钢表面铝镀层陶瓷化的结构特征及失效行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体电解氧化(Plasma electrolytic oxidation,PEO)是在Al、Mg、Ti等金属及其合金表面原位制备陶瓷层的新方法,但在钢表面难以直接形成陶瓷层。针对这一难题,本文采用PEO方法对热浸镀铝钢进行陶瓷化处理,在钢表面制备了包含Al_2O_3层、Al层和Fe-Al层的多层涂层。本文对该复合涂层的组织结构、微观力学性能和失效行为等方面进行了研究,并采用有限元方法对复合涂层体系结构进行优化设计。研究结果对明确铝镀层陶瓷化演变规律、优化涂层性能和揭示拉伸失效机理具有重要的意义。
     通过对铝镀层PEO陶瓷化过程的电压特征、陶瓷层厚度生长规律、组织形态和成分等进行研究,揭示出铝镀层转化为陶瓷层的演变规律。研究发现,在PEO初期,铝镀层阳极电压的变化趋势与纯铝试件相同,而在PEO后期,铝镀层陶瓷化的阳极电压出现下降趋势。铝层消耗和陶瓷层增长近似为线性关系,当铝层完全消耗后,陶瓷层生长速率减缓。陶瓷层的主要相结构是γ-Al_2O_3和莫来石相,处理后期出现a-Al_2O_3相。
     PEO陶瓷层内部包含有许多微米/亚微米尺度的放电孔洞。当陶瓷化处理至Fe-Al层参与反应阶段,PEO过程更加复杂。此时,陶瓷层表面可观察到相对较大的放电孔洞。截面形态分析表明,它们贯穿到Al_2O_3/Fe-Al层界面,并在界面处出现较多裂纹。界面孔洞附近的EDS结果显示,Fe含量可达7.6at.%,远大于陶瓷层非界面孔洞区域的Fe含量。涂层表面元素分布同时显示,Fe-Al层参与反应后,由于Al原子供应减少,导致陶瓷层表面放电孔洞周围的氧化物内Al含量下降,Si含量提高,Fe含量约从0.5at.%上升到1.5~2.6at.%。
     本文采用显微硬度计和纳米硬度计表征了复合涂层微区间的硬度、弹性模量和断裂韧性等力学性能,讨论了放电孔洞对陶瓷层微观力学性能的影响。结果表明,陶瓷层纳米硬度约为19.6GPa,比钢基体提高了近15倍。由于放电孔洞影响,陶瓷层的弹性模量和硬度随压入深度出现异常变化情况,纳米压痕中同时出现了侧边裂纹和径向裂纹。陶瓷层放电孔洞的存在,促使纳米压痕裂纹的扩展方向发生偏转、裂纹尖端钝化和应力强度降低,同时产生了多重微裂纹,抑制了裂纹扩展,一定程度上提高了陶瓷层的断裂韧性。通过测量径向裂纹长度,依据Anstis公式可得陶瓷层断裂韧性约为1.75MPa·m1/2。
     本文建立了铝镀层陶瓷化复合涂层的有限元模型,讨论了在法向均布接触载荷作用下涂层/基体系统的应力场分布状态,创建了复合涂层的归一化厚度配比图,侧重分析厚度配比关系对复合涂层表面应力和界面应力的影响。计算表明,复合涂层各分层均发挥着特定的功能特性,Al_2O_3层厚度决定着涂层内最大剪应力的位置,铝层的存在可降低界面处的剪切应力。当Al_2O_3层与铝层厚度相等时,Al_2O_3/Al界面处的剪应力最小。增加Al_2O_3层厚度,可增强涂层支撑能力,减缓涂层表面的拉应力。当选择较厚的陶瓷层和较薄的铝层和Fe-Al层时,复合涂层具有较低的表面和界面应力,可提高涂层整体的抗接触载荷性能。复合涂层的承载力响应实验,实验结果与有限元分析结果基本吻合。
     保持Fe-Al层厚度不变,通过改变陶瓷层与铝层厚度比(tAl_2O_3/tAl),研究了复合涂层的拉伸裂纹扩展及失效行为。结果显示,Fe-Al层内首先出现垂直拉伸方向的横向裂纹,陶瓷层与铝层厚度比(tAl_2O_3/tAl)的变化影响着横向裂纹的扩展方向。当陶瓷层与铝层厚度比(tAl_2O_3/tAl)较小时,横向裂纹易沿着Fe-Al层/基体界面扩展。当tAl_2O_3/tAl较大时,横向裂纹则穿透铝层向涂层表面扩展。为定量描述铝层对横向拉伸裂纹扩展到表面的阻挡能力,本文引入临界裂纹张开位移δc。随铝层厚度增加,δc也随之增加。通过观察拉伸断裂试件的表面横向裂纹分布,发现厚度比tAl_2O_3/tAl增大时,陶瓷层表面的拉伸裂纹间距随之减小。研究证实,厚度配比对铝镀层陶瓷化复合涂层的拉伸失效行为影响较大,铝层能够阻止或延缓横向拉伸裂纹向涂层表面的扩展行为。
Plasma electrolytic Oxidation (PEO) is a new method of forming ceramic coatings on light metals such as Al, Mg, Ti, etc. and their alloys. But, it is very difficult in fabricating ceramic coatings on steel using a single PEO technique. To overcome this problem, hot-dipped aluminum (HDA) was treated by PEO technique in this paper, and multilayer composite coatings which consisting of Fe-Al layer, Al layer, and Al_2O_3 layer were formed on steel substrate. Structures, micro-mechanical properties, and failure behavior of in-situ tension of composite coatings were investigated. Moreover, the structure system of composite coating was also analyzed by finite element method (FEM). These studies are of great significance for exploring the evolution of Al layer transformed into ceramic coating, optimizing coating properties and revealing failure mechanism of these coatings under in-situ tension test.
