不同刺激模式下人工耳蜗使用者EABR的波形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:电诱发听觉脑干反应(electrically evoked auditory brainstem responses,EABR)是一种能够客观反映听觉神经系统功能状态的电生理测试方法。在EABR测试中,不同的刺激参数会引起EABR波形的变化。本实验的目的是研究不同刺激模式对人工耳蜗植入术后EABR波形和阈值的影响,为临床测试人工耳蜗植入者的EABR选择适宜的刺激模式提供参考;同时选择与记录电诱发听神经复合动作电位(ECAP)相同的刺激脉宽,比较两种阈值间的相关性。
     方法:对9名Nucleus 24M人工耳蜗植入患者术后调试言语处理器时分别测试电极E3,E10,E20(分别代表蜗底、蜗中、蜗顶)的ECAP阈值和在不同刺激模式(MP1+2、MP1、MP2、BP+1、CG)下的EABR阈值,比较EABR阈值和ECAP阈值间的关系。比较分析强度为200~255电流级(current level,CL)(约阈上30电流级)刺激时各电极在五种刺激模式下引出的EABRⅢ波和Ⅴ波引出率、潜伏期及其幅值。结果通过统计学软件SPSS13.0进行均数间比较和相关回归分析。
     结果:①电极3,10,20的ECAP阈值(CL)分别为197.88±12.21,195.23±9.97,182.03±12.08;EABR阈值(CL)分别为200.9±16.4,197.8±11.8,185.1±20.8。在EABR阈值和EABR阈值中,电极20的阈值均低于电极3和10的阈值,前者与后两者间存在统计学差异。
     ②MP1+2,MP1,MP2,BP+1,CG模式下EABRV波检出率分别为96.3%,94.4%,96.3%,14.8%,33.3%,单极(monopolar)模式下(MP1+2,MP1,MP2)的Ⅴ波检出率比双极(bipolar)(BP+1)和共地(common ground)模式(CG)高(P=0.010<0.05,P=0.018<0.05)。
     ③MP1+2,MP1,MP2,BP+1,CG模式Ⅲ波检出率分别为62.96%,59.26%,66.67%,14.81%,18.52%,电极3,10,20的Ⅲ波检出率分别为22.22%,42.22%,68.89%。单极模式下的Ⅲ波检出率比双极模式和共地模式高(P<0.05)。电极20的Ⅲ波检出率高于电极3和电极10(P<0.05)。
     ④MP2刺激模式下Ⅲ波平均潜伏期为2.06ms,电极3,10,20的潜伏期分别为2.11±0.46ms,2.07±0.86ms,2.03±0.12ms,三个电极间无统计学差异(F=0.719,P=0.503>0.05)。
     ⑤MP1+2刺激模式下,电极3,10,20的Ⅴ波潜伏期分别为4.09±0.16ms,4.02±0.19ms,3.70±1.21ms,蜗顶的Ⅴ波潜伏期短于蜗中和蜗底(P=0.026,P=0.004)。电极3、10、20的振幅(μv)分别为0.46±0.31,0.44±0.25,0.74±0.35,电极20的EABRⅤ波振幅均值明显高于其他两个电极。单极刺激模式比双极和共地刺激模式获得的平均EABR振幅大,MP1与CG(P=0.039<0.05)和MP2与CG(P=0.027<0.05)之间存在统计学差异。
     ⑥五种刺激模式下的EABR阈值(CL)分别为193.6±12.5,190.3±13.0,189.3±12.2,207.5±44.4,234.0±8.2,单因素方差分析显示CG与MP1、MP2、MP1+2间存在统计学差异(P=0.000<0.01,P=0.000<0.01,P=0.000<0.01),共地刺激模式CG的EABR阈值明显高于单极刺激模式;而单极刺激模式MP1+2与MP1,MP1+2与MP2,MP1与MP2间EABR阈值无统计学差异(P=0.0987>0.05,P=0.0915>0.05,P=1.000>0.05)。
     ⑦ECAP阈值与EABR阈值Pearson相关系数为0.974(P<0.01),回归方程为EABR=8.696+0.94×ECAP,两者进行配对t检验,结果显示无显著差异(t=5.377,df=25,P>0.05)。
     ⑧本实验同时采用了同侧和对侧记录,发现同侧记录的波形和对侧记录的波形相似,部分反而更清晰,波形分化更好,随刺激强度的下降Ⅴ波消失稍晚。
     结论:人工耳蜗植入术患者术后单极刺激下易检测出EABR波形,检出率高,波形分化较好,波幅大,而采用双极及共地模式EABR阈值较高或难以引出波形。同侧记录的波形有时较对侧更清晰可辨,波幅更大。研究认为在对人工耳蜗植入患者术后进行EABR测试时可首选单极刺激模式,从易诱发出振幅较大的波形的蜗顶电极开始,并且有可能的话进行同侧与对侧同时记录。
OBJECTIVE:In very young children with cochlear implant,objective measures play a vital role both before and after implantation.The most promising method is the registration of electrically evoked auditory hrainstem response(EABR).For effective use of EABRs it is important to determine the characteristic EABR changes due to the stimulation parameters.Our general objective was to investigate the impact of stimulation mode on morphology of EABR,and to compare the thresholds of EABR and electrically evoked compound action potential(ECAP) with the same pulse width of probe stimulation.
