C_f/SiC复合材料超高温陶瓷涂层的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在碳纤维增强碳化硅(Cf/SiC)复合材料表面制备涂层对提高Cf/SiC复合材料抗氧化、抗冲刷能力具有重要的作用。本文在全面综述Cf/SiC复合材料表面涂层以及超高温陶瓷涂层研究进展的基础上,针对现有Cf/SiC复合材料抗氧化、抗冲刷性能存在的不足,开展Cf/SiC复合材料超高温陶瓷涂层制备及性能研究,旨在提高Cf/SiC复合材料抗氧化、抗冲刷能力,拓宽其应用范围。研究涂刷法和包埋法两种工艺制备了Cf/SiC复合材料超高温陶瓷涂层,并通过强度测试、扫描电镜、X射线衍射等测试手段对涂层组成、结构以及性能进行了分析。
     采用涂刷法在Cf/SiC复合材料表面制备ZrB2-SiC超高温陶瓷涂层,通过对涂层体系的设计,选择以二硼化锆、碳化硅和硼3种微粉为体系组元,以聚碳硅烷-二乙烯基苯体系为粘结剂,经低温固化以及1200℃高温烧成在Cf/SiC复合材料表面制备了ZrB2-SiC超高温陶瓷涂层。采用正交实验进一步研究了组分配比对Cf/SiC复合材料表面涂层性能的影响,结果表明,当填料成分为60wt.% ZrB2,4wt.% SiC,6wt.% PCS,4wt.% B,26wt.% DVB时,涂层性能最佳。Cf/SiC复合材料表面涂层的界面结合强度为2.01 MPa,经1200℃氧化30min后,Cf/SiC复合材料的氧化失重率仅为0.54%,强度保留率为97.3%,而在相同的氧化条件下,未覆盖表面涂层的Cf/SiC复合材料的氧化失重率为10.37%,强度保留率为38.7%。
     采用包埋法工艺制备ZrC-Zr2Si超高温陶瓷涂层,Zr-Si在Cf/SiC复合材料表面发生化学反应,生成均匀致密的ZrC-Zr2Si涂层,该涂层的厚度在10μm左右,涂层的内层为ZrC,外层为ZrC和Zr2Si。采用正交实验进一步研究工艺参数对涂层性能的影响,结果表明,当体系含量为60wt.%Zr-Si,30wt.%PCS-DVB,10wt.%Al2O3时,在1400℃保温8小时,涂层性能最佳,界面结合以化学反应结合为主,涂层与基体的界面结合强度为7.41MPa,覆盖有该涂层的Cf/SiC复合材料在1200℃氧化30min后的氧化失重率仅为0.30%,强度保留率为92.5%,由此可见该涂层具有较好的抗氧化效果。
     ZrC-Zr2Si涂层通过硼化处理工艺,当保温温度为1200℃,保温时间为3h时,可以转化为均匀致密的ZrB2涂层,Cf/SiC复合材料在1200℃下的氧化失重率仅为0.13%,强度保留率为94.3%,经硼化处理后的试样表现出相对更优的性能。
The coatings of carbon fiber reinforced silicon carbide (Cf/SiC) composites play crucial role in the anti-oxidation and anti-erosion properties of Cf/SiC composites. In this dissertation, the research & development of the coatings and ultra high temperature ceramics(UHTCs) coatings for Cf/SiC composites were reviewed at first, aiming to improve the anti-oxidation and anti-erosion properties of Cf/SiC composites, the coatings of Cf/SiC composites were fabricated and analyzed, and the techniques were optimized. In the paper, three coating systems were fabricated via brushing process and pack cementation method respectively in order to improve the high temperature resistance of Cf/SiC composites. The oxidation resistance, the microstructures and the compositions of the coating systems were investigated by means of some techniques such as flexural strength test, scanning electron microscope (SEM) and X-ray diffraction (XRD).
