水润滑条件下耐腐蚀抗污陶瓷涂层的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水润滑采用海水或者淡水作为工作介质,具有不燃、无污染等优点,在某些发达国家已经在食品、医药、海洋开发、水下作业工具等方面获得广泛应用。相对矿物油而言,纯水的腐蚀性强、润滑性差,水润滑条件下所使用的材料除了要求足够的机械性能外还必须具有较好的耐腐蚀、耐磨和抗生物污损性能。本实验通过在金属基体上喷涂复合陶瓷涂层来提高元件的耐磨性能和耐腐蚀性能,并通过添加抗污成分来提高其在海水中的抗生物附着污损性能。
     本次实验以Cr2O3、TiO2和CuO为主要成分制备了P7418粉末,采用喷雾干燥法制成球形团聚粉末,将该粉末进行焙烧,获得流动性好的喷涂用粉,将其与市售的P7412粉末进行对比实验。对喷雾干燥工艺制备的P7418粉末样品进行形貌观察发现该粉末呈球形,具有比P7412粉末更好的流动性,能够满足等离子喷涂的要求。通过对两种粉末的XRD分析发现,所制备的粉末的成分未发生改变,这是由于喷雾干燥工艺制备粉末仅为原料通过粘结剂的简单混合,在制备过程中不会发生相变。
     采用等离子喷涂工艺,在不锈钢基体上喷涂了色泽均匀的P7412和P7418涂层。在此基础上,我们对以上两种涂层进行复合结构设计,并且制备了复合P7418涂层。通过对三种涂层的腐蚀实验可以知道:P7418涂层的孔隙率比P7412涂层中的略低,且两种涂层中各组分分布均匀;由于CuO在腐蚀介质中的释放会在陶瓷涂层中增加孔隙,末封孔的P7418涂层在10%HCl、10%NaOH和10%NaCl三种腐蚀液中的耐腐蚀性能比未封孔的P7412涂层的略差,但CuO的加入可以起到防止生物附着污染的效果。添加封孔剂不仅可以减少陶瓷涂层的孔隙率,还可以大幅度提高陶瓷涂层的耐腐蚀性能。而复合P7418涂层可以在保留P7418涂层很好的抗生物附着污染性能的情况下,具有和P7412相近的耐腐蚀性能。根据对P7412涂层和复合P7418涂层的电化学分析可以知道,复合P7418涂层的腐蚀倾向比P7412涂层大,但其腐蚀电流与P7412涂层相近,这也证明了涂层的复合结构设计达到了研究目标。
Water lubrication, with sea water or fresh water as its working medium, is outstanding as its non-combustible, non-polluting feature, etc, which has been widely used in some developed countries in the fields of food factory, medical equipments or in special situations like ocean exploitation, under water operating system, etc. Besides enough mechanical strength, materials must have high resistance to corrosion and wear, low frictional coefficient and anti-adhesion of the microorganism, because of the specific physical and chemical characteristics of water, which has high corrosion and low lubricating ability in contrast with mineral oil as working medium. In this experiment, we try to improve the wear resistance and corrosion resistance of the components by spraying composite ceramic coating on the metal substrate, as well as improve its anti-adhesion of the microorganism properties by adding anti-adhesion composition.
     In this experiment, we make P7418 powder with Cr2O3, TiO2 and CuO as its the main composition, we make it into spherical powder by spray drying, then bake it to obtain the powder with good liquidity,which is prepared to be compared with the commercially available P7412 powder. If you examine the samples of P7418 which is made by spray-dried powder morphology, you will find that the powder is spherical, and is better in liquidity than P7412, it can meet the requirements of plasma spraying. The XRD analysis of the two powders shows that the compositions of the powders have little changes for the spray drying technology of the powder is only a simple mixture of the powder by agglomerants.
     By plasma spraying, we got the P7412 and P7418 coatings with uniform color on the stainless steel substrate. And then, we made composite structure design of these two kinds of coatings, and prepared the P7418 composite coating. These three kinds of experiments on corrosion coating come to the conclusion that P7418 coating porosity is slightly lower than that of the P7412, with the two components in the coating uniformity. As the release of CuO in the corrosive media will increase the porosity in the ceramic coating, the corrosion resistance of the unsealing P7418 coating in 10%HCl,10%NaOH and 10%NaCl is worse than that of P7412. However, the addition of CuO can serve to prevent the anti-adhesion of the microorganism properties. Adding a sealing treatment can not only decrease the porosity of ceramic coatings, but also greatly improve the corrosion resistance of ceramic coatings. When a good anti-adhesion performance of attachment of P7418 composite coating is kept, composite coating have similar corrosion resistance.The electrochemical analysis of P7418 composite coating and P7412 coating shows that P7418 composite coating has higher corrosion tendency than P7412 coating, but similar corrosion current. This also proves that the composite structure design of the coating has already achieved the goal.