     METHOD:3 electrodes of 9 Nucleus 24M cochlear implant users,along the electrode array from base towards apex,were stimulated for ECAP and EABR registration.EABRs were recorded in MP1+2、MP1、MP2、BP+1,CG stimulation mode respectively.EABR waveⅢ、V appearace frequency、peak latency and amplitude were compared between 3 electrodes as well as between different stimulation modes.The relationship between EABR and ECAP thresholds were analysised with SPSS13.0.
     RESULTS:①ECAP threshold and EABR threshold of E3,E10,E20 was 197.88±12.21vs.200.9±16.4,195.23±9.97vs.197.8±11.8,182.03±12.08vs.185.1±20.8 respectively.The thresholds of E20 were lower than those of E30 and E10 with significant difference.
     ②EABR wave V appearance frequency was 96.3%,94.4%,96.3%,14.8%,33.3% in MP1+2,MP1,MP2,BP+1,CG mode respectively.The appearance frequency in MP mode was higher than those in BP+1 and CG(P=0.010<0.05,P=0.018<0.05)
     ③WaveⅢappearance frequency was 62.96%,59.26%,66.67%,14.81%,18.52% in MP1+2,MP1,MP2,BP+1,CG respectively.It was 22.22%,42.22%,68.89%in E3,E10,E20 respectively.
     ④The average waveⅢlatency was 2.06ms,and 2.11±0.46ms,2.07±0.86ms, 2.03±0.12ms in E3,E10,E20 respectively with no difference between 3 electrodes (F=0.719,P=0.503>0.05).
     ⑤In MP1+2 mode,waveⅤlatency of E3,E10,E20 was 4.09±0.16ms, 4.02±0.19ms,3.70±1.21ms,with shorter latency in apex(P=0.026,P=0.004).WaveⅤamplitude(μv)of E3,E10,E20 was 0.46±0.31,0.44±0.25,0.74±0.35.
     ⑥EABR threshold(CL)was 193.6±12.5,190.3±13.0,189.3±12.2,207.5±44.4, 234.0±8.2 in MP1+2,MP1,MP2,BP+1,CG mode respectively,CG was significantly different with MP1、MP2、MP1+2(P=0.000<0.01,P=0.000<0.01,P=0.000<0.01), with no difference between MP1,MP2,MP1+2(P=0.0987>0.05,P=0.0915>0.05, P=1.000>0.05).
     ⑦ECAP threshold was significantly correlated with EABR threshold(r=0.974,P<0.01). A linear regression model was constructed as an equation:EABR=8.696+0.94×ECAP.A paired t-test indicated that there was no difference between them(t=5.377,df=25,P>0.05).
     ⑧Ipsilateral and contralateral recording were conducted simultaneously. Sometimes ipsilateral recorded waveforms had a better discrimination than contralateral counterparts.
     CONCLUSION:Monopolar stimulation mode exhibited advantage than bipolar and common ground mode in some respects.We recommend it as the first choice in EABR registration.What's more,ipsilateral and contralateral simultaneous recording is also recommended for a better identification of EABR waveforms.
引文
1. Fryauf-Bertschy H, Tyler RS, et al.Cochlear implant use by prelingually deafened children:the influences of age of implant and length of device use.Journal of Speech and Hearing Research, 1997, 40:183-199.
    