     Characteristics of the average anodic voltage, growth regularity of ceramic thickness, surface and cross-sectional morphologies and element distribution were studied by using many test techniques. Results show that the anodic voltages of aluminized steel and pure Al vary similarly at the early PEO stage, but the voltage of aluminized steel decreases at later PEO stage. The thickness of ceramic coating increases approximately linearly with the Al consumption. Once hot-dipped Al layer is completely transformed, the aluminized steel voltage descends. Ceramic coatings are mainly composed ofγ-Al_2O_3, mullite, and a-Al_2O_3 phases, but a-Al_2O_3 appears only at the end PEO stage.
     There are many discharging pores with micron scale or sub-micron scale within ceramic coatings. When Fe-Al layer participates in PEO reaction, PEO process becomes more complicated than before. Some big discharging holes, which get to Al_2O_3/Fe-Al interface, are within ceramic coatings and many micro-cracks are also observed at the interface. EDS results reveal that the atomic percent of Fe element of these big discharging holes near interface is about 7.6 at.%. It is much larger than that the regions far from discharging holes at interface. Element distribution at the surface of ceramic coating shows that when Fe-Al layer partic ipates in PEO process, and the percent of Al element of the oxides near the big discharging hole decreases. At the same time, the percent of Si element increases and the percent of Fe increases from 0.5at.% to 1.5~2.6at.% because of the shortage of Al atoms.
     Mechanical parameters of coatings such as hardness, elastic modulus, fracture toughness, etc. were measured by using a microhardness tester and a nanohardness instrument. The effects of discharging pores on mechanical properties were discussed. Results show that nanohardness of ceramic coating is about 19.6GPa which is 15 times that of the substrate. Due to the effect of discharging pores, some abnormal curves of elastic modulus vs. depth and hardness vs. depth appear and radial and lateral cracks also occur at nanoindentation. It can be found that the crack path of ceramic layer is deflected and the crack tip becomes dull. The stress intensity at crack tip decreases. Many multiple mirco-cracks are also generated by these discharging pores. Therefore, indentation cracks of ceramic layer can be restrained and the fracture toughness of them is improved to a certain extent. Fracture toughness of ceramic coating can be calculated on Ansits formula by measuring the length of radial cracks, which is about 1.75MPa·m1/2 .
     FEM models of composite coating on aluminized steel were established by using FEM software. And stress fields of these coating/substrate system subjected to uniform normal contact load were computed and investigated. A triangle of normalized layer thickness was created for describing thickness ratios of composite coatings. Then, the effect of thickness ratio on stress fields at the surface or the interfaces was analyzed. It is seen that every layer of composite coating has a special function. For example, the thickness of Al_2O_3 layer determines the location of maximum shear stress within coating. The advantage of Al layer is that interfacial stresses can be reduced greatly. As Al_2O_3 layer and Al layer have the same layer thickness, shear stress at the Al_2O_3/Al interface is minimal. As the thickness Al_2O_3 layer increases, the support performance of coating is improved and tensile stresses at the surface are relieved. When thick ceramic layer and thin Al, Fe-Al layers are chosen, there are fine stress distributions at surface and interface of coating and the supporting performance of composite coatings under contact load can be improved. It is found that the data of supporting test are in accord well with FEM results.
     As Fe-Al layer thickness was invariable and the thickness ratio of ceramic coating to aluminium layer (tAl_2O_3/tAl) was changed, tension failure and propagating behavior of tensile cracks of composite coating on aluminized steel were studied. The results show that the transverse cracks firstly appear in Fe-Al layer. The thickness ratio tAl_2O_3/tAl can affect the propagating direction of these transverse cracks. When thickness ratio tAl_2O_3/tAl is small, these transverse cracks favor to grows along the Fe-Al/substrate interface. However, when thickness ratio tAl_2O_3/tAl is large, Al layer is very thin and these transverse cracks are easy to penetrate Al layer and arrive at the surface of coating. In this thesis, the critical crack opening displacementδc was introduced to express quantitatively the crack resistance of Al layer, which increases as the Al thickness increases. Through observing the distribution of tensile cracks of samples, we also found that the space between tensile cracks decreases as the thickness ratio tAl_2O_3/tAl increases. It can be concluded that thickness ratio of coating has an important influence on its tension failure and the propagation of tensile cracks is resisted or delayed by Al layer.
