between Permeability and Effective Stress forAustralian Coal and Its Implications with Respect to Coalbed Methane Exploration andReservoir Modelling[A].Proceedings of the 1997 International Coalbed Methane Symposium[C].Alabama:The University of Alabama Tuscaloosa,1997:13-22.
    [27]Snow n. T., Three-hole pressure test for anisotropy foundation permeability[J]. Felsmech. Ingenieurgeol,1966,4(4):198-314.
    [28]M. Bai and D. Elsworth. Modeling of subsidence and stress dependent hydraulic conductivity of intactand fractured porous media[J]. Rock Mech. And Rock Eng.,1994,27:209-234.
    [29]M. Bai and D. Elsworth. Multi-porosity/multi-permeability approach to the simulation of naturally fractured reservoirs[J]. Water Resour. Res.,1993,29:1621-1633.
    [30]林柏泉,周世宁.煤样瓦斯渗透率的实验研究[J].中国矿业学院学报,1987,16(1):21-28.
    [31]赵阳升,胡耀青,杨栋,等.三维应力下吸附作用对煤岩体气体渗流规律影响的研究[J].岩石力学与工程学报,1999,18(6):651-653.
    [32]赵阳升,杨栋,郑少河,等.三维应力作用下岩石裂缝水渗流物性规律的实验研究[J].中国科学(E辑),1999,29(1):82-86.
    [33]程瑞端.煤层瓦斯涌出规律及其深部开采预测的研究[D].重庆:重庆大学,1996.
    [34]Chaback J, Morgan D, YeeD. Sorption irreversibilities and mixture compositional behavior during enhanced Coalbed methane recovery processes. Gus technology conference [C]. SPE 35622.1996:112-119.
    [35]张遂安,叶建平,唐书恒,等.煤对CH4气体吸附-解吸机理的可逆性实验研究[J].天然气工业,2005,25(1):44-46.
    [36]唐书恒.晋城地区煤储层特征及多元气体的吸附-解吸特征[D].徐州:中国矿业大学,2001
    [37]唐书恒,汤达祯,杨起.二元气体等温吸附-解吸中气分的变化规律[J].中国矿业大学学报,2004,33(4):448-452.
    [38]马东民.煤层气吸附解吸机理研究[D].西安:西安科技大学,2008.
    [39]Krooss B M, Bergen Fvan, Gensterblum Y., et al. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals[J]. International Journal of Coal Geology,2002,51 (2):69-92.
    [40]杨思敬,宁德义,刘云生.MT/T 752-1997煤的CH4吸附里测定方法(高压容量法)[S].北京:中国标准出版社,1997.
    [41]张庆玲,张遂安,崔永君.GB/T 19560-2008煤的高压等温吸附试验方法容量法[S].北京:中国标准出版社,2008.
    [42]Hall F E, Zhou Chunhe, Gasem, K.A.M. et al. Adsorption of pure methane, nitrogen, and carbon dioxide and their binary mixture on wet Fruitland coal[C]. Proceedings-SPE Eastern Regional Conference and Exhibition. Charleston, WV, USA.1994.11:329-344.
    [43]Ruppel T C. Adsorption of methane/ethane mixtures on dry coal at elevated pressures[J] Fuel, 1972,51(10):297-303.
    [44]Saunders J T. Benjamin M C. Yang R T. Adsorption of gases on coals and heat—treated coals at elevated temperature and pressure.2 Adsorption from hydrogen-methane mixtures [J] Fuel, 1985,64(5):621-626.
    [45]Harpalani S, Pariti U M. Study of sorption isotherm using a multicomponent gas mixture [C], International Coalbed Methane Symposium.1993:89-95.
    [46]Greaves K H. Owen L B. Melenman J D. et al. Multi component adsorption-desorption behavior of coal[C] proceedings of the 1993 International Coalbed Methane Symposium, 1993:22-27.
    [47]Goetz V, Pupier O, Guillot A. Carbon dioxide-methane mixture adsorption on activated carbon[J]. Adsorption,2006,12(1):55-63..
    [48]张晓红,钱春江,彭建新.煤中多元气体的吸附与解吸[J].试采技术,2004,25(3):23-24.
    [49]代世峰,张贝贝,朱长生,等.河北开滦矿区晚古生代煤对CH4/CO2二元气体等温吸附特性[J].煤炭学报,2009,34(5):577-582.