    2. Lambert PR, Ruth RA, Hodges AV.Multichannel cochlear implant and electrically evoked auditory brainstem responses in a child with labyrinthitis ossificans. Laryngoscope, 1991, 101:14-19.
    
    3. Game CJ, Sanli H.Waveforms of cochlear implant-evoked auditory brain stem responses in anesthetized young children, recorded with a new preamplifier [corrected and republished with original paging, article originally printed in Ann Otol Rhinol Laryngol Suppl, 1995, 166:93-96].Ann Otol Rhinol Laryngol 1997, 106:93-96.
    
    4. Kileny PR, Zwolan TA, Boerst A, Telian SA.Electrically evoked auditory potentials:current clinical applications in children with cochlear implants.American Journal of Otolaryngology, 1997, 18:S90-92.
    
    5. Shallop JK.Objective electrophysiological measures from cochlear implant patients.Ear and Hearing, 1993, 14:58-63.
    
    6. Mason SM, Gibbin KP, Garnham CW, O'Donoghue GM, Twomey T.Intraoperative eletrophysiological and objective tests after cochlear reimplantation in a young child.British Journal of Audiology, 1996, 30:67-70.
    
    7. Truy E, Gallego S, Chanal JM, et al.Correlation between electrical auditory brainstem response and perceptual thresholds in Digisonic cochlear implant users.Laryngoscope, 1998, 108:554-557.
    
    8. Groenen PA, Makhdoum M, van den Brink JL, Stollman MH, Snik AF, van den Broek P.The relation between electric auditory brain stem and cognitive responses and speech perception in cochlear implant users.Acta Otolaryngology(Stockh), 1996, 116:785-790.
    
    9. Groenen P, Snik A, van den Broek P.Electrically evoked auditory middle tatency responses versus perception abilities in cochlear implant users.Audiology, 1997, 36:83-97.
    
    10.Hoth S.Measuring late electrically evoked potentials of the auditory system in cochlear implant patients.HNO, 1998, 46:739-747.
    
    11 .Tavartkiladze G.A , Potalova.A , et al.Effect of Stimulation Parameters on electrically evoked auditory brainstem responses.Acta Otolaryngology, 2000, 120:214-217.
    
    12. Carolyn.J.B.Clinical uses of electrically evoked auditory nerve and brainstem responses.Current Opinion in Otolaryngology & Head and Neck Surgery, 2003.11:383-387.
    
    13.Gallego S, Truy E, Morgon A, et al.EABRs and surface potentials with a transcutaneous multielectrode cochlear implant.Acta Otolaryngology (Stockh), 1997, 117:164-168.
    H.Ralph E.B, Russell L.S , et al.Electrical cochlear stimulation in the deaf cat:comparisons between psychophysical and central auditory neuronal thresholds. Journal of Neurophysiology, 2000, 83:2145-2162.
    
    15. Leake PA, Snyder RL, Rebscher SJ, et al.Plasticity in central representations in the inferior colliculus induced by chronic single vs.two channelelectrical stimulation by a cochlear implant after neonatal deafness.Hearing Research, 2000, 147:221 -241.
    
    16. Charlotte MM, Maike V, Patricia AL, et al.The effects of chronic intracochlear electrical stimulation on inferior colliculus spatial representation in adult deafened cats.Hearing Research, 2002, 164:82-96.
    
    17. SynderR, Leake P, Rebscher S, et al.Temporal resolution of neurons in cat inferior colliculus to intracochlear electrical stimulation:effects of n-eonatal deafening and chronic stimulation.Journal of Neurophysiolqgy, 1995, 73:449-467.
    
    18. Van den Honert C, Stypulkowski P.H.Characterization of the electrically evoked auditory brainstem response (ABR) in cats and humans.Hearing Research, 1986, 21:109-126.
    