引文
[1] 徐滨士,刘世参,梁秀兵.纳米表米工程的进展与展望.机械工程学报, 2003,39(10):21~26
    [2] 徐滨士,张振学,马世宁等.新世纪表面工程展望.中国表面工程, 2000,46(1):2~5
    [3] R. Morrel. Handbook of Properties of Technical and Engineer Ceramics, Part2: Data Review. London: HSMO, 1987
    [4] 宗宫重性编, 池文俊译.近代陶瓷. 上海:同济大学出版社,1988
    [5] J.mostaghimi, S.chandra, R.Chandra-Azar, et al. Modeling thermal spray coating processes: a powerful tool in design and optimization. Surface and Coatings Technology, 2003,163-164:1~11
    [6] D. Triantafyllidis, L. Li, F. H. Stott. Laser cladding of high performance ceramic sheets on a low quality ceramic substrate. Thin Solid Films, 2004,453-454:80~83
    [7] X. Galina, V. George. An overview of some environmental applications of self-porpagaging high-temperature synthesis. Advances in Environmental Research, 2001,5:117~128
    [8] A.L. Yerokhin, X. Nie, A. Leyland, et al. Plasm electrolysis for surface engineering. Surface and Coating Technology, 1999,122:73~93
    [9] M.G. Reichmann, T. Bell. The influence of preparation chemistry on the phase distribution of silica-supported titania. Applied Catalysis, 1987,32:315~326
    [10]徐滨士,马世宁,朱绍华等.表面工程与再制造工程的进展.中国表面工程, 2001, 50(1):8~13
    [11] 胡传炘.表面工程手册.北京:北京工业大学出版社,1997
    [12] A.L. Yerokhin, V.V. Lyubimov, R.V. Ashitkov. Phase formation in ceramic coatings during plasma electrolytic oxidation of aluminium alloys. Ceramics International, 1998,24(1):1~6
    [13] H.H. Wu, J.B. Wang, B.Y. Long, et al. Ultra-hard ceramic coatings fabricated through microarc oxidation on aluminium alloy. Applied Surface Science, 2005,52(5):1545~552.
    [14] P. Gupa, G. Tenhunfeld, E.O. Daigle, et al. Electrolytic plasma technology: science and engineering — an overview. Surface and Coatings Technology, 2007, 201(21):9746~8760
    [15] 关永军,夏原.等离子电解沉积的研究现状.力学进展, 2004,2:237~250
    [16] L.S. Saakiyan, A.P. Efremov, A.V. Epelfeld. Further development of ideas of G..V. Akimov on the surface oxide films and their effect on the corrosion and mechanical behavior of aluminum alloys. Protection of Metals, 2002,38(2):161~165
    [17] 薛文斌,邓志威,来永春等.有色金属表面微弧氧化技术评述.金属热处理,2000, 20(1):1~3.
    [18] 张文华,胡正前,马晋.俄罗斯微弧氧化技术研究进展.轻合金加工技术, 2004,32(1):25~29
    [19] S.Hogmark, S. Jacobson, M. Larsson. Design and evaluation of tribological coatings. Wear,2000, 246:20~23
    [20] K. Holmberg, A. Matthewst, H. Ronkainen. Coatings tribology-contact mechanisms and surface design. Tribolgogy international, 1998,31:107~120
    [21] T. Bell, K. Mao, Y. sun. Surface engineering design: modeling surface engineering systems for improved tribological perfromance. Surface and Coatings Technology, 1998, 108-109:360~368
    [22] A. Matthews, A. Leyland, K. Holmberg, et al. Design aspects for advanced tribological surface coatings. Surface and Coatings Technology, 1998,100-101:1~6
    [23] A.A.Voevodin, J.M. Schneider, C. Rebholz, et al. Multilayer composite ceramicmetal-DLC coatings for sliding wear applications. Tribology International, 1996,29(7):559~570
    [24] A. Günterschultze and H. Betz, Electrolytkondensatoren, Krayn, Berlin, 1937
    [25] G.P. Wirtz, S.D. Brown, W.M. Kriven. Ceramic coatings by anodic spark deposition. Materials and Manufacturing Processes, 1991, 6(1): 87~115
    [26] V.S Rudnev, T.P.Yarovaya, D.L. Boguta, et al. Anodic spark deposition of P, Me(II) or Me(III) containing coatings on aluminum and titanium alloys in electrolytes with polyphosphate complexes. Journal of Electroanalytical Chemistry, 2001, 497(1-2):150~158
    [27] K.H. Dittrich, W. Krysmann, P. Kurze,et al. Structure and properties of ANOF layers. Crystal Research and Technology, 1984, 19(1): 93~99
    [28] P. Kurze, W. Krysmann,H.G. Schneider. Application fields of ANOF (anodic oxidation by spark discharge) layers and composites. Crystal Research and Technology, 1986, 21(12):1603~ 1609
    [29] K.H. Dittrich, L.G. Leoard. Microarc oxidation of aluminium alloy components. Crystal Research and Technology, 1984, 19(1): 93~96
    [30] V. N. Malyshev, G. A.Markov, V. A. Fedorove, et al. Features of the structure and properties of coatings applied by the method of microarc oxidation. Chemical and Petroleum Engineering, 1984, 20(1-2):41-43
    [31] A. A. Petrosyants, V. N. Malyshev, V. A.Fedorov, et al. Wear kinetics of coating depositon by microarc oxidation. Soviet Journal of Friction and Wear, 1984,5(2): 127~130
    [32] Samir H. Awad, H.C. Qian. Deposition of duplex Al2O3/TiN coatings on aluminum alloys for tribological applications using a combined microplasma oxidation (MPO) and arc ion plating (AIP).Wear, 2006,260(1-2):215~222.
