音乐期待诱发情绪反应的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:音乐的一个重要特性是它能诱发听众的情绪反应,人们选择听音乐的首要动机也是体验或调节他们的情绪状态。Meyer(1956)指出,听众通常会对音乐的旋律、节奏、音色、和声即将发生什么产生(内隐)期待,依赖于期待的实现或违背,听众体验着放松或紧张,而期待的产生又是建立在音乐句法规则之上。迄今为止,还缺乏相关研究对音乐期待诱发的情绪反应,以及西方调式音乐中不规则句法的识别是否具有文化特异性进行证明。据此我们提出,音乐期待是否也存在于中国被试中,它在诱发音乐情绪中的作用,及其基于的句法规则加工的神经机制又是如何。
     方法/主要结果:本论文包括两个研究。研究一(行为实验):选用古典钢琴奏鸣曲中,由作曲家创作的包含非预期(句法不规则)和弦的音乐片段,以及由它改编成的包含预期(句法规则)和弦和完全出乎预期(句法极不规则)和弦的音乐片段作为实验材料,这些片段分别由专业钢琴家进行富有轻重缓急地弹奏(有情绪表达)和电脑软件在速度和响度上没有任何变化地弹奏(没有情绪表达)。通过收集这些音乐诱发20名被试的主观情绪反应(以愉悦度、唤醒度和惊讶度为指标),探讨期待违背(不规则句法)对音乐情绪的作用。研究二(脑电实验):在研究一的基础上,通过采集28名被试听这些音乐时的大脑电活动(EEG),进一步考察其对音乐期待的集中焦点——句法规则进行加工的神经机制,以及情绪表达对这些加工产生的影响。主要结果如下:
     ①音乐期待违背可以诱发中国被试的情绪反应;
     ②随着音乐期待违背程度的改变,被试的情绪反应发生着系统的变化;
     ③中国被试可以加工西方调式音乐的句法规则,并完成和声整合加工过程;
     ④句法规则与和声整合加工的神经机制分别通过ERPs中的ERAN和N5成分反映;
     ⑤句法规则与和声整合加工同时受到情绪表达的影响。
     结论/意义:本研究结果进一步证实了音乐期待在音乐诱发情绪反应机制中的根本性和普遍性地位,为中国人同样可以加工西方调式音乐的句法规则提供了证据,同时提出句法规则加工受到音乐情绪表达的影响。本研究通过对音乐诱发情绪反应的研究,为音乐治疗的有效性提供了理论基础;并通过对音乐句法规则和情绪表达的研究,为音乐治疗中更有针对性地选择音乐,提供了一定的参考。
Background: People report that their primary motivation for listening to music is its emotional effect. One of the main reasons people give for listening to music is to experience or modulate their emotional state. Meyer (1956) put forward that human listeners necessarily generate (implicit) expectations for what will occur next in melody, rhythm, timbre, and harmony. Depending on whether these expectations are fulfilled or not, listeners experience relaxation or tension. Moreover, the generation of musical expectancy is based on the music-syntax. However, there is now lack of evidence to prove whether the emotional responses induced by musical expectancy and the irregular syntax of Western tonal music recognizing are culturally specific or not. Accordingly, we raise questions of whether musical expectancy also exists in Chinese individuals, its role in musical emotions and its neural mechanisms.
     Methodology/Principal results: Two researches were included in this work. In the first research (behavioural experiment), subjective response measures for valence and arousal, as well as surprise, were recorded from 20 subjects to observe the effect of expectancy violations (irregular syntax) on subjects’emotional responses of music. We chose piano sonatas with chords that were either expected (syntactically regular) or unexpected (syntactically irregular, originally arranged by composers) or very unexpected (syntactically very irregular). From the musical excerpts played by professional pianists (with emotional expression), we also created versions without variations in tempo and loudness (without musical expression) by computer. In the second research (ERP experiment), based on the first research, an electroencephalogram (EEG) was recorded from 28 subjects to further observe the neural mechanisms underlying the information focus of musical expectancy—musical syntactic processing, and the effect of musical emotional expression on these processing. Principal results of this work were as follows:
     ①Musical expectancy violations also induced emotional responses of Chinese subjects.
     ②Along with the changes of expectancy violations, the emotional responses of subjects varied systematically.
     ③Chinese individuals were also able to process the syntactic regularities in Western tonal music and finish the process of harmonic integration.
     ④The early right anterior negativity (ERAN) and N5 in ERPs were taken to reflect the neural mechanisms underlying musical syntactic and harmonic integrative processing respectively.
     ⑤Both the processing of musical syntax and harmonic integration were influenced by musical emotional expression.