    19. Tyler RT, Fryauf-Bertschy H, Kelsay DMR, et al.Speech perception by prelingually deaf children using cochlear implants.Otolaryngology Head and Neck Surgury, 1997, 117:180-187.
    
    20. Miyamoto RT, Svirsky MA, Robbins AM.Enhancement of expressive language in prelingually deaf children with cochlear implants.Acta Otolaryngology(Stockh), 1997, 117:154-157.
    
    21. Osberger MJ.Cochlear implantation in children under the age of two years:candidacy consideration.Otolaryngology Head and Neck Surgury, 19-97, 117:145-149.
    
    22. Brown CJ, Hughes ML, et al.Relationship between EABR thresholds and levels used to program the Clarion speech processor.Ann Otol Rhinol Laryngol, 1999, 108:50-57.
    
    23. Shallop JK, Beiter AL, Goin DW, et al.Electrically evoked auditory brain stem responses(EABR) and middle latency responses(EMLR) obtained from patients with the Nucleus Multichannel Cochlear Implant.Ear and Hearing, 1990, 11:5-15.
    
    24. Firszt JB, Rotz LA, Chambers RD, et al.Electrically evoked potentials recorded in adult and pediatric Clarion implant users.Ann Otol Rhinol Laryngol, 1999, 108:58-63.
    
    25.Brown CJ, Abbas PJ, Borland J, et al.Electrically evoked whole nerve action potentials in Ineraid cochlear implant users:responses to different stimulating electrode configurations and comparison to psychophysical responses.Journal of Speech and Hearing Research, 1996, 39:453-467.
    
    26. Brown CJ, Hughes ML, Luk B, et al.The relationship between EAP and EABR thresholds and levels used to program the Nucleus 24 speech processor:data from adults.Ear and Hearing, 2000, 21:151-163.
    
    27. Hughes ML, Brown CJ, Abbas PJ, et al.Comparison of EAP thresholds with MAP levels in the Nucleus24 cochlear implant: data from children. Ear and Hearing, 2000, 21:164-174.
    
    28.Gantz BJ, Brown CJ, Abbas PJ.Intraoperative measures of electrically evoked auditory nerve compound action potential.American Journal of Otolaryngology, 1994, 15:137-144.
    
    29. Parkins CW.Temporal response patterns of auditory nerve fibers to electrical stimutalation in deafened squirrel monkeys.Hearing Research, 1989,41:137-168.
    
    30. Hay-McCutcheon MJ, Brown CJ, et al.Comparison of electrically evoked whole-nerve action potential and electrically evoked auditory brainstem response thresholds in Nucleus CI24R cochlear implant recipients.American Academy of Audiology, 2002, 13:416-427.
    31. Parkins CW, Colombo J.Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes.Hearing Research, 1987, 31:267-285.
    32.Jewett DL, Williston JS.Auditory-evoked far fields averaged from the scalp of humans.Brain, 1971, 94:681-696.
    33.M(?)ller AR, Jannetta PB.Neural generators of the auditory brainstem response. In:Jacobson, J.(Ed.), The Auditory Brainstem Response.College Hill Press, San Diego, 1985.
    34. Abbas PJ, Brown CJ, Shallop JK, et al.Summary of results using the nucleus CI24M implant to record the electrically evoked compound action potential.Ear and Hearing, 1998, 20:45-59.
    35.Franck K.H, Norton SJ.Estimation of psychophysical levels using the electrically evoked compound action potential measured with the neural response telemetry capabilities of Cochlear Corporation's CI24M device.Ear and Hearing, 2001, 22:289-299.
    
    36. Starr A, Brackmann DE.Brain stem potentials evoked by electrical stimulation of the cochlea in human subjects.Ann Otol Rhinol Laryngol, 1979, 88:550-556.
    
    37. Gyo K, Yanagihara N.Electrically and acoustically evoked brain stem responses in guinea pig.Acta Otolaryngology, 1980, 90:25-31.
    
    38. Waring MD.Electrically evoked auditory brainstem response monitoring of auditory brainstem implant integrity during facial nerve tumor surgery.Laryngoscope, 1992, 102:1293-1295.
    