    [33] A. A. Voevodin, A. L. Yerokhin, V. V. Lyubimov, et al. Characterization of wear protective Al-Si-O coatings formed on Al-based alloys by micro-arc discharge treatment. Surface and Coatings Technology, 1996, 86-87:516~521
    [34] 张永君,李文芳,王福会.高 Si 压铸 Al 合金 ADC12 的微弧氧化表面改性.金属学报, 2005,41(12):1289~1292
    [35] L. Wang and X. Nie. Silicon effects on formation of EPO oxide coatings on aluminum alloys, Thin Solid Films, 2006, 494, 1-2: 211~218
    [36] 薛文斌. SiC 颗粒增强体对铝基复合材料微弧氧化氧化膜生长的影响.金属学报, 2006, 42(4):350~354
    [37] W.B. Xue, X.L. Wu, X.J. Li, et al. Anti-corrosion film on 2024/SiC aluminum matrix composite fabricated by microarc oxidation in silicate electrolyte. Journal of Alloys and Compounds, 2006,425(1-2):302~306
    [38] 蒋百灵,张淑芬,吴国建等.镁合金微弧氧化陶瓷层显微缺陷与相组成及其耐蚀性. 中国有色金属学报, 2002,12(3):454~457
    [39] Y. Ma, X. Nie, D.O. Northwood, et al. Systematic study of the electrolytic plasma oxidation process on a Mg alloy for corrosion protection. Thin Solid Films, 2006,494(1-2):296~301
    [40] 陈宏,郝建民,王利捷. 镁合金微弧氧化陶瓷层耐蚀性的电化学分析.腐蚀与防护, 2004. 25(9):383~385
    [41] F. Chen, H. Zhou, B. Yao, et al. Corrosion resistance property of the ceramic coating obtained through microarc oxidation on the AZ31 magnesium alloy surfaces. Surface and Coatings Technology, 2007, 201(9-11): 4905~4908
    [42] H.F. Guo, M.Z. Zhang, S. Xu, et al. Microarc oxidation of corrosion resistant ceramic coating on a magnesium alloy. Materials Letters, 2006, 60(12):1538-1541
    [43] J. Liang, L.T. Hu, J.C. Hao. Improvement of corrosion properties of microarc oxidation coating on magnesium alloy by optimizing current density parameters. Applied Surface Science, 2007, 253, 16(15): 6939-6945
    [44] H.P. Duan, C.W. Yan F.H. Wang. Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D. Electrochimica Acta, 2007, 52(11): 3785-3793
    [45] Y.M. Wang, B.L. Jiang, T.Q. Lei, et al. Microarc oxidation coatings formed on Ti6Al4V in Na2SiO3 system solution: Microstructure, mechanical and tribological properties. Surface and Coatings Technology, 2006, 201(1-2): 82-89
    [46] 王亚明,蒋百灵,郭立新等.磷酸盐系溶液中钛合金微弧氧化涂层生长与组织结构.中国有色金属学报,2004,14(4):548~553
    [47] X.T. Sun, Z.H. Jiang, S.G. Xin, et al. Composition and mechanical properties of hard ceramic coating containing a-Al2O3 produced by microarc oxidation on Ti–6Al–4V alloy, Thin Solid Films, 2005, 471(1-2):194-199
    [48] Y. Han, S.H. Hong, K.W. Xu. Synthesis of nanocrystalline titania films by micro-arc oxidation. Materials Letters, 2002,56(5) 744~747
    [49] 憨勇,徐可为. 微弧氧化生成含钙磷氧化钛生物薄膜的结构.无机材料学报, 2001,16(5): 951~956
    [50] Y. Han, S.H. Hong, K.W. Xu. Structure and in vitro bioactivity of titania-based films by micro-arc oxidation. Surface and Coatings Technology, 2003, 168:249~258
    [51] J.Z. Chen, Y.l. Shi, L. Wang, et al. Preparation and properties of hydroxyapatite-containing titania coating by micro-arc oxidation. Materials Letters, 2006, 60: 2538~2543
    [52] X.J. Li, X.L. Wu, W.B. Xue, et al. Structure and properties fo ceramic films on TiAl intermetallic compound fabricated by microarc oxidation. Surface and Coating Technology, 2007, 201:9~11
    [53] 郝建民,介万奇,陈宏等. SiO32-对TiAl合金微弧氧化陶瓷层的影响.稀有金属材料与工程, 2005,34(9):1455~1458
    [54] T. Pauporté, J. Finne, A. Kahn-Harari, et al. Growth by plasma electrolysis of zirconium oxide films in the micrometer range, Surface and Coatings Technolog,2005,199(2-3): 213~219
    [55] 周慧,李争显,杜继红等.锆合金表面交流微弧氧化陶瓷膜组织与性能的研究.稀有金属材料与工程, 2005,34(8):1330~1333
    [56] 矿亚非,侯朝辉,刘建平.阳极氧化过程中电击穿理论的研究进展.电镀与涂饰, 2000, 19(3):38~41
    [57] 王德云,东青,陈传忠.微弧氧化技术德研究发展.硅酸盐学报, 2005,33(9):1133~1138
    [58] 蒋百灵,白力静,蒋永峰.铝合金微弧氧化技术.西安理工大学学报, 2000,16(2):138~142
    [59] S.V. Gnedenkov, O. A. Khrisanfova, A. G. Zavidnaya, et al. Production of hard and heat-resistant coatings on aluminium using a plasma micro-discharge. Surface and Coatings Technology, 2000, 123(1): 24~28
    [60] A.G. Rakoch, V.V. Khoklov, V.A. Bautin, et al. Model concepts on the mechanism of microarc of metal materials and the control over this process. Protection of Metals, 2006, 42(2):158~169
    [61] A. L. Yerokhin, L.O. Snizhko, N. L. Gurevina s, et al. Spatial characteristics of discharge phenomena in plasma electrolytic oxidation of aluminium alloy. Surface and Coatings Technology, 2004, 177-178:779~783
    [62] V.I. Tchernenko, L.A. Snezhko, I.I. Papanava, et al. Coatings by anodic spark electrolysis. Khimiya, Leningrad, 1991
    [63] E. Gulbrandsen. Anodic behaviour of Mg in HCO3-/CO32- buffer solutions: Quasi-steady measurements. Electrochimica Acta, 1992,37(8):1403~1412