    [50]于洪观,范维唐,孙茂远,等.煤对CH4/CO2二元气体等温吸附特性及其预测[J].煤炭学报,2005,30(5):618-622.
    [51]唐书恒,汤达祯,杨起.二元气体等温吸附实验及其对煤层CH4开发的意义[J].中国地质大学学报,2004,29(2):219-223.
    [52]张子戎,刘高峰,张小东,等CH4/CO2不同浓度混合气体的吸附-解吸实验[J].煤炭学报,2009,34(4):551-555.
    [53]李小彦,司胜利.我国煤储层煤层气解吸特征[J].煤田地质与勘探,2004,32(3):27-29.
    [54]陈振宏,贾承造,宋岩,等.高煤阶与低煤阶煤层气藏物性差异及其成因[J].石油学报,2008,29(2):179-184.
    [55]徐锋,吴强,张保勇.煤层气水合化的基础研究[J].化学工程,2009,37(2):63-66.
    [56]崔永君,张庆玲,杨锡禄.不同煤的吸附性能及等量吸附热的变化规律[J].天然气工业,2003,23(4):130-132.
    [57]崔永君,李育辉,张群.煤吸附CH4的特征曲线及其在煤层气储集研究中的作用[J].科学通报,2005,50(5):76-81.
    [58]杨宏民,任子阳,王兆丰.煤对气体吸附特征的研究现状及应用前景展望[J].煤,2009,118:1-4.
    [59]钟玲文.煤的吸附性能及影响因素[J].地球科学-中国地质大学学报,2004,29(3):327-333.
    [60]郭晓华,蔡卫,马尚权,等.CH4吸附模型在不同压力区间的适用性研究[J].煤炭技术,2010,29(6):180-183.
    [61]张庆玲,崔永君,曹利戈.压力对不同变质程度煤的吸附性能影响分析[J].天然气工业,2004,24(1):17-21.
    [62]钟玲文,张新民.煤的吸附能力与其煤化程度和煤岩组成间的关系[J].煤田地质与勘探,1990,4:29-35.
    [63]Yee D, Seidle J P, Hanson W B. Gas sorption on coal and measurement of gas content. In: Law B E, Rice D D(eds).Hydrocarbon from Coal.AAPG Studies in Geology,1993,9:203-218.
    [64]Levy J H, Day S J, Killingley J S. Methane capacities of Bowen Basin coals related to coal properties[J]. Fuel,1997,74:1-7.
    [65]Gan H, Nandi S P, Walker P L R. Nature of the porosity in American coals[J].Fuel,1972,5: 272-277.
    [66]Lamberson M N, Bustin R M. Coal-bed methane characteristics of Gate Formation coals, Northeastern British Columbia:effect of maceral composition. AAPG. 1993,77(12):2062-2076.
    [67]Levine J R, Johnson P W, Beamish B B. High pressure microgravimetry provides a viable alterative to vo-lumetric method in gas sorption studies on coal. Proc 1993 Int CBMSym,187-195, Univ Alab Tuscaloosa, Alabama, U.S.A.
    [68]Unsworth J F, Fowler C S, Jones L F. Moister in coal Maceral effect on pore structure[J]. Fuel, 1989,69:18-26.
    [69]Crosdale P J, Beamish B B, Valix M. Coal-bed methane sorption related to coal composition[J]. Int J Coal Geol,1998,35:147-158.
    [70]Cecil C B, Stanton R W, Neuzil S G et al. Palaeoclimate controls on Late Palaeozoic sedimentation and peat formation in Central Appalachian Basins[J].Int J Goal Geol,1985,5:195-230.
    [71]Stach E, Mackowsky M-TH, Teichmuller M et al. Stach's texbook of coal petrology. Berlin-Stuttgart:Gebruder Borntraeger,1982.
    [72]Meissner F F. Cretaceous and lower Tertiary coals as sources for gas accumulations in the Rocky Mountain area. In:Woodwork J, Meissner F F, Clayton J L, Source of the Rocky Mountain Region,1984 Guidebook,104-433.
    [73]Choate R, MacCord J P, Rightime R T. Assessment of natural natural-gas form coal-beds by geological characterization and production evaluation In:Rice D. Oil and Assessment. AAPG Studies in Geology,1986,21:223-245.