引文
[1]王优强,李鸿琦,佟景伟.水润滑陶瓷轴承研究进展.润滑与密封,2003,(6):92~95
    [2]山口. Challenge to Water Hydraulic System. Journal of the Japan Hydrarlics& Peumatics Society,1988, (11):57-59
    [3]袁林忠.水作为液压介质的关键技术研究.润滑与密封,2005,(5):181~184
    [4]刘美霞.水液压元件的润滑和密封问题.机械工程师,2001,(11):11~13
    [5]杨曙东.海水液压泵试验台设计研究.液压与气动,1997,(6):24~27
    [6]T. Wei, F.Y. Yan, J. Tian. Characterization and wear-and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy. Journal of Alloys and Compounds,2005, (389): 169-176
    [7]焦素娟等.水润滑下AL203,AL203+13%Ti02等离子喷涂层的摩擦磨损特性.润滑与密封,2002,(3):28~30
    [8]N. Espallargas, J.Berget. Cr3C2-NiCr and WC-Ni thermal spray coatings as alternatives to hard chromium for erosion-corrosion resistance. Surface& Coatings Technology,2008, (202): 1405-1417
    [9]李剑锋等.水润滑下等离子喷涂Cr3C2-NiCr涂层增韧SiC陶瓷摩擦副的摩擦学特性.摩擦学学报,2001(3):72~75.
    [10]Y.L. Gao, C.S. Wang, M. Yao, H.B. Liu. The resistance to wear and corrosion of laser-cladding Al2O3 ceramic coating on Mg alloy. Applied Surface Science,2007, (253): 5306-5311
    [11]Brookes C.A. The tribological application of ceramic materials in water hydraulics potential and problems[C].1st Bath lnt. Fluid Power Workshop, University of Bath, UK,1988
    [12]Brookes C A. The selection and performance of ceramic components in seawater pump. The 3th JHPS lnt Symp on Fluid Power, Yokohama, Japan,1996
    [13]Brookes C.A., Fangan M.J. The Development of Water Hydraulic Pumps Using Advanced Engineering Ceramics. Proc of 4th Scandinavian International Conference of Fluid Power. Finland,1995:965-977
    [14]王海宝.酚醛树脂塑料合金材料的摩擦性能研究.润滑与密封,2004,(1):23~25
    [15]何奖爱,王玉伟.材料的磨损与耐磨材料.沈阳:东北大学出版社,2001
    [16]Fischer T.E, Anderson M.P, Jahanmir S. et al. Friction and wear of tough and brittle zirconia in nitrogen, air, water, hexadecane and hexadecane contains stearic acid. Wear,1988,124: 133-143
    [17]D.R. Yan, J.N. He. et al. An investigation of the corrosion behavior of Al2O3-based ceramic composite coatings in dilute HCl solution. Surface and Coatings Technology,2001, (141):1-6
    [18]张轲,牛焱,吴维.NiCr合金在含氯氧化性气氛中的高温腐蚀[J].材料工程,2005,(01):12~15
    [19]付广艳,刘群,门冰洁,等.显微组织对Ni-Cr合金热腐蚀行为的影响[J].稀有金属材料与工程,2007,(04):695~699
    [20]Y.H. Yoo, J.H. Hong, J.G. Kim, H.Y. Lee, J.G. Han. Effect of Si addition to CrN coatings on the corrosion resistance of CrN/stainless steel coating/substrate system in a deaerated 3.5 wt.% NaCl solution. Surface& Coatings Technology,2007, (201):9518-9523
    [21]E. Celik, I. Ozdemir, E. Avci, Y. Tsunekawa. Corrosion behaviour of plasma sprayed coatings. Surface& Coatings Technology,2005, (193):297-302
    [22]Shi Lingling, Xu Yongjun, Li Kang, Yao Zhongping, Wu Songquan. Effect of additives on structure and corrosion resistance of ceramic coatings on Mg-Li alloy by micro-arc oxidation. Current Applied Physics,2010, (10):719-723
    [23]马壮,曲文超,李智超,等.纯铜表面SHS反应热喷涂A1203基复合陶瓷涂层的性能研究.腐蚀科学与防护技术,2010,22(1):28~31
    [24]V. Raj, M. Mubarak Ali. Formation of ceramic alumina nanocomposite coatings on aluminium for enhanced corrosion resistance. Journal of Materials Processing Technology,2009, (209):5341-5352
    [25]王东生,田宗军,沈理达,刘志东,黄因慧.等离子喷涂纳米复合陶瓷涂层的组织结构及其形成机理.中国有色金属学报,2009,19(1):77~83
    [26]Fei Chen, Hai Zhou, Bin Yao, Zhen Qin, Qingfeng Zhang. Corrosion resistance property of the ceramic coating obtained through microarc oxidation on the AZ31 magnesium alloy surfaces. Surface& Coatings Technology,2007, (201):4905-4908
    [27]M. Suarez, S. Bellayer, M. Traisnel. Corrosion behavior of Cr3C2-NiCr vacuum plasma sprayed coatings. Surface& Coatings Technology,2008, (202):4566-4571
    [28]汪国平.船舶涂料与涂装技术[M].北京:化学工业出版社,1998,55-57
    [29]黄艳,胡晖,梁国正.新型无毒防污涂料[J].上海涂料,2004,42(4):16~19
    [30]张平.热喷涂材料.北京:国防工业出版社,2006.25-28.