     Conclusions/Significance: The findings of this work justified the fundamental and universal role of musical expectancy in the mechanisms of musical emotions, and provided the first evidence showing that Chinese individuals were also able to process the syntactic regularities of naturalistic Western tonal music. Meanwhile, the result put forward that the neural mechanism underlying music-syntactic processing was affected by emotional expression. This work provide theoretical basis for the validity of music therapy through investigating emotional responses to music. Meanwhile, it contributes to the scientific choice of music in music therapy through investigating the music-syntax and emotional expression.
引文
[1] Chichung Huang. The analects of confucian. Oxford, UK: Oxford University Press, 1997, 1-216.
    [2] A. D. Patel. A neurobiological strategy for exploring links between emotion recognition in music and speech. Behavioral and Brain Sciences, 2008, 31(5): 589-590.
    [3] J. A. Sloboda, S. A. O'Neill. Emotions in everyday listening to music. In: Music and emotion: theory and research. Oxford, UK: Oxford University Press, 2001, 415-429.
    [4] K. E. Behne. The development of“Musikerleben”in adolescence: How and why young people listen to music. In: Perception and cognition of music. Psychology Press, 1997, 143-159.
    [5] D. Zillman, S. L. Gan. Musical taste in adolescence. In: The social psychology of music. Oxford, UK: Oxford University Press, 1997, 161-187.
    [6] A. Gabrielsson, P. N. Juslin. Emotional expression in music. In: Handbook of affective sciences. Oxford, UK: Oxford University Press, 2003, 503-534.
    [7] L. B. Meyer. Emotion and meaning in music. Chicago, US: University of Chicago Press, 1956, 1-307.
    [8] P. N. Juslin, D. V?stfj?ll. Emotional responses to music: The need to consider underlying mechanisms. Behavioral and Brain Sciences, 2008, 31(5): 559-621.
    [9] E. G. Schellenberg, M. Adachi, K. T. Purdy, et al. Expectancy in melody: Tests of children and adults. Journal of Experimental Psychology: General, 2002, 131(4): 511-537.
    [10] C. K. Krumhansl. Music: A link between cognition and emotion. Current Directions in Psychological Science, 2002, 11(2): 45-50.
    [11] S. Koelsch, E. Kasper, D. Sammler, et al. Music, language and meaning: Brain signatures of semantic processing. Nature Neuroscience, 2004, 7(3): 302-307.
    [12] K. R. Scherer. Expression of emotion in voice and music. Journal of Voice, 1995, 9(3): 235-248.
    [13] S. Koelsch, S. Kilches, N. Steinbeis, et al. Effects of unexpected chords and of performer's expression on brain responses and electrodermal activity. PLoS ONE, 2008, 3(7): 1-10.
    [14] D. E. Berlyne. Aesthetics and psychobiology. Michigan, US: Appleton-Century-Crofts, 1971, 1-336.
    [15] J. L. Burt, D. S. Bartolome, D. W. Burdette, et al. A psychophysiological evaluation of the perceived urgency of auditory warning signals. Ergonomics, 1995, 38(11): 2327-2340.
    [16] J. A. Foss, J. R. Ison, J. P. Torre, et al. The acoustic startle response and disruption of aiming: I. Effect of stimulus repetition, intensity, and intensity changes. Human Factors, 1989, 31: 307-318.
    [17] D. Halpern, R. Blake, J. Hillenbrand. Psychoacoustics of a chilling sound. Perception and Psychophysics, 1986, 39(2): 77-80.
    [18] P. N. Juslin. Emotional responses to music. In: Oxford handbook of music psychology. Oxford University Press, in press.
    [19] P. N. Juslin. Communicating emotion in music performance: A review and a theoretical framework. In: Music and emotion: Theory and research. Oxford, UK: Oxford University Press, 2001, 309-337.
    [20] K. Kallinen, N. Ravaja. Emotion perceived and emotion felt: Same and different. Musicae Scientiae, 2006, 10(2): 191-213.
    [21] L. O. Lundqvist, F. Carlsson, P. Hilmersson, et al. Emotional responses to music: Experience, expression, and physiology. Psychology of Music, 2009, 37(1): 61-90.
    [22] J. P. Band, S. M. Quilter, G. M. Miller. The influence of selected music and inductions on mental imagery: Implications for practitioners of Guided Imagery and Music. Journal of the Association for Music and Imagery, 2001-2002, 8: 13-33.
    [23] D. V?stfj?ll. A review of the musical mood induction procedure. Musicae Scientiae, Special Issue 2001-2002, 173-211: 183.
    [24] A. Gabrielsson. Emotions in strong experiences with music. In: Music and emotion: Theory and research. Oxford, UK: Oxford University Press, 2001, 431-449.
    [25] P. N. Juslin, P. Laukka, S. Liljestr?m, et al. A representative survey study of emotional reactions to music, submitted.
    [26] J. A. Sloboda. Empirical studies of emotional response to music. In: Cognitive bases of musical communication. American Psychological Association, 1992: 33-46.