    39. Gordon KA , Papsin BC , Harrison RV.An evoked potential study of the developmental time course of the auditory nerve and brainstem in children using cochlear implants.Audiology and Neurootolaryngology, 2006, 11:7-23.
    
    40.Gorga MP, Kaminski JR, et al.Auditory brainstem responses to tone bursts in normally hearing subjects.Journal of Speech and Hearing Research, 1988, 31:87-97.
    
    41. Firszt JB, Chambers RD, et al.Neurophysiology of cochlear implant users I:effects of stimulus current level and electrode site on the electrical ABR, MLR, and N1-P2 response.Ear and Hearing, 2002, 23:502-515.
    
    42.Nagel D.Compound action potential of the cochlear nerve evoked electrically. Electrophysiological study of the acoustic nerve(guinea pig).Arch Otorhinolaryngol,1974,206:293-398.
    43.Miller CA,Abbas PJ,Brown CJ.Electrically evoked auditory brainstem response to stimulation of different sites in the cochlea.Hearing Research,1993,66:130-142.
    44.Hermann B,Thomton A.Eleetrically-evoked auditory brainstem responses in cochlear implant patients[Abstract].The Second International Cochlear Implant Symposium(pp.57).Iowa City,IA.
    45.Abbas PJ,Brown CJ.Eleetrically evoked auditory brainstem response:growth of response with current level.Hearing Research,1991,51:123-137.
    46.Allum JH,Shallop JK,et al.Charaeteristics of electrically evoked 'auditory'brainstem responses eleeited with the nucleus 22-electrode intracochlear implant.ScandinavianAudiology,1990,19:263-267.
    47.Tavartkiladze GA,Potalova LA,et al.Effect of stimulation parameters on electrically evoked auditory brainstem responses.Acta Otolaryngology,2000,120:214-217.
    48.郗昕,冀飞等.人工耳蜗技术报告“I”.历史与现状.中国听力语言康复科学杂志,2006,14:34-38.
    1. Kiang NYS, Moxon EC.Physiological considerations in artificial stimulation of the inner ear.Ann Otol Rhinol Laryngol, 1972, 81:714-730.
    
    2. Smith L , Simmons FB.Estimation eighth nerve survival by electrical stimulation.Ann Otol Rhinol Laryngol, 1983, 92:19-23.
    
    3. Fifter RC, Novak MA.Prediction of auditory nerve survival in humans using the electrical auditory brainstem responses.American Journal of Otolaryngology, 1991, 12:350-366.
    
    4. Kileny PR, Zwolan TA, et al.A comparison of round-window and transtympanic promontory electric stimulation in cochlear implant candidat-es.Ear and Hearing, 1992, 13:294-299.
    
    5. Waltzman SB, Cohen NL, et al.The prognostic value of round window electrical stimulation in cochlear implant patients.Otolaryngology Headand Neck Surgery, 1990, 103:102-106.
    
    6. Lenarz T, Hoth S.Comparison of different methods of preoperative electrical testing in cochlear implant patients.In Banfai P.Ed.Cochlear Implants:Current Situation, Erkelenz.F.R.G;Bremann GMBH, 1987:97-100.
    
    7. Kileny PR.Evoked potentials in the management of patients with cochlear implants:research and clinical applications.Ear and Hearing, 2007, 28:124S-127S.
    
    8. Kileny PR, Zimmerman PS, et al.Effects of preoperative electrical stimulability and historical factors on performance with multichannel coc-hlear implant.Ann Otol Rhinol Laryngol, 1991, 100:563-568.
    
    9. Nikolopoulos TP, Masson SM, et al.Integrity of the auditory pathway in young children with congenital and postmeningitic deafness.Ann Otol Rhinol Laryngol. 1999, 108:327-330.
    
    10. Nikolopoulos TP, Masson SM, et al.The prognostic value of promontoryelectric auditory brain stem response in pediatric cochlear implantati-on.Ear and Hearing, 2000, 21:236-241.
    
    11. Starr A, Brackmann DE.Brain stem potentials evoked by electrical stimulation of the cochlea in human subjects.Ann Otol Rhinol Laryngol, 1979, 88:550-556.
    
    12. Makhdoum MJ, Groenen PAP, et al.Intra-and interindividual correlations between auditory evoked potentials and speech perception in cochlear implant users.Scandinavian Audiology, 1998, 27:13-20.
    