     The ZrB2-SiC coating was fabricated via brushing process using PCS-DVB as binder and ZrB2、SiC and B powders as fillers according to the design of the coating system. When solidified at low temperature and sintered at 1200℃,the ZrB2-SiC coating was fabricated at the surface of Cf/SiC composites, then the effect of the proportion of ceramic powders on the performance of coated Cf/SiC composites was studied by designing an orthogonal experiment. The results show that when the filler was composed of 60wt.%ZrB2, 4wt.% SiC, 6wt.%PCS, 4wt.%B and 26wt.%DVB, the coating showed the best performance, the adhesive strength was 2.01MPa. After soaked at 1200℃for 30min under static air, the coated Cf/SiC composites retained 99.46% of original mass and 97.3% of original flexural strength. While the uncoated Cf/SiC composites retained 89.63% of original mass and 38.7% of original flexural strength.
     The other two coating systems were fabricated via pack cementation method. The ZrC-Zr2Si coating , homogeneous and density, was formed through the reaction of Zr-Si with Cf/SiC composites, whit the thickness was 10μm, the coating was composed of a ZrC inner layer and a ZrC-Zr2Si outer layer. An orthogonal experiment was designed to investigate the influences of the process condition. It was found that the optimizing infiltration composition and process was: 60wt..%Zr-Si, 30wt..%PCS-DVB, 10wt..%Al2O3, holding 8 hours at 1400℃in Ar protecting atmosphere. The bond between coating and Cf/SiC composites was mainly metallurgical bond, so the adhesive strength was as high as 7.41MPa. After soaked at 1200℃for 30min under static air, the coated Cf/SiC composites retained 99.70% of original mass and 92.5% of original flexural strength. The coating had the remarkably improvement of oxidation-resistance of Cf/SiC composites.
     After reaction with B, when held for 3 hours at 1200℃in Ar protecting atmosphere, the ZrC-Zr2Si coating was translated to the ZrB2 coating which was homogeneous and density. After soaked at 1200℃for 30min under static air, the coated Cf/SiC composites retained 99.87% of original mass and 94.3% of original flexural strength. Compared to the ZrC-Zr2Si coating, the ZrB2 coating showed the better performance.
引文
[1] R Naslain, CVI composites[R]. In: Warren Red. Ceramic Matrix Composites. London: Chapman and Hall. 1992:199-243
    [2] T M Eesmann, B W Sheldon, and R A Lowden. Vapor-phase Fabrication and Properties of Continuous-filament Ceramic Composites [J]. Science, 1991, 253: 1104-1109
    [3] R L Stanley, K N Ahmed, L V Samuel. Flight-vehicle material structures, and dynamics assessment and future Directions [M]. Ceramics and ceramic-matrix composites. New York: The American Society of Mechanical Engineers, 1992
    [4] E Paquette, G Burnie, R Warburton, et al. Cooled CMC Scramjet Combustor Structure Development[R]. AIAA 2002-4132
    [5]张长瑞,郝元恺编著.陶瓷基复合材料-原理、工艺、性能与设计[M].国防科技大学出版社,长沙, 2001.