    [27] J. J. Bharucha. Tonality and expectation. Musical perceptions, New York: Oxford University Press, 1994, 213-239.
    [28] L. A. DeWitt, A. G. Samuel. The role of knowledge-based expectations in music perception: Evidence from musical restoration. Journal of Experimental Psychology: General, 1990, 119(2): 123-144.
    [29] W. J. Dowling. The perception of interleaved melodies. Cognitive Psychology, 1973, 5(3): 322-337.
    [30] W. J. Dowling, K. M. T. Lung, S. Herrbold. Aiming attention in pitch and time in the perception of interleaved melodies. Perception and Psychophysics, 1987, 41(6): 642-656.
    [31] D. Huron. Sweet Anticipation: Music and the Psychology of Expectation. Cambridge, MA: MIT Press, 2006, 1-480.
    [32] G. Madison. What about the Music? Music-specific functions must be considered in order to explain reactions to music. Behavioral and Brain Sciences, 2008, 31(5): 587.
    [33] C. L. Krumhansl, K. R. Agres. Musical Expectancy: The Influence of Musical Structure on Emotional Response. Behavioral and Brain Sciences, 2008, 31(5): 584-585.
    [34] P. Vuust, C. D. Frith. Anticipation is the key to understanding music and the effects of music on emotion. Behavioral and Brain Sciences, 2008, 31(5): 599-600.
    [35] K. Scherer, M. Zentner. Music evoked emotions are different—more often aesthetic than utilitarian. Behavioral and Brain Sciences, 2008, 31(5): 595-596.
    [36] A. Rozin, P. Rozin. Feelings and the enjoyment of music. Behavioral and Brain Sciences, 2008, 31(5): 593-594.
    [37] N. J. Patrik, V. Daniel. All emotions are not created equal: Reaching beyond the traditional disputes. Behavioral and Brain Sciences, 2008, 31(5): 604.
    [38] P. Loui, D. Wessel. Harmonic expectation and affect in Western music: Effects of attention and training. Perception and Psychophysics, 2007, 69(7): 1084-1092.
    [39] D. J. Levitin, A. K. Tirovolas. Current advances in the cognitive neuroscience of music. Annals of the New York Academy of Sciences, 2009, 1156: 211-231.
    [40] H. D. Aiken. The Aesthetic Relevance of Belief. Journal of Aesthetics, 1950, 9: 301-315.
    [41] J. Dewey. Art as Experience. Toronto, Canada: Perigee Books, 1980, 1-371.
    [42] E. Bignd, R. Parncutt, F. Lerdahl. Perception of musical tension in short chord sequences: The influence of harmonic function, sensory dissonance, horizontal motion, and musical training. Perception and Psychophysics, 1996, 58 (1): 125-141.
    [43] S. Koelsch, T. Gunter, A. D. Friederici. Brain Indices of Music Processing: "Nonmusicians" are Musical. Journal of Cognitive Neuroscience, 2000, 12(3): 520-541.
    [44] E. Narmour. The analysis and cognition of basic melodic structures: The implication-realization model. Chicago, US: University of Chicago Press, 1990, 1-485.
    [45] C. L. Krumhansl. Melodic structure: theoretical and empirical descriptions. In: Music, language, speech, and brain. London: MacMillan, 1991, 1-468.
    [46] C. L. Krumhansl. Music psychology and music theory: Problems and prospects. Music TheorySpectrum, 1995, 17(1): 53-80.
    [47] C. L. Krumhansl. Effects of musical context on similarity and expectancy. Systematische Musikwissenschaft (Systematic Musicology), 1995/1996, 3: 211-250.
    [48] C. L. Krumhansl. Effects of perceptual organization and musical form on melodic expectancies. In: Music, Gestalt, and Computing: Studies in cognitive and systematic muskology. Berlin, Germany: Springer-Verlag, 1997, 294.
    [49] L. L. Cuddy, C. Lunney. Expectancies generated by melodic intervals: Perceptual judgments of melodic continuity. Perception and Psychophysics, 1995, 57(4): 451-462.
    [50] A. J. Blood, R. J. Zatorre, P. Bermudez, et al. Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nature Neuroscience, 1999, 2(4): 382-387.
    [51] S. Koelsch, T. Fritz, D. Y. v. Cramon, et al. Investigating Emotion with Music: An fMRI Study. Human Brain Mapping, 2006, 27: 239-250.
    [52] C. L. Krumhansl, D. L. Schenck. Can dance reflect the structural and expressive qualities of music? A perceptual experiment on balanchine's choreography of Mozart's divertimento No. 15. Musicae Scientiae, 1997, 1: 63-85.
    [53] C. L. Krumhansl. An exploratory study of musical emotions and psychophysiology. Canadian Journal of Experimental Psychology, 1997, 51(4): 336-352.
    [54] J. A. Sloboda. Music structure and emotional response: Some empirical findings. Psychology of Music, 1991, 19(2): 110-120.