    [64] W.B. Xue, Z.W. Deng, R.Y. Chen, et al. Growth regularity of ceramic coatings formed by microarc oxidation on Al–Cu–Mg alloy. Thin Solid Films, 2000, 372:114~117
    [65] Y.J. Guan, Y. Xia. Amorphous coatings deposited on aluminum alloy by plasma electrolytic oxidation. Transcations of nonferrous metals society of china, 2005,15(3):565~570
    [66] P. Kurze, W. Krysmann, J. Scherckenbach, et al. Coloured ANOF layers on aluminium. Crystal Research and Technology, 1987,22:53~58
    [67] 王永康,郑宏晔,李炳生等.铝表面制备装饰膜的等离子电解氧化方法.材料保护, 2003, 36(9):36-42
    [68] 王永康,郑宏晔,李炳生等.NaF 添加剂对铝合金等离子电解氧化陶瓷膜形成的影响.电镀与涂饰, 2003,22(4):8~10
    [69] H.Y. Zheng, Y.K. Wang, B.S. Li, et al.The effects of Na2WO4 concentration on the properties of microarc oxidation coatings on aluminum alloy. Materials Letters, 2005, 59,2-3: 139-142
    [70] J. Ding, J. Liang,L.T. Hu, et al. Effects of sodium tungstate on characteristics of microarc oxidation coatings formed on magnesium alloy in silicate-KOH electrolyte. Transactions of Nonferrous Metals Society of China, 2007,17( 2):244-249
    [71] F.Y. Jin, P.K. Chu, H.H.Tong, et al. Improvement of surface porosity and properties of alumina films by incorporation of Fe micrograins in micro-arc oxidation. Applied Surface Science, 2006, 253(2):863~868
    [72] F.Y. Jin, H.H. Tong, J. Li, et al. Structure and microwave-absorbing properties of Fe-particle containing alumina prepared by micro-arc discharge oxidation. Surface and Coatings Technology, 2006, 201(1-2):292-295.
    [73] 张荣发,李明升,龙小丽等.电参数对镁合金阳极氧化膜性能影响的研究进展.中国有色金属学报, 2006, 16(11):1829~1937
    [74] S.G. Xin, L.X. Song, R.G. Zhao. Influence of cathodic current on composition, structure and properties of Al2O3 coatings on aluminum alloy prepared by micro-arc oxidation process. Thin Solid Films, 2006,515(1):326~332
    [75] A.L. Yerokhin, A. Shatrov, V. Samsonov, et al. Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process. Surface and Coatings Technology, 2005, 199(2-3):150~157
    [76] 胡正前,马晋,张文华.铝合金在硅酸盐电解液中微弧氧化的尺寸变化.轻合金加工技术, 2003,31(10):37~39
    [77] G.L. Yang, X.Y. Lü, Y.Z. Bai, et al. The effects of current density on the phase composition and microstructure properties of micro-arc oxidation coating. Journal of Alloys and Compounds, 2002,345:196~200
    [78] 吴汉华,汪剑波,龙北玉.电流密度对铝合金微弧氧化膜物理化学特性的影响. 物理学报,2005,54(12) :5743~5749
    [79] 魏同波,张学俊,王博等.电流密度对铝合金微弧氧化膜的生长及结合力的影响.材料保护, 2004,37(4):4~6
    [80] A. Erokhine, A.A. Voevodin, R.D. Schmertzler, et al. US Patent:5720866, 1998
    [81] X.T. Sun, Z.H. Jiang, Z.P. Yao et al. The effects of anodic and cathodic processes on the characteristics of ceramic coatings formed on titanium alloy through the MAO coating technology. Applied Surface Science, 2005,252( 2): 441~447
    [82] H.M. Nykyforchyn, M.D. Klapkiv ,V.M. Posuvailo. Properties of synthesised oxide-ceramic coatings in electrolyte plasma on aluminium alloys. Surface and Coatings Technology, 1998, 100-101: 219~221
    [83] 李全军,吴汉华, 汪剑波等.脉冲频率对纯钛微弧氧化膜生长特性的影响.无机材料学报,2006,21(2):488~492
    [84] Z.P. Yao, R.H. Cui, Z.H. Jiang. Effects of duty ratio at low frequency on growth mechanism of micro-plasma oxidation ceramic coatings on Ti alloy. Applied Surface Science, 2007, 253(16): 6778-6783
    [85] 翁 海 峰, 陈秋龙, 蔡珣等 . 脉 冲 占 空 比 对 纯 铝 微 弧 氧 化 膜 的 影 响. 表面技术, 2005,34(5)59~62
    [86] 王亚明, 雷挺权,蒋百灵等.交流窄脉冲占空比调制对钛合金微弧氧化陶瓷涂层的影响.稀有金属与工程, 2005,34(2):229~333
    [87] Y.L. Shi, F.Y. Yan, G.W. Xie. Effect of pulse duty cycle on micro-plasma oxidation of aluminum alloy. Materials Letters, 2005, 59:2725~2728
    [88] W.B. Xue, Z.W. Deng, Y.C. Lai. Analysis of phase distribution for ceramic coatings formed by microarc oxidation on aluminium alloy. Journal of the American Ceramic Society, 1998, 81(5):1365~1433
    [89] X. Nie, E. I. Meletis, J. C. Jiang, et al. Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis. Surface and Coatings Technology, 2002, 149, 2-3: 245~251
    [90] W.B. Xue, Z.W. Deng, R.Y. Chen, et al. Microsturcture and properties of ceramic coatings produced on 2024 aluminium alloy by microarc oxidation. Journal of Materials Science, 2001,36: 2615~2619
    [91] S.G. Xin, L.X. Song, R.G. Zhao, et al. Properties of aluminium oxide coating on aluminium alloy produced by micro-arc oxidation. Surface and Coatings Technology, 2005,199(2-3): 22 184~188
    [92] 吕宪义, 金曾孙,吴汉华等. 阴/阳极电流密度对铝合金微弧氧化陶瓷膜特性的影响.吉林大学学报:理学版, 2005,43(1):64~67
    [93] 辛世刚,宋力昕,赵荣根等. 微弧氧化 Al-Si-O 陶瓷涂层的结构与结合强度.无机材料学报, 2006,21(2):493~498.