    [6]陈朝辉编.先驱体结构陶瓷[M].国防科技大学出版社,长沙, 2003
    [7] J F Jemet and P J Lamicq. Composite Thermo-structures: An Overview of the French Experiences [J]. In: Naslain R ed. High Temperature Ceramic Matrix Composites. Bordeaux: Woodhead. 1993:215-229
    [8] Y Sanokawa, Y Ido, Y Sohda, et al. Application of continuous fiber reinforced silicon carbide matrix composites to a ceramic gas turbine model for automobiles [J]. Ceram.Eng. & Sc.Proc., 1997, 18n4B: 221-228
    [9] H G Wulz, U Trabandt. Large integral hot CMC structures designed for future reusable launchers[R]. AIAA-97-2485
    [10] Y Sanokawa, Y Ido, Y Sohda, et al. Application of continuous fiber reinforced silicon carbide matrix composites to a ceramic gas turbine model for automobiles [J].Ceram. Eng. & Sci.Proc.,1997,18(4): 221-228
    [11] H G Wulz, U Trabandt. Large integral hot CMC structures designed for future reusable launchers[R]. AIAA-97-2485
    [12] L Jerry. Uncooled C/SiC Composite Chamber Tested Successfully in Rocket Combustion Lab[R]. NASA Glenn's Research & Technology reports, 2003
    [13]葛明龙,田昌义,孙纪国.碳纤维增强复合材料在国外液体火箭发动机上的应用[J].导弹与航天运载技术, 2003, 264(4):22-26
    [14] S Schmidt, S Beyer, H Knabe et al. Advanced ceramic matrix composites materials for current and future propulsion technology applications[C]. Germany: IAC-03-S.3, 03 sep, 2003
    [15] US 6, 723,382,B2
    [16] US 6, 723,381,B1
    [17] F Doug. The Advanced Ceramics Industry“An Increasingly StrategicMaterial”[R]. USACA report, 2004
    [18]邹武.陶瓷基热结构复合材料应用研究“九五”国防预研项目论证报告[R],中国航体科技基团第四研究院第四十三所内部资料,1996
    [19] M Imuta, J Gotoh. Development of High Temperature Materials Including CMCs for Space Application [J]. Key Eng. Mater. 1999(164-165): 439-444
    [20] J E Sheehan, in“Carbon-carbon materials and composites”, 1st Edn, edited by J.D.Buckley and D.D. Edie (NASA, 1992) p.223
    [21] T M Besmann, B W Aheldon, and R A Lowden. Vapor-phase fabrication and properties of continuous-filament ceramic composites. Science, 1991, 253:1104~1109
    [22] S Labruquère, J S Gueguen et al. Enhancement of the oxidation resistance of the interfacial area in C/ C composites。Part III: the effect of oxidation in dry or wet air on mechanical properties of C/C composites with internal protections. J .Eur. Ceram.Soc., 2002; 22:1023~1030.
    [23] H Leite,U Dambacher et al.Microstructure and properties of multilayer coatings with covalent bonded hard materials. Surf.Coat.Tech., 1999;116~119:313~320.
    [24] L F Cheng, Y D Xu et al. Effect of carbon interlayer on oxidation behavior of C/ SiC composites with a coating from room temperature to 1500℃.Mater. Sci. Eng.A, 2001; 300:219~225.
    [25] E Roos, K Maile et al.(Cr2Al) bilayer coatings obtained by ion assisted EB PVD on C/ C-SiC composites and Ni-based alloys. Surf. Coat.Tech.,2002;151~152;429~433.
    [26] M Aparicio, A Durán et al. Yttrium silicate coatings for oxidation protection of carbon silicon carbide composites.J.Am. Ceram. Soc., 2000; 83:1351~1355.
    [27] J D Webster, M E Westwood et al.Oxidation protection coatings for C/ SiC based on yttrium silicate. J . Eur. Ceram. Soc.1998;18:2345~2350.
    [28]储双杰,乔生儒.碳/碳复合材料氧化行为的研究[J].材料工程,1992 (5):43– 46.
    [29] B Yigal, M Jochen. Low Temperature, Low Pressure Fabrication of Ultra High Temperature Ceramics (UHTCs). AFRL-ML-WP-TR-2006-4200, 2006.
    [30]曾令可,王慧.陶瓷材料表面改性技术[M].化学工业出版社.2006:202 [3 1 ] V K Parashar, V Raman, P Bahlo.Oxidation resistance material for carbon-carbon composites by the sol-gel process[J ]. Jour2nal of Material Science Letter, 1997,16 (6):479-481.
    [32]愈冰,梁开明,顾守仁等,铜合金表面溶胶-凝胶涂层抗腐蚀性能研究[J].材料保护,2001,34(12):12.