    [55] L. J. Trainor, B. M. Heinmiller. The development of evaluative responses to music: Infants prefer to listen to consonance over dissonance. Infant Behavior and Development, 1998, 21(1): 77-88.
    [56] M. R. Zentner, J. Kagan. Infants' perception of consonance and dissonance in music. Infant Behavior and Development, 1998, 21(3): 483-492.
    [57] N. Steinbeis, S. Koelsch, J. A. Sloboda. Emotional processing of harmonic expectancy violations. Annals of the New York Academy of Sciences, 2005, 1060: 457-461.
    [58] N. Steinbeis, S. Koelsch, J. A. Sloboda. The role of harmonic expectancy violations in musical emotions: Evidence from subjective, physiological, and neural responses. Journal of Cognitive Neuroscience, 2006, 18(8): 1380-1393.
    [59] S. Koelsch. Investigating Emotion with Music Neuroscientific Approaches. Annals of the New York Academy of Sciences, 2005, 1060: 412-418.
    [60] S. Koelsch, T. Fritz, G. Schlaug. Amygdala activity can be modulated by unexpected chord functions during music listening. NeuroReport, 2008, 19(18): 1815-1819.
    [61] D. Sammler, M. Grigutsch, T. Fritz, et al. Music and emotion: electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology, 2007, 44: 293-304.
    [62] T. Ball, B. Rahm, S. B. Eickhoff, et al. Response properties of human amygdala subregions: Evidence based on functional MRI combined with probabilistic anatomical maps. PLoS ONE, 2007, 2(3): e307.
    [63] E. Bigand, M. Pineau. Global context effects on musical expectancy. Perception and Psychophysics, 1997, 59(7): 1098-1107.
    [64] E. G. Schellenberg, E. Bigand, P. C. Bénédicte, et al. Children's implicit knowledge of harmony in Western music. Developmental Science, 2005, 8(6): 551-566.
    [65] J. J. Bharucha, K. Stoeckig. Reaction time and musical expectancy: Priming of chords. Journal of Experimental Psychology: Human Perception and Performance, 1986, 12(4): 403-410.
    [66] E. Narmour. The top-down and bottom-up systems of musical implication: Building on Meyer's theory of emotional syntax. Music Perception, 1991, 9(1): 1-26.
    [67] A. D. Patel. Language, music, syntax, and the brain. Nature Neuroscience, 2003, 6(7): 674-681.
    [68] P. Janata. ERP measures assay the degree of expectancy violation in harmonic contexts in music. Journal of Cognitive Neuroscience, 1995, 7(2): 153-164.
    [69] M. Besson, F. Fa?ta. An event-related potential (ERP) study of musical expectancy: Comparison of musicians with nonmusicians. Journal of Experimental Psychology: Human Perception and Performance, 1995, 21(6): 1278-1296.
    [70] A. D. Patel, E. Gibson, J. Ratner, et al. Processing syntactic relations in language and music: an event-related potential study. Journal of Cognitive Neuroscience, 1998, 10(6): 717-733.
    [71] R. Verleger. P3-evoking wrong notes: unexpected, awaited, or arousing? International Journal of Neuroscience, 1990, 55(2-4): 171-179.
    [72] K. A. Paller, G. McCarthy, C. C. Wood. Event-related potentials elicited by deviant endings to melodies. Psychophysiology, 1992, 29(2): 202-206.
    [73] R. Beisteiner, M. Erdler, D. Mayer, et al. A marker for differentiation of capabilities for processing of musical harmonies as detected. Neuroscience Letters, 1999, 277(1): 37-40.
    [74] P. Regnault, E. Bigand, M. Besson. Different brain mechanisms mediate sensitivity to sensory consonance and harmonic context evidence from auditory event-related brain potentials. Journal of Cognitive Neuroscience, 2001, 13(2): 241-255.
    [75] Y. C. Pei, C. L. Chen, C. Y. Chung, et al. Pre-attentive mental processing of music expectation: event-related potentials of a partially violating and resolving paradigm. Brain and Cognition, 2004, 54: 95-100.
    [76] M. Besson, F. Macar. An event-related potential analysis of incongruity in music and other non-linguistic contexts. Psychophysiology, 2007, 24(1): 14-25.
    [77] R. A. Miranda, M. T. Ullman. Double dissociation between rules and memory in music: An event-related potential study. NeuroImage, 2007, 38(2): 331-345.
    [78] B. Tillmann. Implicit investigations of tonal knowledge in nonmusician listeners. Annals of the New York Academy of Sciences, 2005, 1060: 100-110.
    [79] P. T. Schoenemann. Syntax as an emergent characteristic of the evolution of semantic complexity. Minds and Machines, 1999, 9(3): 309-346.