    [74]Ayers W B, Kelso B S. Knowledge of methane potential for coal-bed resource grows, but need more study[J]. Oil&Gas J,1989,87:66-67.
    [75]Gan H Nandi S P, Waller P L R. Nature of the Porosity in American coals[J]. Fuel,1972(5): 272-277.
    [76]Lamberson M N, Bustin R m. Coal-bed methane characteristics of Gate Formation coals[J]. Northeastern British Columbia:effect of maseral composition AAPG,1993,77(12):2062-2076.
    [77]Jouber J I Grein C T, Bienstock D. Sorption of methane in moist coal[J]. Fuel,1973,52(3): 181-185.
    [78]Jouber J I Grein C T, Bienstock D. Effect of moisture on the methane capacity of American coals[J]. Fuel,1974,53:186-191.
    [79]Krooss B M, Bergen F, Gensterblum Y et al.High-pressure methane and dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals [J]. Geol,2002,51:69-92.
    [80]Laxminarayana C, Crosdale P J. Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia, coals. Int J Coal,1999,40:309-325.
    [81]Kolak J, Burruss R. Geochemical investigation of the potentialfor mobilizing non-methane hydrocarbon during carbon dioxidestorage in deep coal beds[J]. Energy and Fuels,2006,20(2): 566-574.
    [82]Damen K, Faaij A, Van F, et al. Identification of early opportunity for CO2 sequestration-worldwide screening for CO2-EORand C02-ECBM projects[J]. Energy,2005, 30(10):1931-1952.
    [83]Kurniawan Y, Bhatia S, Rudolph V. Simulation of binary mixture adsorption of methane and CO2 at supercritical conditions in carbons[J]. AIChE Journal,2006,52(3):957-967.
    [84]Jessen K, Tang G, Kovscek A. Laboratory and simulation investigation of enhanced coalbed methane recovery by gas injection[J].Transport in Porous Media,2008,73(2):141-159.
    [85]Theodore T, Hiren P, Fayyaz N, et al. Overview of laboratory and modeling studies of carbon dioxide sequestration in coal beds[J].Industrial and Engineering Chemistry Research,2004, 43(12):2887-2901.
    [86]冯启言,周来,陈中伟,等.煤层处置CO2的二元气-固耦合数值模拟[J].高校地质学报,2009,15(1):63-68.
    [87]李向东,冯启言,刘波,等.注入CO2驱替煤层CH4的试验研究[J].洁净煤技术,2009,16(2):101-102.
    [88]唐书恒,马彩霞,叶建平,等.注CO2提高煤层CH4采收率的试验模拟[J].中国矿业大学学报,2006,35(5):607-611.
    [89]梁卫国,吴迪,赵阳升.CO2驱替煤层CH4试验研究[J].岩石力学与工程学报,2010,29(4):665-673.
    [90]韩大匡.油藏数值模拟基础[M].北京:石油工业出版社,1982.
    [91]孙可明,潘一山,梁冰.流固耦合作用下深部煤层气井群开采数值模拟[J].岩石力学与工程学报,2007,26(5):994-1001.
    [92]吴嗣跃,郑爱玲.注气驱替煤层气的三维多组分流动模型[J].天然气地球科学,2007,18(4):581-583.
    [93]隆清明,赵旭生,牟景珊.孔隙气压对煤层气体渗透性影响的实验研究[J].矿业安全与环保,2008,35(1):10-12.
    [94]周世宁.瓦斯在煤层中的流动机理[J].煤炭学报,1990,15(1):15-58.
    [95]刘洋.长壁留煤柱支撑法开采煤柱优化设计及破坏的可监测性研究[D].西安:西安科技大学,2006.
    [96]吴迪,孙可明,陈治宇.热力耦合作用下深部煤层渗流规律试验研究[J].安全与环境学报,2012,12(5):215-218.
    [97]李志强,鲜学福,隆晴明.不同温度应力条件下煤体渗透率实验研究[J]中国矿业大学学报,2009,38(4):523-527.
    [98]Enever J R E, Henning A. The relationship between permeability andeffective stress for Australian coal and its implications with respect to coalbed methane exploration and reservoir modelling[A]. Proceedingsof the 1997 International Coalbed Methane Symposium[C].1997:13-22.
    [99]钱凯,赵庆波.煤层CH4气勘探开发理论与实验测试技术[M].北京:石油工业出版社,1996.
