C/C-ZrB_2(ZrC、TaC)超高温陶瓷基复合材料制备工艺及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高超音速飞行器再入过程中,所承受的环境非常恶劣,特别是端头和机翼前缘,需要在氧化性环境中耐受长时间超高温和高速气流冲刷作用,因此对其防热材料提出了苛刻的要求。本文在分析国内外耐超高温材料研究的基础上,开展了超高温碳基复合材料的研究,采用泥浆涂刷法引入超高温陶瓷组分(ZrB2、ZrC、TaC),采用先驱体浸渍裂解工艺引入基体碳,制备了新型的C/C-ZrB2(ZrC、TaC)超高温复合材料,考察了先驱体种类、交联、浸渍、穿刺等工艺参数对复合材料结构和性能的影响。
     采用呋喃树脂、酚醛树脂、沥青作为碳源,研究了交联或浸渍工艺对C/C-ZrB2复合材料结构和性能的影响。选用呋喃树脂作为碳源,采用浸渍-交联-裂解工艺制备C/C-ZrB2复合材料时,树脂交联过程中体积膨胀,而裂解过程中体积收缩,导致层间结合较差,最终影响到复合材料的综合性能;采用浸渍后直接裂解工艺制备的复合材料致密度高,力学性能和抗氧化性能较好。选用残碳率高的酚醛树脂作为碳源,经浸渍-交联-裂解工艺制备的C/C-ZrB2复合材料致密度高,从而可以大幅提高其力学、抗氧化及抗烧蚀性能;而采用浸渍后直接裂解工艺制备的复合材料密度低、开孔率高,相应的力学、抗氧化、抗烧蚀性能均较差。分别浸渍沥青溶液和熔融沥青制备了C/C-ZrB2复合材料,采用沥青溶液制备的复合材料密度较低,力学、抗氧化和抗烧蚀性能较差;熔融沥青制备的复合材料综合性能较好,但熔融浸渍工艺需要高温高压设备,成本较高,限制了沥青的应用。综上所述,酚醛树脂是适宜PIP工艺的先驱体,且采用浸渍-交联-裂解工艺制备的复合材料性能最佳。
     研究了耐超高温陶瓷粉体含量对C/C-ZrB2、C/C-ZrC、C/C-TaC复合材料结构和性能的影响。随ZrB2含量的增加,制备的C/C-ZrB2复合材料密度增加,线烧蚀率呈现先降低后增加的趋势,涂刷ZrB2体积含量为10%的泥浆制备的ZB10复合材料具有较为优异的综合性能,弯曲强度为250.37MPa,断裂韧性为13.84MPa·m1/2;经过1200℃氧化30min质量保留率达到90.65%,强度保留率达到85.14%;经60s氧乙炔焰烧蚀考核质量烧蚀率为0.01802g/s,线烧蚀率为0.0122mm/s。随着ZrC含量的增加,C/C-ZrC复合材料制备过程中膨胀现象愈加严重,开孔率逐渐增大,抗氧化、耐烧蚀性能显著降低,涂刷ZrC体积含量为15%的泥浆制备的ZC15复合材料综合性能较优,弯曲强度为217.54MPa,断裂韧性为12.00MPa·m1/2;经过1200℃氧化30min质量保留率达到90.91%,强度保留率达到82.04%;质量烧蚀率为0.01827g/s,线烧蚀率为0.0193mm/s。随着TaC含量的增加,制备的C/C-TaC复合材料密度增加,致密度的变化使复合材料的力学性能和抗烧蚀性能均呈现先升后降的趋势,涂刷TaC体积含量为15%的泥浆制备的TC15复合材料综合性能较好,弯曲强度为260.99MPa,断裂韧性为13.21MPa·m1/2;经过1200℃氧化30min质量保留率达到92.12%,强度保留率达到75.03%;质量烧蚀率为0.02510g/s,线烧蚀率为0.0290mm/s。
     研究了穿刺工艺对复合材料性能的影响。穿刺工艺可以提高C/C-ZrB2(TaC、ZrC)复合材料的致密度、降低开孔率;增强层间剪切强度;减轻高速气流冲刷,提高抗烧蚀能力。与未穿刺样品相比,C/C-ZrB2复合材料线烧蚀率从0.0135mm/s降低到0.0075mm/s。
Hypersonic spacecrafts need withstand extreme conditions at re-entry in Earth’s atmosphere. Especially, the nose tip and leading edge need operate at ultra-high temperature and high heat flux for long time in oxidized environment, so that it is necessary to develop new thermal protection materials. On the base of ultra-high temperature materials research abroad and at home, this dissertation investigated ultra-high temperature carbon matrix composites. New ultra-high temperature composites C/C-ZrB2(ZrC, TaC) were fabricated by introduction of ceramic powder (ZrB2, ZrC, TaC) using slurry brushing process, and introduction of carbon matrix using polymer infiltration and pyrolysis method. We studied the influence of precursor, crosslinking, infiltrating and puncture techniques on the composites structure and property.