    [80] C. L. Krumhansl, F. C. Keil. Acquisition of the hierarchy of tonal functions in music. Memory and Cognition, 1982, 10(3): 243-251.
    [81] J. A. Sloboda. Music as a language. In: Music and child development. MMB Music, 1989: 28-43.
    [82] L. J. Trainor, S. E. Trehub. Key membership and implied harmony in Western tonal music: Developmental perspectives. Perception and Psychophysics, 1994, 56(2): 125-132.
    [83] C. M. Brown, P. Hagoort, M. Kutas. Postlexical integration processes in language comprehension: Evidence from brain-imaging research. In: The new cognitive neurosciences, 2nd edition. Cambridge, MA: MIT Press, 2000, 881-895.
    [84] B. Maess, S. Koelsch, T. C. Gunter, et al. Musical syntax is processed in Broca’s area: An MEG study. Nature Neuroscience, 2001, 4(5): 540-545.
    [85] W. Ni, R. T. Constable, W. E. Mencl, et al. An event-related neuroimaging study distinguishing form and content in sentence processing. Journal of Cognitive Neuroscience, 2000, 12(1): 120-133.
    [86] J. C. Carlsen. Some factors which influence melodic expectancy. Psychomusicology, 1981, 1(1): 12-29.
    [87] C. L. Krumhansl, J. Louhivuori, P. Toiviainen, et al. Melodic expectation in Finnish folk hymns: Convergence of statistical, behavioral, and computational approaches. Music Perception, 1999, 17(2): 151-195.
    [88] P. K. Kuhl. Language, mind, and brain: Experience alters perception. In: The new cognitive neurosciences, 2nd edition. Cambridge, MA: MIT Press. 2000, 99-115.
    [89] S. Koelsch, E. Schroger, T. C. Gunter. Music matters: Preattentive musicality of the human brain. Psychophysiology, 2002, 39: 38-48.
    [90] L. L. Balkwill, W. F. Thompson. A cross-cultural investigation of the perception of emotion in music: Psychophysical and cultural cues. Music Perception, 1999, 17(1): 43-64.
    [91] L. L. Balkwill, W. F. Thompson, R. Matsunaga. Recognition of emotion in Japanese, Western, and Hindustani music by Japanese listeners. Japanese Psychological Research, 2004, 46(4): 337-349.
    [92] T. Fritz, S. Jentschke, N. Gosselin, et al. Universal recognition of three basic emotions in music. Current Biology, 2009, 19: 1-4.
    [93]孙亚楠,刘源,南云.音乐对情绪的影响及其脑机制的相关研究.自然科学通报, 2009, 19(1): 45-50.
    [94] A. H. Gregory, N. Varney. Cross-cultural comparisons in the affective response to music. Psychology of Music, 1996, 24(1): 47-52.
    [95] A. D. Patel. Syntactic processing in language and music: Different cognitive operations, similar neural resources? Music Perception, 1998, 16(1): 27-42.
    [96]杜醒,南云,周晓林,等.音乐与语言的认知神经科学研究进展.心理与行为研究, 2009, 7(1): 76-80.
    [97] J. J. Bharucha, C. L. Krumhansl. The representation of harmonic structure in music: Hierarchies of stability as a function of context. Cognition, 1983, 13(1): 63-102.
    [98] A. Sch?nberg. Structural functions of harmony. New York: Norton, 1969, 1-203.
    [99]叶铮,周晓林.音乐之脑.心理科学进展, 2006, 14(5): 641-647.
    [100] C. L. Krumhansl, E. Kessler. Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychological Review, 1982, 89(4): 334-368.
    [101] C. L. Krumhansl. Cognitive foundations of musical pitch. New York, US: Oxford University Press, 1990, 1-318.
    [102] C. L. Krumhansl. The psychological representation of musical pitch in a tonal context. Cognitive Psychology, 1979, 11(3): 346-374.
    [103] S. Koelsch. Music-syntactic processing and auditory memory: Similarities and differences between ERAN and MMN. Psychophysiology, 2009, 46: 179-190.
    [104] S. Koelsch, T. Gunter, E. Schr?ger, et al. Processing tonal modulations: An ERP study. Journal of Cognitive Neuroscience, 2003, 15(8): 1149-1159.
    [105] B. Tillmann, P. Janata, J. Birk, et al. Tonal centers and expectancy: Facilitation or inhibition ofchords at the top of the harmonic hierarchy? Journal of Experimental Psychology: Human Perception and Performance, 2008, 34(4): 1031-1043.
    [106] B. Tillmann, J. J. Bharucha, E. Bigand. Implicit learning of tonality: A self-organized approach. Psychological Review, 2000, 107(4): 885-913.
    [107] S. Koelsch, W. A. Siebel. Towards a neural basis of music perception. TRENDS in Cognitive Sciences, 2005, 9(12): 578-584.