    [100]Kristian Jessen, Guo-Qing Tang, Anthony R. Kovscek. Laboratory and Simulation Investi-gation of Enhanced Coalbed Methane Recovery by Gas Injection[J]. Transport in Porous Media, 2008,73:141-159.
    [101]Durucan S, Edwards J S. The effect s of stress and fracturing on permeability of coal[J]. Mining Sciences and Technology,1986,3 (3):205-216.
    [102]Mc Kee C R, Bumb A C, Koenig R A. Stress2Dependent Permeability and Porosity of Coal [C].Proceeding of CoalbedMet hane Symposium, Tuscaloosa, Alabama,1987:183-188.
    [103]赵阳升,胡耀青,杨栋,等.三维应力下吸附作用对煤岩体气体渗流规律影响的试验研究.岩石力学与工程学报,1999,18(6):651-653.
    [104]刘均荣,秦积舜,吴晓东.温度对岩石渗透率影响的实验研究[J].石油大学学报,2001,25(4):51-53.
    [105]贺玉龙,杨立中.温度和有效应力对砂岩渗透率的影响机理研究[J].岩石力学与工程学报,2005,24(12):2420-2427.
    [106]J.R Barber. Elasticity Second Edition[C]. Proceedings-Kluwer Academic Publishers, Department of Mechanical Engineering,University of Michigan, Ann Arbor, U.S.A.Chapter23:313-325
    [107]傅雪海,秦勇,李贵中,等.山西沁水盆地中南部煤储层渗透率影响因素[J].地质力学学报,2001,7(1):45-52.
    [108]A.E.薛定谔著,忘鸿勋,等译.多孔介质中的渗透物理[M].北京:石油工业出版社,1982.
    [109]E.D. Thimons and F.N. Kissell. Diffusion of methane through coal.[J]. Fuel,1973,52(4): 274-280.
    [110]J.I. Joubert, C.T. Grein and D. Bienstock, Sorption of methane in moist coal [J]. Fuel,1973, 52:181-185.
    [111]J.I. Joubert, C.T. Grein and D. Bienstock, Effect of moisture on the methane capacity of American coals[J].Fuel,1974,53:186-191.
    [112]张新民,庄军,张遂安.中国煤层气地质与资源评价[M].北京:科学出版社,2002.
    [113]吴迪.CO2驱替煤层瓦斯机理与实验研究[D].太原:太原理[大学,2010.
    [114]Chaback J, Morgan D, YeeD. Sorption irreversibilities and mixture compositional behavior during enhanced Coalbed methane recovery processes. Gus technology conference [C]. SPE 35622,1996:189-196.
    [115]张遂安,叶建平,唐书恒,等.煤对CH4气体吸附-解吸机理的可逆性实验研究[J].天然气工业,2005,25(1):44-46.
    [116]马东民,张遂安,蔺亚兵.煤的等温吸附-解吸实验及其精确拟合[J].煤炭学报,2010,36(3):477-480.
    [117]Stevenson M D. Pinezewski W V. Somers M L. et al. Adsorption/desorption of multicomponent gas mixture at in-seam conditions [C]. Proceedings of the SPE Asia-Pacific conference Perth. Western Australia 1991.11:741-756.
    [118]Nodzenski A. Sorption and desorption of gases(CH4,CO2)on hard coal and activated carbon at elevated pressures[J]. Fuel,1998,78:1243-1246.
    [119]Vishnyakov A, Piotrovskaya E M. Capillary condensation and melting/freezing transitions formethane in slit coal pores [J]. Adsorption,1998,4:207-224.
    [120]Karacan C O, Okandan E. Assessment ofenergetic heterogeneity ofcoals for gas adsorption and its effect on mixture predictions for coalbed methane studies [J]. Fuel,2000,79:1963-1974.
    [121]Clarkson C R. Adsorption potential theories to coal methane adsorption isotherms at elevated temperature and pressure[J]. Carbon,1997,35(12):1689-1705.
    [122]Laxminarayana Ch, Crosdale P J. Modeling methane adsorption isotherms using pore filling models:a ease study on India coals[C]. International coalbed methane symposium,1999:117-128.
    [123]徐永昌.天然气成因理论及应用[M].北京:科学出版社,1994.
    [124]Ruthven D M.Principles of Adsorption and Adsorption Processes[M]. New York:John Wile y& Sons,1984.