     We chose furan resins, phenolic resins and pitch as the source of carbon, and investigated the influence of crosslinking and infiltrating on the composites structure and property. The C/C-ZrB2 composites were prepared by infiltration-crosslinking-pyrolysis process by using furan resins, only to find that the resins will expand and shrink in process of crosslinking and pyrolysis, thus leading to poor adherence between layers and poor performance of the composites. The C/C-ZrB2 composites prepared by infiltration-pyrolysis furan resins display high densification, good mechanical properties and oxidation resistance.
     The composites prepared by using phenolic resins, on the other hand, can enhance densification effectively through infiltration-crosslinking-pyrolysis process, thus improve significantly mechanical properties, oxidation resistance and ablated resistance. The composites prepared by infiltration-pyrolysis process showed low density, poor mechanical, oxidation resistance and ablated resistance properties.
     The C/C-ZrB2 composites were also prepared by infiltrating pitch of molten and solution. The sample from melt pitch has good integration performance, while that from solution has lower density and poor mechanical properties. However, the melting infiltration process requires high temperature and high pressure equipment, and thus high cost. In conclusion, phenolic resins is the suitable precursor for polymer infiltration and pyrolysis process, and the composites prepared by infiltration-crosslinking-pyrolysis process is first-rank.
     We investigated the influence of ceramic content on the composites (C/C-ZrB2, C/C-ZrC, C/C-TaC) structure and property. The density of C/C-ZrB2 composites increases when the content of ZrB2 increase, while linear recession rates in oxyacetylene torch test decrease first and increase later. Among all samples ZB10 sample (10vol% ZrB2) has the best integration performance with 250.37MPa flexural strength and 13.84MPa·m1/2 fracture toughness. After being oxidated at 1200°C for 30min, its mass retention and strength retention were 90.65% and 85.14%, respectively. Meanwhile, it also shows best ablation resistance. After being ablated in oxyacetylene torch for 60 seconds, the sample showed mass loss rate of 0.01802g/s and linear recession rate of 0.0122mm/s. ZC15 sample (15vol% ZrC) shows the relatively excellent integration performance with 217.54MPa flexural strength and 12.00MPa·m1/2 fracture toughness. After being oxidated at 1200°C for 30min, its mass retention and strength retention were 90.91% and 82.04%, respectively. It also has better ablation resistance with the mass loss rate of 0.01827g/s and linear recession rate of 0.0193mm/s. The density of C/C-TaC composites increases when the content of TaC increase. TC15 sample (15%vol TaC) has the best integration performance with 260.99MPa flexural strength and 13.21MPa·m1/2 fracture toughness. After being oxidated at 1200°C for 30min, its mass retention and strength retention were 92.12% and 75.03%, respectively. It also presents relatively good ablation resistance with mass loss rate of 0.02510g/s and linear recession rate of 0.0290mm/s.
     The influence of puncture process on the composites performance was investigated. Puncture process can enhance densification of C/C-ZrB2(TaC, ZrC) composites, reduce the opening porosity, improve shear strength. At the same time, puncture process can also decrease high heat flux erosion and keep integration performance during ablation. Contrast with un-punctured sample, the linear recession rate of C/C-ZrBB2 composites was reduced to 0.0075mm/s from 0.0135mm/s.
引文
[1]刘军,熊翔等.耐超高温材料研究.宇航材料工艺,2005,(1):6-9.
    [2] Chen L C. Dilatometric analysis of sintering of tungsten and tungsten with ceria and hafnia dispersions. Refrac Met Hard Mater, 1994, l2: 41.
    [3] Kitsunai Y, Kurishita H. Kayano H. Microstructure and impact properties of ultra-fine grained tungsten alloys dispersed with TiC. J Nucl Matert, 1999, 271: 423.
    [4] Mabuchi M, Saito N, Nakanishi M. Tensile properties at elevated temperature of W-1%La2O3. Mat sci Eng A, 1996, 214: l74.
    [5] Sherman A, Tuffias R H, Kaplan R B. The properties and applications of rhenium produced by CVD. JOM, 1991, 20(7): 20-23.
    [6] Netter P, Cambros P. Oxidation resistant coating produced by CVD. Iridium and aluminium oxynitride coatings. Mat Res Soc Symp Proc, 1990, 168-247.
    [7]周玉,王玉金等. TiCp/W及Zrp/W复合材料的组织结构与性能.材料导报,2004,18(8):97-101.
    [8]王玉金,周玉等. ZrCp/W复合材料在发动机试车条件下的热震烧蚀行为.固体火箭技术,2003,26(3):62-65.
