硬质合金刀具表面涂层的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬质合金表面涂层刀具结合了基体高强度、高韧性和涂层高硬度、高耐磨性的优点,提高了刀具的耐磨性而不降低基体的韧性。新型涂层材料和涂层工艺的开发方兴未艾,预示着涂层刀具将有巨大发展潜力和广阔应用前景。
     本文选用自制烧结的YG11C/TaCp硬质合金作为基体,采用磁控反应溅射制备TiN涂层和TiAlN涂层;通过电弧离子镀制备TiN涂层,研究离子镀工艺参数对涂层的性能的影响。经试验,确定了TiN涂层的离子镀的最佳工艺参数:偏压为200V,弧源电流为60A,氮气分压为1Pa。研究表明:上述工艺条件下获得的TiN涂层结构良好,涂层表面光滑平整,组织均匀,具有高硬度和良好的结合强度。按照这个工艺参数制备TiCN涂层和ZrN涂层,并进行了性能对比研究。采用超景深显微镜和扫描电镜对基体材料的金相组织、涂层的表面与界面形貌进行了观察、分析,结合X射线衍射仪对硬质合金基体、TiN涂层、TiCN涂层和ZrN涂层的相分析,可以发现三种涂层都(111)晶面择优取向生长的。涂层刀具经250℃×1h退火后,涂层的性能有所提高;经300℃×1h的退火处理,涂层的晶粒得到细化。对涂层刀具进行界面机理进行分析,并综合切削实验结果,发现ZrN涂层不仅具有较好的结合性能,而且具有最好的耐切削磨损性能。
     通过系统的滑动摩擦磨损试验,研究了载荷和转速对基体和涂层的摩擦系数的影响,并探究涂层摩擦磨损机理,在高转速高载荷的工作状态下涂层的摩擦系数较低,主要的磨损机理是磨粒磨损,还存在少量的氧化磨损的黏着磨损。基体、TiN涂层、TiCN涂层和ZrN涂层在低载荷低转速的工作状态的摩擦系数比较接近,在高载荷高转速的工作状态下,ZrN的摩擦系数最低,耐磨性能最佳,更适于用作高速切削的刀具的涂层材料。
Cemented carbide cutting tools combide the advantages of the substrate high strength and high ductility with high hardness and high wear resisting property of the coating, Increasing cutting tool wear-resistant but not reducing substrate ductility. As new coating materials and coating process is developing in the ascendant, indicating the development of coated tools will have a great potential and broad application prospects.
     The paper select home-made YG11C/TaCp cemented carbides as substrate, TiN and TiAlN coating were deposited by reactive magnetron sputtering. Craft of depositing TiN by the voltaic arc ionized was introduced, the paper studied how processing parameter influence on property of TiN coating. Then coating/substrate picked up the optimized processing parameter as follow: the minus bias 200V, the N2 pressure component the electric current of arc was 60A. The TiN coating deposited with above processing parameter was slick,well-structural homogeneity, high hardness, and good coating/substrate bonding properties. TiN, TiCN and ZrN coating were deposited by voltaic arc ionized with the same parameter as TiN, so the properties of coatings could be compared. Structural examinations are presented of the applied coatings and their substrate made on the optical microscope, scanning electron microscope and X-Ray diffractomer. TiN, TiCN and ZrN coating were (111) preferred orientation. Annealed coated cutting tool on 250℃and 300℃by 1 hour. The hardness of coating were advanced after annealing on 250℃, crystal grains of coating were refined after annealing 300℃. Analyse interface mechanism of coated cutting tool, we found that ZrN coating was better in bond strength and wear-resisting property.
     Studied how load and rotational speed influence on friction coefficient of coating, analysed abrasion mechanism by friction experiment. We learned that the friction coefficients were lower under higher load with high rotational speed than under low load with min rotational speed, and the abrasion mechanism was grain-abrasion, as well with little oxidize abrasion and adhesion abrasion. The friction coefficient of Substrate, TiN, TiCN,and ZrN coating were close under low load, the friction coefficient of ZrN was smaller than others, ZrN coating has a good abrasion resistance, as cutting tool, it has more practical significance.
引文
[1]于启坳.新型硬质合金—表面涂层硬质合金[J].机械工程师, 2001, (6): 67-69.