    [108] E. Narmour. The Analysis and Cognition of Melodic Complexity: The Implication Realization Model. Chicago, US: University of Chicago Press, 1992, 1-431.
    [109] E. G. Schellenberg. Expectancy in melody tests of the implication-realization model. Cognition, 1996, 58(1): 75-125.
    [110] C. Palmer, C. Drake. Monitoring and planning capacities in the acquisition of music performance. Canadian Journal of Experimental Psychology, 1997, 51(4): 369-384.
    [111] H. G. Tekman. Effects of accenting and regularity on the detection of temporal deviations. The Journal of General Psychology, 2003, 130(3): 247-258.
    [112] P. Loui, J. T. Grent-'t, D. Torpey, et al. Effects of attention on the neural processing of harmonic syntax in Western music. Cognitive Brain Research, 2005, 25(3): 678-687.
    [113] S. Leino, E. Brattico, M. Tervaniemi, et al. Representation of harmony rules in the human brain: further evidence from event-related potentials. Brain Research, 2007, 1142(20): 169-177.
    [114] S. Koelsch, T. C. Gunter, E. Schr?ger, et al. Differentiating ERAN and MMN: An ERP study. NeuroReport, 2001, 12(7): 1385-1389.
    [115] S. Koelsch, S. Jentschke, D. Sammler, et al. Untangling syntactic and sensory processing: An ERP study of music perception. Psychophysiology, 2007, 44: 476-490.
    [116] S. Koelsch, D. Sammler. Cognitive components of regularity processing in the auditory domain. PLoS ONE, 2008, 3(7): 1-7.
    [117] P. C. Bénédicte, E. Bigand, S. Koelsch. Processing of musical syntax tonic versus subdominant: An event-related potential study. Journal of Cognitive Neuroscience, 2006, 18(9): 1545-1554.
    [118] S. Koelsch, B. H. Schmidt, J. Kansok. Effects of musical expertise on the early right anterior negativity: An event-related brain potential study. Psychophysiology, 2002, 39: 657-663.
    [119] S. Koelsch, S. Jentschke. Short-term effects of processing musical syntax: An ERP study. Brain Research, 2008, 1212, 55-62.
    [120] S. Koelsch, T. Grossmann, T. C. Gunter, et al. Children processing music: Electric brain responses reveal musical competence and gender differences. Journal of CognitiveNeuroscience, 2003, 15(5): 683-693.
    [121] S. Koelsch, T. Fritz, K. Schulze, et al. Adults and children processing music: An fMRI study. NeuroImage, 2005, 25: 1068-1076.
    [122] S. Koelsch, B. Maess, T. Grossmann, et al. Electric brain responses reveal gender differences in music processing. NeuroReport, 2003, 14(5): 709-713.
    [123] S. Koelsch, M. Wittfoth, A. Wolf, et al. Music perception in cochlear implant users: an event-related potential study. Clinical Neurophysiology, 2004, 115: 966-972.
    [124] W. Heinke, R. Kenntner, T. C. Gunter, et al. Sequential effects of increasing propofol sedation on frontal and temporal cortices as indexed by auditory event-related potentials. Anesthesiology, 2004, 100: 617-625.
    [125] S. Jentschke, S. Koelsch, S. Sallat, et al. Children with specific language impairment also show impairment of music-syntactic processing. Journal of Cognitive Neuroscience, 2008, 20(11): 1940-1951.
    [126] R. E. Carri?n, B. M. Bly. The effects of learning on event-related potential correlates of musical expectancy. Psychophysiology, 2008, 45: 759-775.
    [127] S. Koelsch, S. Jentschke. Differences in electric brain responses to melodies and chords. Journal of Cognitive Neuroscience, in press.
    [128] E. Brattico, M. Tervaniemi, R. N??t?nen, et al. Musical scale properties are automatically processed in the human auditory cortex. Brain Research, 2006, 1117, 162-174.
    [129] D. Sch?n, M. Besson. Visually induced auditory expectancy in music reading: a behavioural and electrophysiological study. Journal of Cognitive Neuroscience, 2005, 17(4): 694-705.
    [130] C. Maidhof, N. Vavatzanidis, W. Prinz, et al. Processing expectancy violations during music performance and perception: An ERP study. Journal of Cognitive Neuroscience, in press.
    [131] S. Koelsch. Neural substrates of processing syntax and semantics in music. Current Opinion in Neurobiology, 2005, 15: 1-6.
    [132] S. Koelsch. Significance of Broca's area and ventral premotor cortex for music-syntactic processing. Cortex, 2006, 42: 518-520.
    [133] B. Maess, S. Koelsch, T. C. Gunter, et al. 'Musical Syntax' is processed in the area of Broca: An MEG-study. Nature Neuroscience, 2001, 4(5): 540-545.
    [134] S. Koelsch, J. Mulder. Electric brain responses to inappropriate harmonies during listening to expressive music. Clinical Neurophysiology, 2002, 113(6): 862-869.