    [33] P A Sermon, V A Self and Y Sun.Doped-ZrO2 aerogels:catalysts of controlledstructure and properties[J].J Sol-Gel Sci.and Tech.,1997.8:851.
    [34] J Lawrence, Q Yang, T Troczynski.Composite Sol-Gel ceramic coating[J],Key Eng Mater.,1997,132-136:1519.
    [35]张宗涛,黄勇,乐恢榕,等.SiC晶须表面成分和涂层对抗氧化性的影响.材料科学进展,1992 ,6 (5) :409~413.
    [36] T K Li, D A Hirschfeld, J J Brown . Thin film coatings of(Ca0. 6 ,Mg0. 4) Zr4 (PO4) 6 on Si3N4 and SiC. J. Mater. Res, 994 ,9(8) :2014~2028.
    [37] M Kato. Fabrication of TiO2 coating on SiC whisker by a sol-gel method. J.Mater. Sci.Lett. 1996 ,15(15) :1291~1293.
    [38] P A Trusty. Novel techniques for manufacturing woven fiber reinforced ceramic matrix composites. I. Preform fabrication.Materials and Manufacturing Processed,1995;10(6):1215~1226.
    [39] Z Wang, J Shemilt, P Xiao.[J].J Eur Ceram Soc,2002,22:183-9.
    [40]赵晓玲,王晓慧,郝俊杰,陈仁政,李龙士.电泳沉积及其在新型陶瓷工艺上的应用.功能材料,2005,2(36):165-172.
    [41] C A Cairo, ML A Graca et al. Functionally gradient ceramic coating for carbon/carbon antioxidation protection. J . Eur.Ceram. Soc., 2001; 21:325~329.
    [42]索相波,陈朝辉,简科,郑文伟.涂刷工艺制备Cf/SiC复合材料高温抗氧化涂层.矿冶工程,2004,24:164~166
    [43]曾燮榕,杨峥,李贺军.防止C/C复合材料氧化的MoSi2/SiC双相涂层系统的研究.航空学报.1997,18(4):427~431
    [44] Q G Fu, H J Li, X H Shi,et al.Silicon carbide coating to protect carbon/carbon composites against oxidation[J].Scripta Materialia,2005,52:923-927
    [45] J F Huang, X R Zeng, H J Li,et al.Influence of the preparation temperature on the phase,microstructure and anti-oxidationproperty of a SiC coating for carbon/carbon composites[J].Carbon,2004,42:1517-1521.
    [46] S Goujard, L Vandenbulcke et al. The oxidation behaviour of two-and three-dimensional C/SiC thermostructural materials protected by chemical-vapour-deposition poly-layers coatings.[J]. Journal of Materials Science, 1994,29:6212-6220.
    [47] L D Bentson, R J Price, et al.Moisture and oxidation resistant carbon/carbon composites. [P].美国专利: 5298311, 1994-03-29.
    [48] H Fritze, J Jojic, T Witke, et al. Mullite based oxidation protection for SiC-C/C composites in air at temperatures up to 1900 K.[J]. Journal of European Ceramic Society 1998,18: 2351-2364.
    [49] R S James, E S James. Ceramic coatings for carbon-carbon composites [J].Ceramic bulletin, 1988, 67(2):369-374.
    [50] M R Richards, A C Richards, F S Ohuchi,et al. The Development of an IrAl Coated SiC-C Functionally Gra-dient Composite for Oxidation Protection of Graphite and Carbon-Carbon Composites. [J]. Journal of Vacuum Science and Technology A: 41st AVS National Symposium Confe-rence Proceedings,Denver,CO, October 24-28, 1994 Vol. 13, No.3, Part 1, pp196-1201, 1995.
    [51] R Naslain, R Pailler, X Bourrat, et al. Non-oxide ceramic composites with multilayered interphase and matrix for improved oxidation resistance. [J].Key Engineering Material,2002, 206-213: 2189-2192.