    [94] S.V. Gnedenkov, O.A. Khrisanfova, A.G. Zavidnaya. Composition and adhesion of protective coatings on aluminum. Surface and Coatings Technology, 2001, 145,(1-3): 146-151
    [95] Y.M. Wang, B.L. Jiang, T.Q. Lei, et al. Microarc oxidation and spraying graphite duplex coating formed on titanium alloy for antifriction purpose. Applied Surface Science, 2006,246 (1-3): 214~221
    [96] B. Lonyuk, I. Apachitei, J. Duszczyk. The effect of oxide coatings on fatigue properties of 7475-T6 aluminium alloy. Surface and Coatings Technology, 2007,201(21):8699~8694
    [97] R.H.U. Khan, A.L. Yerokhin, T. Pilkington, et al. Residual stresses in plasma electrolytic oxidation coatings on Al alloy produced by pulsed unipolar current. Surface and Coatings Technology, 2005, 200(5-6): 1580~1586
    [98] J.A. Curran, T.W. Clyne. The thermal conductivity of plasma electrolytic oxide coatings on aluminium and magnesium. Surface and Coatings Technology, 2005,199(2-3):177-183
    [99] S.G. Xin, L.X. Song, R.G. Zhao. Composition and thermal properties of the coating containing mullite and alumina. Materials Chemistry and Physics, 2006, 97( 1): 132-136
    [100] W.B. Xue, C. Wang, Y.L. Li, et al. Effect of microarc discharge surface treatment on the tensile properties of Al–Cu–Mg alloy. Materials Letters, 2002,56(5):737-743
    [101] 滕敏,李垚,赫晓东等.等离子体微弧氧化表面处理 LYl2铝合金的高温拉伸性能.宇航材料工艺, 2004,34(6):50~52
    [102] K. Wu, Y.Q. Wang, M.Y. Zheng. Effects of microarc oxidation surface treatment on the mechanical properties of Mg alloy and Mg matrix composites. Materials Science and Engineering: A, 2007,447(1-2):227~232
    [103] A. L. Yerokhin, A. Shatrov, V. Samsonov, et al. Fatigue properties of Keronite? coatings on a magnesium alloy. Surface and Coatings Technology, 2004, 182(1): 78~84
    [104] D.T. Asquith, A.L. Yerokhin, J.R. Yates, et al. Effect of combined shot-peening and PEO treatment on fatigue life of 2024 Al alloy. Thin Solid Films, 2006,515(3): 1187~1191
    [105] L. Rama Krishna, A. Sudha Purnima, G. Sundararajan. A comparative study of tribological behavior of microarc oxidation and hard-anodized coatings. Wear, 2006, 261(10): 1095-1101
    [106] T.B. Wei, F.Y. Yan, J. Tian.Characterization and wear- and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy, Journal of Alloys and Compounds, 2005, 389:169~171
    [107] X. Nie, A. Wilson, A. Leyland, et al. Deposition of duplex Al2O3/DLC coatings on Al alloys for tribological applications using a combined micro-arc oxidation and plasma-immersion ion implantation technique. Surface and Coatings Technology, 131(1-3):506~513
    [108] Samir H. Awad, H.C. Qian. Deposition of duplex Al2O3/TiN coatings on aluminum alloys for tribological applications using a combined microplasma oxidation (MPO) and arc ion plating (AIP). Wear, 2006,260(1-2): 215~222
    [109] Z.Z. Luo, Z.Z. Zhang, W.M. Liu, et al. Tribological properties of solid lubricating film/microarc oxidation coating on Al alloys. Transactions of Nonferrous Metals Society of China, 2005,15 (6):1231~1236
    [110] L.S. Saakiyan, A.V. Efrenivm, A.V. Epelfeld. Aluminum-based corrosion- and abrasion- resistant coatings sprayed on steel parts to prevent them from sulfide cracking. Fiziko-Khimich- eskaya Mekhanika Materialov, 1987.23(6):88~90
    [111] X.Z. Yang, Y.D. He, D.R. Wang, et al. Cathodic micro-arc electrodeposition of yttrium stabilized zirconia coatings on FeCrAI alloy. Chinese Science Bulletin, 2003,48(8):746~750.