    [135] B. Tillmann, S. Koelsch, N. Escoffier, et al. Cognitive priming in sung and instrumental music:Activation of inferior frontal cortex. NeuroImage, 2006, 31(4): 1771-1782.
    [136] P. Janata, B. Tillmann, J. J. Bharucha. Listening to polyphonic music recruits domaingeneral attention and working memory circuits. Cognitive, Affective, and Behavioral Neuroscience, 2002, 2(2): 121-140.
    [137] S. Koelsch, W. Heinke, D. Sammler, et al. Auditory processing during deep propofol sedation and recovery from unconsciousness. Clinical Neurophysiology, 2006, 117(8): 1746-1759.
    [138] M. H. Woolhouse, I. Cross. An interval cycle-based model of pitch attraction. In: Proceedings of the 9th International Conference on Music Perception and Cognition, 2006: 763-771.
    [139] L. Trainor. The neural roots of music. Nature, 2008, 453: 598-599.
    [140] C. L. Krumhansl. Dissecting the perceptual components of music. Annals of the New York Academy of Sciences, 2003, 999(1): 103-105.
    [141] M. Besson, F. Fa?ta, I. Peretz, et al. Singing in the brain: Independence of Lyrics and Tunes. Psychological Science, 1998, 9(6): 494-498.
    [142] A. J. Blood, R. J. Zatorre. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(20): 11818-11823.
    [143] E. O. Altenmüller, K. Shurman, V. K. Lim, et al. Hits to the left, flops to the right: different emotions during listening to music are reflected in cortical lateralization patterns. Neuropsychologia, 2002, 40(13): 2242-2256.
    [144] M. T. Mitterschiffthaler, C. H. Y. Fu, J. A. Dalton, et al. A functional MRI study of happy and sad affective states induced by classical music. Human Brain Mapping, 2007, 28(11): 1150-1162.
    [145] S. Koelsch. Towards a neural basis of music-evoked emotions. TRENDS in Cognitive Sciences, 2010, 14(3): 131-137.
    [146] T. DeNora. Music in everyday life. Cambridge, UK: Cambridge University Press, 2000, 1-181.
    [147] P. N. Juslin, P. Laukka. Expression, perception, and induction of musical emotions: A review and a questionnaire study of everyday listening. Journal of New Music Research, 2004, 33(3): 217-238.
    [148] A. Pike. A phenomenological analysis of emotional experience in music. Journal of Research in Music Education, 1972, 20(2): 262-267.
    [149] J. Becker. Anthropological perspectives on music and emotion. In: Music and emotion: Theory and research. Oxford, UK: Oxford University Press, 2001, 135-160.
    [150] S. Khalfa, S. D. Bella, M. Roy, et al. Effects of relaxing music on salivary cortisol level after psychological stress. Annals of the New York Academy of Sciences, 2003, 999: 374-376.
    [151] C. L. Pelletier. The effect of music on decreasing arousal due to stress: A meta-analysis. Journal of Music Therapy, 2004, 41(3): 192-214.
    [152] M. Suda, K. Morimoto, A. Obata, et al. Emotional responses to music: towards scientific perspectives on music therapy. Neuroreport, 2008, 19(1): 75-77.
    [153] A. C. North, M. Tarrant, D. J. Hargreaves. The effects of music on helping behavior: A field study. Environment and Behavior, 2004, 36(2): 266-275.
    [154] K. L. Jensen. The effects of selected classical music on self-disclosure. Journal of Music Therapy, 2001, 38(1): 2-27.
    [155] S. Koelsch. A neuroscientific perspective on music therapy. The neurosciences and music III—Disorders and plasticity. Annals of the New York Academy of Sciences, 2009, 1169: 374-384.
    [156] R. W. Backs, S. P. da Silva, K. Han. A Comparison of Younger and Older Adults’Self-Assessment Manikin Ratings of Affective Pictures. Experimental Aging Research, 2005, 31(4): 421-440.
    [157] M. M. Bradley, P. J. Lang. Measuring emotion: The Self-Assessment Manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 1980, 25(1): 49-59.
    [158] C. Palmer, C. L. Krumhansl. Mental representations for musical meter. Journal of Experimental Psychology: Human Perception and Performance, 1990, 16(4): 728-741.
    [159] W. F. Thompson, L. L. Balkwill. Decoding speech prosody in five languages. Semiotica, 2006, 158(1/4): 407-424.
    [160] J. W. Butler, P. G. Daston. Musical consonance as musical preference: a cross-cultural study. Journal of General Psychology, 1968, 79(1): 129-142.
    [161] P. C. M. Wong, A. K. Roy, E. H. Margulis. Bimusicalism: The implicit dual enculturation of cognitive and affective systems. Music Perception, 2009, 27(2): 81-88.