    [2]现代刀具涂层制备技术的研究现状[J].表面技术, 2008, (37)2: 71-74.
    [3]范景莲,艾宪平,马运柱.高能球磨和放电等离子体烧结制备超细WC- Co硬质合金[J].稀有金属, 2005, 29( 2): 129~132.
    [4]株洲硬质合金厂,硬质合金的生产[M].北京:冶金工业出版社, 1974: 8-9.
    [5]孙剑飞,张法明,沈军.超细WC-Co复合粉末的制备工艺及其烧结性能[J].稀有金属与硬质合金,2002 ,30 (1): 25-37.
    [6]佘振辉.硬质合金烧结技术的发展,硬质合金[J].1998, 15(1).
    [7] Toma Vasile等.通过添加( Ta ,Nb) C来提高WC -TiC - Co合金的性能[J].国外难溶金属与硬质材料, 2003 ,19(2):1-3.
    [8]邓建新,赵军.数控刀具材料选用手册[M].北京:机械工业出版社, 2004.
    [9]唐伟忠.薄膜材料制备原理,技术及应用[M].北京:冶金工业出版社,1998: 119-146.
    [10] Deng Jianguo, Manuel Bratm. Surf Coat Technol[J], 1994. 70: 49.
    [11]程宇航.刀具涂层材料的使用概况,材料导报[J]. 1998, 12(6): 45-47.
    [12]郑昌琼,冉均国.材料科学与工程. 1992, 2: 45.
    [13]邓建新,艾兴Al2O3/TiB2/SiCw陶瓷刀具加工镍基合金时的磨损机理.硅酸盐学报,1997,25(2):192-196.
    [14] K. D. Bouzakis, S. hadjiyiannis, G. Skordaris. The effect of thickness, mechanical strength and hardness properties on the milling performance of PVD coated carbides inserts. Surface and Coating Technology, 2004, 177-178:657-664.
    [15] K. D. Bouzakis, N. Michailidis, N. Vidakis. Failure mechanisms of physically vapour deposited coated hardmetal cutting inserts in turning. Wear, 2001, 248(1-2):29-37.
    [16] A. Quiten, W. Amold. Observation of stable crack growth in Al2O3 ceramics using a scanning acoustic microscope. Materials Science and Engineering,1989, 122(1):15-19.
    [17] Y. Y. Yang, Y. S. Jin, S. Y. Luo. SAM Study on plasm Spray ceramic coating. Surface and Coatings Technology,1997,91(1-2): 95-100.
    [18]张亚粱,丁志德,姚蓉芳.高性能超硬涂层刀具的应用[J].机械制造,2003, 41(8): 37-40.
    [19]王大巍,陈华辉,赵会友.热喷涂Al2O3/TiO2复合陶瓷涂层滑动磨损特性研究润滑与密封, 1999, (2): 28-30.
    [20]王核源,王敬华. TiN涂层高速钢刀具的磨损特性及磨损规律[J].工具技术, 1999, 33 (4):10-12.
    [21] J. L. Moa, M.H. Zhua. Comparison of tribological behaviours of AlCrN and TiAlN coatings—Deposited by physical vapor deposition. Wear, 2007 (263):1423–1429.
    [22]张绪寿.表面工程摩擦学进展[J].摩擦学学报, 2000, 20(2): 156-160.
    [23] E. Harry, et al, Mechanical behavior of hard PVD multilayered coatings. Surface and Coatings Technology, 2000, 125(1-3): 185-189.
    [24] H. Holleck, et al. Multilayer PVD coatings for wear protection, Surface and Coatings Technology, 1995, 76-77(Part 1): 328-336.
    [25] SX Chen, T S Low, H Lin, et a.l Design trends of spindle motors for high performance hard disk drives [J]. IEEE Transactions on Magnetics, 1996, 32 (5): 3848-3850.
    [26]习韦成,李健.磁控溅射TiN界面结合强度的压痕法测试[J].摩擦学学报, 2000, 20(3): 229-231.
    [28]廖永平,严擎宇.正交试验法在机械工业中的应用[M].中国农业机械出版社. 1984.9: 12-13.
    [27]孙文友.硬质合金金相试样制备方洁的探讨.稀有金属与硬质合金[J]. 1997, 130: 30-34.
    [29]胡树兵,崔崑.划痕试验法的物理模型及研究现状[J].湖北汽车工业学院学报. 2001,15(1):29-32.