    [31]Soo Haeng Cho, Sung Bin Park, Dae Seong Kang, Myeong Soo Jeong, Heong Park, Jin Mok Hur, Han Soo Lee. Corrosion behavior of plasma-sprayed Al2O3-Cr2O3 coatings in hot lithium molten salt. Journal of Nuclear Materials,2010, (399):212-218
    [32]Cheng-Hsun Hsu, Chun-Ying Lee, Kai-Lin Chen, Jia-Hong Lu. Effects of CrN/EN and Cr2O3/EN duplex coatings on corrosion resistance of ADI. Thin Solid Films,2009, (517): 5248-5252
    [33]王海军.热喷涂技术问答.北京:国防工业出版社,2006.102-103
    [34]邓世均.高性能陶瓷涂层[M].北京:化学工业出版社,2003.138-139
    [35]G.X. Shen, Y.C. Chen, C.J. Lin. Corrosion protection of 316L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method. Thin Solid Films,2005, (489):130-136
    [36]You Wang, Wei Tian, Tao Zhang, Yong Yang. Microstructure, spallation and corrosion of plasma sprayed Al2O3-13%TiO2 coatings. Corrosion Science,2009, (51):2924-2931
    [37]G.X. Shen, Y.C. Chen, L. Lin, C.J. Lin, D. Scantlebury. Study on a hydrophobic nano-TiO2 coating and its properties for corrosion protection of metals. Electrochimica Acta,2005, (50): 5083-5089
    [38]Dianran Yan, Jining He, Xiangzhi Li, Yangai Liu, Yanchun Dong, Hai Liu. The corrosion behavior of plasma-sprayed Ni/Al-Al2O3 and Ni/Al-Al2O3+13wt%TiO2 graded ceramic coatings in 5%HCl solution. Surface and Coatings Technology,2003, (176):30-36
    [39]金宗哲.无机抗菌材料及应用[M].北京:化学工业出版社,2004:44-45
    [40]邓飞飞.水润滑低摩擦系数陶瓷涂层摩擦副的研究.[硕士学位论文].武汉:武汉理工大学,2008
    [41]杨章富.纳米氧化锆基热障烧蚀复合涂层的制备与研究.[硕士学位论文].武汉:武汉理工大学,2007
    [42]邓世均等.热喷涂材料技术手册.机械工业出版社,1991:295-301
    [43]张东方,潘牧,罗志平.Ni/Al、NiCr粘结层的耐蚀性能研究[J].佛山陶瓷,2002,(10):4~6
    [44]Sugehis Liscano, Linda Gil, Mariana H. Staia. Effect of sealing treatment on the corrosion resistance of thermal-sprayed ceramic coatings. Surface& Coatings Technology,2004, (188): 135-139
    [45]C.L. Li, H.X. Zhao, T. Takahashi, M. Matsumura. Improvement of corrosion resistance of materials coated with a Cr2O3/NiCr dilayer using a sealing treatment. Materials Science and Engineering,2001, (308):268-276
    [46]Guozhi Xie, Xiaoyan Lin, Keyu Wang, Xiangyin Mo, Dongjie Zhang, Pinghua Lin. Corrosion characteristics of plasma-sprayed Ni-coated WC coatings comparison with different post-treatment. Corrosion Science,2007, (49):662-671
    [47]孙永兴,王引真,何艳玲.添加剂对等离子喷涂Cr203涂层组织和耐蚀性的影响[J].材料工程,2001,9:18~24
    [48]何艳玲,王引真,王维东.Al2O3和Cr2O3陶瓷涂层耐蚀性的研究[J].石油工程建设,2000,4(2):6~8
    [49]第十五届国际热喷涂大会(ITSC,98)论文精选[C],中国表面工程协会热喷涂专业委员会编译,1999:23~26
    [50]F.C. Walsh, C. Ponce de Leon, C. Kerr, S. Court, B.D. Barker. Electrochemical characterisation of the porosity and corrosion resistance of electrochemically deposited metal coatings. Surface& Coatings Technology,2008, (202):5092-5102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700