    [162] M. E. Curtis, J. J. Bharucha. Memory and musical expectation for tones in cultural context. Music Perception, 2009, 26(4): 365-375.
    [163] P. Vuust, K. J. Pallesen, C. Bailey, et al. To musicians, the message is in the meter: Pre-attentive neuronal responses to incongruent rhythm are left-lateralized in musicians. NeuroImage, 2005, 24(2): 560-564.
    [164] A. S. Reber. The cognitive unconscious: an evolutionary perspective. Consciousness and Cognition, 1992, 1(2): 93-133.
    [165] G. Ilie, W. F. Thompson. A comparison of acoustic cues in music and speech for three dimensions of affect. Music Perception, 2006, 23(4): 319-330.
    [166] M. S. Kassow, S.A. Kotz. Event-related brain potentials suggest a late interaction of meter and syntax in the P600. Journal of Cognitive Neuroscience, 2009, 21(9), 1693-1708.
    [167] B. Sabisch, C. A. A. Hahne, E. Glass, et al. Children with specific language impairment: The role of prosodic processes in explaining difficulties in processing syntactic information. Brain Research, 2009, 1261: 37-44.
    [168] P. W. Jusczyk. How infants adapt speech-processing capacities to native language structure. Current Directions in Psychological Science, 2002, 11(1): 15-18.
    [169] J. P. Walker, K. Fongemie, T. Daigle. Prosodic facilitation in the resolution of syntactic ambiguities in subjects with left and right hemisphere damage. Brain and Language, 2001, 78(2): 169-196.
    [170] P. N. Juslin, P. Laukka. Communication of emotions in vocal expression and music performance: Different channels, same code? Psychological Bulletin, 2003, 129(5): 770-814.
    [171] A. D. Patel. Music, language, and the brain. Oxford, UK: Oxford University Press, 2008, 1-513.
    [172]魏景汉,罗跃嘉.认知事件相关脑电位教程.北京:经济日报出版, 2002, 1-359.
    [173]赵仑. ERP实验教程.天津:天津社会科学院出版社, 2001, 1-262.
    [174]尧德中.脑功能探测的电学理论与方法.北京:科学出版社, 2003, 1-324.
    [175]蒋小平.欺骗的事件相关电位研究: [硕士学位论文],成都:电子科技大学, 2008, 1-45.
    [176] S. J. Luck.事件相关电位基础(范思陆,丁玉珑,曲折,傅世敏).上海:华东师范大学出版社, 2009, 1-313.
    [177] M. L. A. Jongsma, P. Desain, H. Honing. Rhythmic context influences the auditory evoked potentials of musicians and nonmusicians. Biological Psychology, 2004, 66(2): 129-152.
    [178] D. Z. Yao. A method to standardize a reference of scalp EEG recordings to a point at infinite. Physiological Measurements, 2001, 22(4): 693-711.
    [179]段姝婧.基于脑电的音色感知研究: [硕士学位论文],成都:电子科技大学, 2009, 1-46.
    [180] Y. R. Zhai, D. Z. Yao. A radial-basis function based surface Laplacian estimate for a realistic head model. Brain Topography, 2004, 17(1): 56-62.
    [181] R. D. Pascual-Marqui, C. M. Michel. LORETA (Low Resolution Brain ElectromagneticTomography): new authentic 3D functional images of the brain. ISBET Newsletter, 1994, 5: 4-8.
    [182] D. Z. Yao, L. Wang, R. Oostenveld, et al. A comparative study of different references for EEG spectral mapping: the issue of the neutral reference and the use of the infinity reference. Physiological Measurements, 2005, 26(3): 173-184.
    [183] P. Luu, T. Ferree. Determination of the Geodesic Sensor Nets’average electrode positions and their 10-10 international equivalents. Electrical Geodesics, Inc. Technical Note, 2000, 1-11.
    [184] I. Peretz. The need to consider underlying mechanisms: A response from dissonance. Behavioral and Brain Sciences, 2008, 31(5): 590-591.
    [185] E. Longhi. Emotional responses in mother-infant musical interactions: A developmental perspective. Behavioral and Brain Sciences, 2008, 31(5): 586-587.
    [186] S. J. Holochwost, C. E. Izard. Evidence from young children regarding emotional responses to music. Behavioral and Brain Sciences, 2008, 31(5): 581-582.
    [187] D. Perani, M. C. Saccuman, P. Scifo, et al. Functional specializations for music processing in the human newborn brain. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(10): 4758-4763.
    [188] W. F. Thompson, M. Coltheart. The role of signal detection and amplification in the induction of emotion by music. Behavioral and Brain Sciences, 2008, 31(5): 589-590.
    [189] C. Stevens. A pitch in time an artificial neural network of melodic expectancy. Proceedings of the Fifth Biennial Conference of the Australasian Cognitive Science Society, 2000: 1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700