    [9]王其坤. C/SiC-Cu复合材料制备工艺与性能研究[硕士学位论文].国防科技大学,2005.
    [10]苏君明,陈林泉,王书贤等.石墨渗铜喉衬材料的微观结构与抗热震性能.固体火箭技术,2003,26(3):58-61.
    [11]王书贤,陈林泉,苏君明等.石墨渗铜喉衬材料的抗热震性能与烧蚀微观结构研究.科学技术与工程,2003,34(3):206-210.
    [12]陈林泉,王书贤,张胜勇等.石墨渗铜喉衬材料烧蚀机理分析.固体火箭技术,2004,27(1):57-59.
    [13] S.F. Moustafa, S.A.El-Badry, etc. Friction and wear of copper graphite composites made with Cu-coated and uncoated graphite powders. Wear, 2002, (253): 699-710.
    [14] Tripp W C, Davis H H, Graham H C. Effect of an SiC addition on the oxidation of ZrB2[J]. Ceram Bull, 1973, 52(8): 612-616.
    [15] Levine S R, Opila E J, etc. Evaluation of ultra-high temperature ceramics for aeropropulsion use[J]. J.Eur.Ceram.Soe, 2002, 22(14,15): 2757-2767.
    [16]李金平,韩杰才等. ZrB2-SiCw超高温陶瓷材料的研究.兵器材料科学与工程,2006,29(1):53-56.
    [17]吴世平,杜善义等.碳短纤维对ZrB2-SiC基超超高温陶瓷力学性能的影响.材料工程,2007,(5):15-18.
    [18] Courtright E L, Prater J T, etc. Oxidation of hafnium carbide and hafnium carbide with additions of tantalum and praseodymium[J]. Oxidation of Metals, 1991, 36(5,6): 423-437.
    [19]闫联生,李贺军,崔红,张晓虎.超高温抗氧化复合材料研究进展.材料导报,2004,18(12),41-43.
    [20]周长灵,程之强等.无压烧结硼化锆基ZrB2-SiC复相陶瓷的结构与性能.硅酸盐通报,2006,(2):16-18.
    [21]田庭艳,孙峰等. ZrB2-SiC复合材料凝胶注模成型初探.硅酸盐通报,2007,26(2):307-310.
    [22]田庭艳,孙峰等. ZrB2-SiC复合材料热压烧结工艺的研究.全国性建材科技期刊—陶瓷,2006(12):16-18.
    [23]田庭燕,张玉军,孙峰等. ZrB2-SiC复合材料抗氧化性能研究.全国性建材科技期刊—陶瓷,2006(5):19-21.
    [24]周长灵,程之强.硼化锆基碳化硅复相陶瓷.硅酸盐学报,2006,34(8):1017-1021.
    [25] Opeka M, Talmy I G, Zaykoski J A. Oxidation-based materials selection for 2000℃hypersonic aerosurfaces. J.Mater.Sci, 2004, 39(19): 5887-5904.
    [26] Ron Lachman, Dale Zschiesche. Ultra-high temperature ceramics for hypersonic vehicle applications[R]. Ceramic Materials Dept. Albuquerque, N.Mex.
    [27] A.Athieu, B.Montenuis and V.Gount. Ceramic Matrix Composite Materials for a low thrist brprelant rocket engine, AIAA, 1990, 2054.
    [28] Kodama H,Sakamoto H and Miyoshi T. High-tech ceramics-viewpoints and perspectives. Am. Ceram. Soc, 1989, 72: 551-556.
    [29] Jamet JF. Lamicq PJ. High-temperature Ceramic Matrix Composites. Edited by Naslain R. London: Woodhead Publications. 1993, 735-739.
    [30]陈朝辉.先驱体结构陶瓷.国防科技大学出版社,长沙,2003.
    [31] Russell A. Ellis. Testing of Novol tex 3D Carbon/Carbon Integral Throat and Exit Cones. AIAA, 1988, 3361.
    [32] Marc. Montaudon. Novoltex Textures for Thermostruc-turol. AIAA, 1991, 1848.
    [33]苏君明.法国C/C、陶瓷/陶瓷复合材料的现状与进展.炭素,1991,(3):15-19.
    [34]郝元凯,肖加余.高性能复合材料学.化学工业出版社,北京,2003.
    [35]上海科技情报研究所.碳素纤维复合材料在国外的应用.碳素技术,1974,(6):39-46.
    [36]何新波.连续纤维增强碳化硅陶瓷基复合材料的研究[博士学位论文].中南工业大学,2000.
    [37]周长城. CVI-PIP工艺联用制备Cf/SiC复合材料研究[硕士学位论文].国防科技大学,2004.