    [112] 李新梅,李银锁,憨勇.钛表面阴极微弧电沉积制备氧化铝涂层.无机材料学报, 2005, 20(6): 1493~1499
    [113] 王云龙; 姜兆华,姚忠平.不锈钢表面阴极等离子体液相沉积氧化铝层.材料研究学报, 2007, 21(4):395~398
    [114] T.R. Tan, J.R. Cheng, J.H. Wang, et al. Morphology and characterization of the anodic coating on galvanized steels prepared by alternating currents. Surface and Coating Technology, 1998,110:194-199
    [115] V. pokhmurskii, H. Nykyforchyn, M. Student, et al. Plasma Electrolytic Oxidation of Arc- Sprayed Aluminum Coatings.Journal of Thermal Spray Technology, 2007,16(5-6)998~1004
    [116] W.C. Gu,D.J. Shen, Y.L. Wang, et al. Deposition of duplex Al2O3/aluminum coatings on steel using a combined techinique of arc spraying and plasma electrolytic oxidation. Applied Surface Science, 2006,252:2977~2932
    [117] A.P. Efremov.Composite coating for protecting carbon steel from stress corrosion failure. Protection of Metals (English translation of Zaschita Metallov), 1989,25(2):176~180
    [118] D.J. Shen, Y.L. Wang, G.W. Chao. Structures of ceramics coatings on steel fabricated by hot-dipping and micro-arc oxidation.Transactions of Nonferrous Metals Society of China, 2004,14(Suppl.2):170~172
    [119] 解世岳,王从曾,寇斌达等.碳钢热浸镀铝及微弧氧化研究.轻合金加工技术, 2003, 31(9):35~38.
    [120] S.X. Yu, Y. Xia, L. Chen, et al. Formation and structure of composite coating of HDA and Micro-Plasma oxidation on A3 Steel. Transaction of Nonferrous Metals Society of China, 2004,14(Suppl.2): 310~314
    [121] W.C. Gu, G.H. Lv, H. Chen,et al. Preparation of ceramic coatings on inner surface of steel tubes using a combined technique of hot-dipping and plasma electrolytic oxidation. Journal of Alloys and Compounds, 2007,430(1-2):308~312
    [122] X. Nie, A. Leyland, H. W. Song, et al. Thickness effects on the mechanical properties ofmicro-arc discharge oxide coatings on aluminium alloys.Surface and Coatings Technology, 1999, 116-119:1055~1060
    [123] Y.J. Guan, Y. Xia. Correlation between discharge property and the coatings microstructure on aluminium alloy during plasma plama electrolytic oxidation. Transactions of Nonferrous Metals Society of China, 2006,16(5):1097~1102
    [124] 关永军.等离子体电解氧化陶瓷层的形成机制及界面特性研究.博士学位论文, 中国科学院力学研究所, 2006.7
    [125] 夏原,姚枚,李铁藩. Q235 钢热浸铝初期镀层组织结构的变化.金属热处理学报, 1998, 19(2) : 34~38
    [126] 夏原,姚枚,李铁藩.热浸铝镀层的微观结构及形成机理.中国有色金属学报, 1997,4(7): 154~158
    [127] 金志浩,高积强,乔冠军.工程陶瓷材料.西安:西安交通大学出版社, 2000.9
    [128] 刘兆晶,左洪波,束术军等. 铝合金表面陶瓷膜层形成机理.中国有色金属学报, 2000, 10(6):859~863
    [129] L.O. Snizhko, A. L. Yerokhin, N. L. Gurevina, et al. A model for galvanostatic anodizing of Al in alkaline solutions. Electrochimica Acta, 2005,50:5458~5464
    [130] L.O. Snizhko, A. L. Yerokhin, A. Pilkington, et al. Anodic process in plasma electrolytic oxidation of aluminium in alkaline solutions. Electrochimica Acta, 2004,49: 2085~2095
    [131] A.C. Fischer-Cripps A C. Nanoindentation. New York: Spring-Verlag,2002
    [132] W.C. Oliver, G.M. Pharr. Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 1992, 7(6):1564~1583.
    [133] T.F. Page, W.C. Oliver, C.J. McHargue. The deformation behavior of ceramic crystals subject to very low load (nano)indentations. Journal of Materials Research, 1992,7(2):450~473
    [134] 翟长生,杨力,王俊,赵文明等.Al2O3/TiO2 纳米复合粉体爆炸涂层微结构及纳米压痕力学特性.无机材料学报, 2005,20(6): 1500~1508
    [135] 梁广川,刘文西.FeAl 合金研究进展评述.Advances in researching of FeAl alloy.材料导报, 1999,13(2):25~27.