    [52] B Yigal, M Jochen. Low Temperature, Low Pressure Fabrication of Ultra High Temperature Ceramics (UHTCs). AFRL-ML-WP-TR-2006-4200, 2006: 1-11.
    [53] J D Bull, D J Rasky,C J C Karika.Stability Characterization of Diboride Composites under High-Velocity Atmospheric Flight Conditions, pp.1092105 in Proceedings of the 24th International SAMPE Technical Conference,1992
    [54] W C Trip, H H Davis, H C Graham.Effect of an SiC Addition on the Oxidation of ZrB2, The American Ceramic Society Bulletin, 1973, 52 (1): 612-616
    [55] X W Yin, I Gotman, G Klinger.Formation of titanium carbide on graphite via powder immersion reaction assisted coating[J].Mater Sci Eng A,2005,396(I-2):107.
    [56] M R Richards, A C Richards, F S Ohuchi,et al. The Development of an IrAl Coated SiC-C Functionally Gra-dient Composite for Oxidation Protection of Graphite and Carbon-Carbon Composites. [J]. Journal of Vacuum Science and Technology A: 41st AVS National Symposium Confe-rence Proceedings,Denver,CO, October 24-28, 1994 Vol. 13, No.3, Part 1, pp196-1201, 1995.
    [57] H Holleck.Matal selection f0r hard coatings[J].J Vac Sci Technol,1986,4(6):2661-2669.
    [58]X H Zhang, H Ping, J C Han, et al. Ablation behavior of ZrB2-SiC ultra high temperature ceramics under simulated atmospheric re-entry conditions. Composites Science and Technology, 2008, 68: 1718-1726.
    [59] M. Gasch, D. Ellerby, E Irby, et al. Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra high temperature ceramics. JOURNAL OF MATERIALS SCIENCE, 2004, 39 5925 - 5937.
    [60]孙丽娟.航空航天用碳碳复合材料超高温陶瓷涂层的研究现状.航空制造工程,1996,5:12~13
    [61]郭全贵,宋进仁,刘朗,等. C-C复合材料抗氧化行为研究.耐火材料,1997,31(5):268~271
    [62] K Kobayashi, K Maeda, H Sano, Y Uchiyama. Formation and oxidation resistance of the coating formed on carbon material composed of B4C-SiC powder. Carbon, 1995,33(4): 397~403
    [63]梁英教,车荫昌.无机物热力学数据手册[M].Shenyang:Northeast UniversityPress, 1993.
    [64]崔国文编著.表面与界面.北京:清华大学出版社,1990.
    [65]李恒德,肖纪美主编.材料表面与界面.北京:清华大学出版社,1990.
    [66]曲喜新,过璧君编著.薄膜物理.北京:电子工业出版社,1994.
    [67]李金平编.应用数理统计.河南大学出版社,1998:99~121
    [68] E Joann, L Murray.Phase Diagrams of Binary Titanium Alloys [M].Ohio: ASM International:1990:293
    [69] Y Z WANG, A H CARIM. Ternary phase equilibria in the Zr-Si-C system [J].J Am Ceram Soc,l995,78(3):662-6 66.
    [70] J R WALDROP, R W GRANT. Schottky barrier height and interface chemistry of annealed metal contacts to alpha 6H-SiC:crystal face dependence[J].Appl Phys Lett,1993,62:2685.
    [71] T Marinova, V Krastev, C Halln,Interface chemistry and electric characterization of nickel metallization on 6H-SiC [J].Appl Surf Sci,1996,99(2):119-125.
    [72] Y F,Khormov I S Alekseeva.Self-difflusion of carbon and metal atoms in zirconium and niobium carbides[J].Fiz Metal Metalloved,1971,32:664-667.
    [73] R Andrievsii , V V Klimenkod, Y F Khormov Self-diffIsion of carbon in carbides of group IV and V transition metals[J].Fiz Metal Metalloved,1969.28:298-303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700