    [30] Tomellini M. On the work of adhesion of film-substrate solid juctions[J]. Thin Solid Films. 1991,(202):227-234.
    [31]谢光荣,曾鹏,胡社军,氧化工艺对真空电弧沉积TiN薄膜组织与性能的影响[J],热加工艺, 2003,6:11-13.
    [32] N. Fateh,G.A. Fontalvo, G. Gassner, et. Al. Influence of high-temperature oxide formation on the tribological behaviour of TiN and VN coatings[J], Wear, 2007,2 62: 1152-1158.
    [33]梁仕昌,曾鹏.氧化工艺在真空电弧沉积TiN薄膜中的应用[J].广东工业大学学报,2003, 3:188-190.
    [34]陈光华,杨今漫,谢二庆.电弧离子镀TiN和TiAlN薄膜的制备及高温退火研究[J].兰州大学学报, 1998,34(3): 44-47.
    [35]周细应,万润根等. TiN涂层的正交设计工艺分析[J].热加工工艺. 1996,(4):22-23.
    [36]孙伟,官秀敏,叶卫平等.多弧离子镀沉积温度对TiN涂层性能的影响.电加工与磨具[J], 2000(5): 26-28.
    [37]张钧,赵彦辉,多弧离子镀技术的应用[M].冶金工业出版社,北京, 2007: 66-107.
    [38]薛钰芝,林纪宁,等.氮分压TiN离子镀层影响的研究[J].大连铁道学院学报. 1998,19(1):25-30.
    [39]李炯辉.金属材料金相图谱[M].机械工业出版社, 198.
    [40] Mubarak A, Hamzah E, Toff M R M. Study of macrodroplet and growth mechanisms with and without ion etchings on the properties of TiN coating deposited on HSS using cathodic arc physical vapour deposition technique. Materials Science and Engineering A, 2007.
    [41] H. Uchida, M. Yamashita. Effect of preparation conditions on pinhole defect of TiN films by ion mixing and vapor deposition[J]. Vacuum, 2002, 62: 555-561.
    [42] N. Popovic,Z. Bogdanov,B. Goncic et al. TiN thin films deposited by ion beam sputtering effects of energetic particles bombardment[J]. Thin Solid Films, 2004, 459: 286-291.
    [43]黄美东,孙超,林国强等.脉冲偏压电弧离子低温沉积TiN硬质薄膜的力学性能[A].金属学报, 2003, 39(5): 516-520.
    [44]胡赓祥,蔡珣.材料科学基础[M].上海交通大学出版社,2001.7: 41-42.
    [45]张九渊.表面工程与失效分析.浙江:浙江大学出版社, 2005.
    [46]刘孝敏工程材料的微观结构和力学性能[M].合肥:中国科学技术大学, 2003: 56-57.
    [47]李恒德,肖纪美.涂层表面与界面[M].北京:清华大学出版社, 1990:95.
    [48] J. M.波特,K. N.杜, J. M.迈耶.薄膜的相互扩散和反应.北京:国防工业出版社, 1983.
    [49]孙家枢.金属的磨损[M].冶金工业出版社, 280-281.
    [50]温诗铸,黄平,摩擦学原理,清华大学出版社,北京292-293.
    [51] Y.H. Lu , Y.G. Shen, Z.F. Zhou Effects of B content and wear parameters on dry sliding wear behaviors of nanocomposite Ti–B–N thin films. Wear 262 (2007) 1372–1379.
    [52] Deng Jianxin, Liu Jianhua, Zhao Jinlong. Friction and wear behaviors of the PVD ZrN coated carbidein sliding wear tests and in machining processes. Wear 264 (2008) 298–307.
    [53]温诗铸,黄平.摩擦学原理[M].清华大学出版社. 2002.278-280.
    [54]刘正林.摩擦学原理[M].高等教育出版社. 138-139.
    [55] J.L. Mo, M.H. Zhu, B. Lei. Comparison of tribological behaviours of AlCrN and TiAlN coatings—Deposited by physical vapor deposition. Wear 263 (2007) 1423–1429.
    [56] Q. Yang, L.R. Zhao, P.C. Patnaik. Wear resistant TiMoN coatings deposited by magnetron sputtering. Wear 261 (2006) 119–125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700