    13. Kubo T, Yamamoto K, et al.Significance of auditory evoked responses (EABR and P300) in cochlear implant subjects. Acta Otolaryngology, 2001, 121:257-261.
    
    14. Firszt JB, Chambers RD, Kraus N.Neurophysiology of cochlear implant users II:comparison among speech perception, dynamic range, and physiological measures.Ear and Hearing, 2002, 23:516-531.
    
    15. Gallego S, Truy E, et al.EABRs and surface potentials with a transcutaneous multielectrode cochlear implant. Acta Otolaryngology, 1997, 117: 164-168.
    
    16. Gallego S, Frachet B, Micheyl C, et al. Cochlear implant performance and clectrically-evoked brain-stem response characteristics.Electroence-phalogr Clin Neurophysiol, 1998, 108:521-525.
    
    17. Brown CJ.Clinical uses of electrically evoked auditory nerve and brainstem responses.Curr Opin Otolaryngol Head Neck Surg, 2003, 11:383-387.
    
    18. Brown CJ, Abbas PJ, Fryauf-Bertschy H, et al.Intraoperative and postoperative electrically evoked auditory brain stem responses in Nucleus cochlear implant users:implications for the fitting process.Ear and Hearing, 1994, 15:168-176.
    
    19. Shallop JK, VanDykeL, Goin DW, et al.Prediction of behavioral threshold and comfort values for Nucleus 22-channel implant patients from electrical auditory brain stem response test results.Ann Otol Rhinol Laryngol, 1999, 177:58-63.
    
    20. Brown CJ, Hughes ML, Lopez SM, et al.Relationship between EABR thresholds and le,vels used to program the Clarion speech processor.AnnOtol Rhinol Laryngol Suppl, 1999, 117:50-57.
    
    21. Starr A, Picton TW, Sininger Y, et at.Auditory neuropathy.Brain, 1996, 119:741-753.
    
    22. Shallop JK, Peterson A, Facer GW, et at.Cochlear implants in five casesof auditory neuropathy:Postoperative findings and progress.Laryngosco-pe , 2001 , 111:555-562.
    
    23. Madden C, Hilbert L, RutterM, et al.Pediatric Cochlear Implantation in auditory neuropathy.Otology and Neurotology, 2002, 23:163-168.
    
    24. Buss E, Labadle RF, Brown CJ, et al.Outcome of cochlear implantation in pediatric auditory neuropathy.Otology and Neurotology, 2002, 23:328-332.
    
    25. Eisenberg LS, Maltan AA, et al.Electrical stimulation of the auditory brain stem structure in deafened adults.J Rehab Res Dev, 1987, 24:9-22.
    
    26. Brackmann DE, Hitselberger WE, et al.Auditory brainstem implant:I. issues in surgical implantation.Otolaryngology Head and Neck Surgery, 1993, 108:624-633.
    
    27. Waring MD. Auditory brain stem responses evoked by electrical stimulation of the cochlear nucleus in human subjects.Electroenceph clin Neurophysilo, 1995a, 96:338-347.
    
    28. Waring MD.Intraoperative electrophysiologic monitoring to assist placement of auditory brain stem implant.Ann Otol Rhinol Laryngol, 1995b, 104:33S-36S.
    
    29. M(?)ller AR, Jannetta PJ.Auditory evoked potentials recorded from the cochlear nucleus and its vicinity in man.Journal of Neurosurgury, 1983, 59:1013-1018.
    
    30. M(?)ller AR, Jannetta PJ, Jho HD.Click-evoked responses from the cochlear nucleus:a study in human. Eletroencephalography and clinical Neurophysiology, 1994, 92:215-224.
    
    31. Scherg M, Von Cramon D.A new interpretation of the generators of BAEP waves I-V:results of a spatio-temporal dipole model. Eletroencephalography and clinical Neurophysiology, 1985, 62:290- 299.
    
    32. Waring MD.Auditory brain-stem responses evoked by electrical stimulation of the cochlear nucleus in human subjects.Eletroencephalography and clinical Neurophysiology, 1995, 96:338-347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700