    [38]肖鹏,徐永东,张立同.高温陶瓷基复合材料制备工艺的研究[J].材料工程, 2000,(2):41-44.
    [39]张长瑞,郝元凯.陶瓷基复合材料—原理、工艺、性能与设计.国防科技大学出版社,长沙,2001.
    [40]闫联生,邹武.化学气相渗透法制备碳化硅陶瓷复合材料.固体火箭技术,1998,21(1):54-59.
    [41]侯向辉,李贺军,刘应楼等.先进陶瓷基复合材料制备技术-CVI法现状及进展.硅酸盐通报,1999,(2):32-36.
    [42] XU Yongdong, ZHANG Litong, etc. Microstructure and Mechanical Properties of Three-Dimersional Carbon/Silicon Carbide Composites Fabricated by Chemical Vapor Infiltration. Carbon, 1998, 36(7,8): 1051-1056.
    [43]尹洪峰,徐永东,成来飞等.界面相对碳纤维增韧碳化硅复合材料性能的影响.硅酸盐学报,2000,28(1):1-9.
    [44]沈曾民.新型碳材料.化学工业出版社,北京,2003.
    [45] Kikuo Nakano, etc. Fabrication and characterization of three-dimensional carbon fiber reinforced silicon carbide and silicon nitride composites[J]. J.Am. Ceram. Soc, 1995, 78(10): 2811-2814.
    [46] Haug T, Knale H, Ehrmann U. Processing properties and structure development of polymer-derived fiber-reinforced SiC[J]. J.Am. Ceram. Soc, 1989, 72(2): 104-110.
    [47] Peuchert M, Vaahs T and Bruck M. Ceramics from organometallic polymers[J]. Adv. Mater, 1990, 2(9): 398-404.
    [48] S. Yajima, T. Iwai and T. Yamamura: J. Mater. Sci, 1981, (16): 1349-1355.
    [49]谢征芳,陈朝辉,肖加余等.先驱体陶瓷.高分子材料科学与工程,2000,16(6):7-12.
    [50]马青松,陈朝辉,郑文伟等.先驱体转化法制备连续纤维增强陶瓷基复合材料的研究.材料科学与工程,2001,19(4):110-115.
    [51]张中伟,王俊山等. C/C复合材料抗氧化研究进展.宇航材料工艺,2004,(2):1-7.
    [52]郭全贵等.碳材料高温氧化防护陶瓷涂层体系研究进展.宇航材料工艺,1998,28(2):11-16.
    [53]张伟刚等.碳材料氧化研究进展.炭素,1997,(2):1-6.
    [54]王俊山,李仲平等.掺杂难熔金属碳化物对炭/炭复合材料烧蚀微观结构的影响.新型炭材料,2005,20(2):97-102.
    [55]宋发举,李铁虎,林起浪等. C/C复合材料用浸渍剂煤沥青研究进展.材料导报,2005,19(10):84-86.
    [56]沈一丁,李小瑞.陶瓷添加剂.北京:化学工业出版社,2004.
    [57]仇沱,马眷荣.工程陶瓷弯曲强度试验方法.北京:中国建筑材料科学研究院,1986.
    [58]高温结构陶瓷平面应变断裂韧性试验方法. GB75-70-03.北京:中国建筑材料科学研究院,1988.
    [59]简科.先驱体浸渍裂解工艺制备2D C/SiC复合材料及构件的研究[博士学位论文].国防科技大学,2006.
    [60]宋桂明,杨跃平,周玉等.钨基复合材料烧蚀真温测量.矿冶,2000,9(3):76-83.
    [61]杨南如.无机非金属材料测试方法.武汉工业大学出版社,武汉,1990.
    [62] Christ K, Huttinger K J. Carbon fiber reinforced carbon composites fabricated with mesophase pitch. Carbon, 1993, 31(5): 731.
    [63] Yue C, Watkinson A P. Pyrolysis of pitch. Fuel, 1998, 77(7): 695.
    [64] Emmanuelle Alaina, Dominique Bbgin, etc. Pyrolysis of coal tar pitch mixed in the presence of a graphite intercalation compound: a kinetic study. Fuel, 1998, 77(6): 533.
    [65]王国荣,武卫莉,谷万里等.复合材料概论.哈尔滨:哈尔滨工业大学,1999.
    [66]李秀涛,史景利等. ZrB2/C复合材料抗烧蚀性能及微观结构的研究.宇航材料工艺,2006,36(2):45-49.
    [67]黄海明,杜善义,施惠基. C/TaC/C复合材料的烧蚀性能研究.航空兵器,2002,(5):5-11.
    [68]崔红,苏君明,李瑞珍等.添加难熔金属碳化物提高C/C复合材料抗烧蚀性能的研究.西北工业大学学报,2000,18(4):669-673.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700