    [125]Yang R T, Saunders J T. Adsorption of gases on coals and heat-treated coals at elevated tempreature and pressure[J]. Fuel,1985:314-327.
    [126]涂乙,谢传礼,李武广,等.煤层对CO2、 CH4和N2吸附/解吸规律研究[J].煤炭技术科学,2012,40(2):70-72.
    [127]唐书恒,汤达祯,杨起.气体等温吸附-解吸中气分的变化规律[J].中国矿业大学学报,2004,33(4):448-452.
    [128]周军平CH4、 CO2、 N2及其多元气体在煤层中的吸附-运移机理研究[D].重庆:重庆大学,2010.
    [129]林瑞泰.多孔介质传热传质理论[M].北京:科学出版社,1995.
    [130]D.M. Smith, F.L. Williams, diffusional effects in the recovery of methane from coalbeds[J]. Society of Petroleum Engineers journal.1984,24(5):529-535.
    [131]Arri L E, Yee D, Morgan W D, and Jeansonne M W. Modeling eoalbed methane production with binary gas sorption[A]. SPE paper 24363, SPE Rocky Mountain Regional Meeting[C], 1992:56-61.
    [132]李士伦,周守信,杜建芬,等.国内外注气提高石油采收率技术回顾与展望[J].油气地质与采收率,2002,9(2):1-5.
    [133]姚胜林,陈明强,王克伟,等.提高采收率研究现状[J].石油化工应用,2009,28(4):1-3.
    [134]易俊,鲜学福姜永东,等.煤储层瓦斯激励开采技术及其适应性[J].中国矿业,2005,14(12):26-29.
    [135]范志强.中国CO2注入提高煤层气采收率先导性试验技术[M].北京:地质出版社,2008.
    [136]杨宏民.井下注气驱替煤层CH4机理及规律研究[D].河南理工大学,2010.
    [137]何龙.川东北地区优快钻井配套技术[J].钻采工艺,2008,31(4):32-35.
    [138]李文忠,郭勤.陕北浅层油田定向钻井技术配套的实践[J].西部探矿工程,2004,16(7):64-65.
    [139]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].煤炭工业出版社,1999.
    [140]张义,鲜保安,赵庆波等.超短半径径向水平井新技术及其在煤层气开采中的应用[J]中国煤层气,2008,5(3):20-24.
    [141]侯玉品,张永利,章梦涛.超短半径水平井开采煤层气的探讨[J].河南理工大学报,2005,24(1):46-49.
    [142]杨新乐,张永利,章梦涛.超短半径水平钻井技术在煤层气开采中的应用[J].煤炭工程,2006(8):25-26.
    [143]刘玉洲,陆庭侃,柳晓莉.煤层气井超短半径自进式水平钻井技术研究[J].天然气工业,2006,26(2):69-72.
    [144]张芳,朱合华,李成全.煤岩钻孔水射流自旋转喷头限速研究[J].辽宁工程技术大学学报,2005,24(2):205-207.
    [145]张义,周卫东.煤层水力自旋转钻扩孔射流钻头研究[M].中国石油大学(华东)优秀毕业论文集.东营:石油大学出版社,2005.
    [146]孙平,刘洪林,巢海燕,等.低煤阶煤层气勘探思路[J].天然气工业,2008,28(3):19-22.
    [147]杨永印,杨海滨,王瑞和,等.超短半径辐射分支水平钻井技术在韦5井的应用[J].石油钻采工艺,2006,28(2):11-14.
    [148]朱峰,刘东方.径向水平井转向器技术的新发展[J].石油机械,2005,33(2):48-49.
    [149]王广新,曹海鹏.无线随钻测井系统介绍及其应用[J].石油仪器,2008,22(1):1-4.
    [150]江山,王新海,张晓红,等.定向羽状分支水平井开发煤层气现状及发展趋势[J].钻采工艺,2004,27(2):4-6.
    [151]鲜保安,高德利,李安启.煤层气定向羽状水平井开采机理与应用分析[J].天然气工业,2005,25(1):114-116.
    [152]程林松等.气藏分支水平井产能的计算方法[J].石油学报,1998,19(4):69-72.
    [153]李文阳.中国煤层气勘探与开发[M].江苏徐州:中国矿业大学出版社,2003:331-332.
    [154]肖晓春.滑脱效应影响的低渗透储层煤层气运移规律研究[D].阜新:辽宁工程技术大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700