    [136] Balasubramaniam R. Hydrogen in iron aluminides. Journal of Alloys and Compoundsm, 2002,330:506~510
    [137] M.V. 斯温 主编,郭景坤等译. 陶瓷的结构与性能.北京:科学出版社,1998,77~91
    [138] 张泰华,杨业敏.纳米硬度技术的发展和应用.力学进展, 2002,32(3):349-364 
    [139] D.W. Stollberg, J.M. Hampikian, L.Riester, et al. Nanoindentation measurements of combustion CVD Al2O3 and YSZ films. Materials and Engineering A , 2003:112~118
    [140] P. Djyak, R.P. Singh. Acousitic emission analysis of nanoindentation-induced fracture events. Experimental Mechanics, 2006,46:333~345
    [141] 王玉桂,乔利杰,高克玮等.单晶 SiO2纳米带裂纹形成核的临界应力和断裂韧性.金属学报, 2004, 40(6):594-598
    [142] S. Van der Zwaag, J.E. Field. The effect of thin hard coatings on the Hertzian Stress filed. Philos. Mag. A1, 1982, (46): 223~231.
    [143] E. Uhlmann , K. Klein. Stress design in hard coatings. Surface and Coatings Technology, 2000, 131:448~451.
    [144] H.H. Bennani, J. Takadoum. Finite element model of elastic stress in thin coatings submitted to applied forces. Surface and Coatings Technology, 1999, 111:80~85.
    [145] H. Djabella. Finite element comparative study of elastic Stresses in single, double layer and mulitlayered coated systems. Thin Solid Film, 1993, 235(1-2):156~162.
    [146] P. Bansal, P.H. Shipway, S.B. Leen. Finite element modeling of the fracture behavior of brittle coatings. Surface and Coatings Technology, 2006,200(18-19):5318~5327
    [147] M.J Fagan, S.J. Park, L. Wang. Finite element analysis of the contact stresses in diamond coatings subjected to a uniform normal load. Diamond and related materials, 2000, 9(1):26~36.
    [148] K.L. Johnson. Contact Mechanics. Cambridge: Cambridge University Press, 1992:21~26
    [149] 尹衍升,施忠良,刘俊友.铁铝金属间化合物. 上海:上海交通大学出版社,1996:20~23
    [150] 赵彬,徐宝星,岳珠峰.热障涂层平头压痕蠕变研究.机械强度, 2005.27(1):112~116
    [151] 徐宝星,李立州,赵彬等.平头压痕实验确定热障涂层弹性模量的方法研究.应用力学学报, 2006,(3):72~74
    [152] B. Riccard, R. Montanari. Indentation of metals by a flat-ended cylindrical punch. Materials Science and Engineering A, 2004, 381(1-2):281~291
    [153] L. Casamichele, F. Quadrini, V. Tagliaferri. Non-destructive evaluation of local mechanical properties of Al die cast large components by means of FIMEC indentation test. Measurement, 2006,In Press
    [154] T.B. Wei, F.Y. Yan, W.M. Liu, et al. Structure and tensile/wear properties of microarc oxidation ceramic coatings on aluminium alloy.Transactions of Nonferrous Metals Society of China, 2004,14(6):1162~1168
    [155] 夏原.钢材浸铝和浸扩铝工艺及表层组织性能的研究.博士学位论文,哈尔滨工业大学,1995:68~71
    [156] 董延.热浸镀铝表面层微结构控制及力学特性.硕士学位论文,中国科学院力学研究所, 2003:55~66
    [157] 杨班权,陈光南,张坤等.涂层/基体材料界面结合强度测量方法的现状和展望.力学进展, 2007,37(1):67~79
    [158] W.J. Chou, G.P. Yu, J.H. Huang. Mechanical properties of TiN thin coatings on 304 stainless steel substrates. Surface and Coatings Technology, 2002,149:7~13
    [159] M.H. Shiao, F.S. Shieu. Interfacial mechanical properties and fracture morphology of a TiN-coated steel wire upon tensile loading. Thin Soldi Films, 2002,358:159~165
    [160]丁隧栋,孙利民. 断裂力学.北京:机械工业出版社,1997:148~150
    [161]夏原,姚枚,张瑞平.A3 钢热浸铝镀层生长规律的影响因素.中国有色金属学报,1996, 6(1):74~78
    [162]A.A.Voevodin, A.L.Yerokhin,V.V. Lyubimov et al.Characterization of wear protective Al-Si-O coatings formed on Al-based alloys by micro-arc discharge treatment. Surface and Coatings Technology,1996,86-87:516~521
    [163] 薛文彬,邓志威,陈如意 张通和.铝合金微弧氧化陶瓷膜与基体界面区的硬度和弹性模量分布.金属学报.1999,35(6)638~642
    [164] J.A. Curran, T.W. Clyne. Porosity in plasma electrolytic oxide coatings. Surface and Coatings Technology,2006,54:1985~1993
    [165]Palmqvist S. A method to determine the toughness of brittle Materials, especially hard metals. Jernkontorets Ann.,1957, 141:303~307
    [166]Z.H. Xu , D.Rowcliffe. Nanoindentation on diamond-like carbon and alumina coatings. Surface and Coatings Technology,2002,161(1): 44~51
    [167]H. Luo, D. Goberman, L. Shaw, et al. Indentation fracture behavior of plasma-sprayed nanostructured Al2O3–13wt.%TiO2 coatings. Materials Science and Engineering A, 2003,346:237~245
    [168]G. R. Anstis, P. Chantikul, B.R. Lawn, et al. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. Journal of the American Ceramic Society,1981,64(9)533~538
    [169]S. Zhang, D. Sun, Y.Q. Fu,et al. Toughness measurement of thin films: a critical review. Surface and Coatings Technology, 2005, 122,74~84.
    [170]J. Lesage, D. Chicot. Model for hardness and adhesion of coatings. Surface Engineering, 1999, 15(6):447~453

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700