实验电子耳蜗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工耳蜗(cochlear implant, CI )是一种能够帮助重度或全聋患者恢复部分听力的电子装置。此装置能把声音信号转变为电信号并直接刺激螺旋神经节细胞,从而产生听觉。尽管现有电子耳蜗已达到一定的听力康复效果,但其技术有待改进,性能还有待提高。为进一步探索更为有效的编码策略和电子耳蜗的电刺激模式,本研究对用于该目的的实验室电子耳蜗进行研究。论文介绍了进行电子耳蜗电生理实验所需的仪器设备及其应用,重点介绍了自行设计制作的实验用电子耳蜗电流刺激器的原理及性能,其中计算机是获取并处理外界信息的唯一设备,它身兼人工电子耳蜗结构中的体外麦克风和言语处理器的双重功能,却不是收集声音和对声音进行电刺激信号的转化,而是在计算机上根据预先设定好的刺激方案编写相应程序,通过强大的程序编译,它能够配合各种语音处理策略,生成任意刺激波形。其更高的刺激速率,更宽泛的刺激强度范围以及输出波形的灵活性使它既能够符合原有刺激策略对刺激器的要求,又能够承担开发新策略的任务,为电子耳蜗的编码研究,听神经的信号传输研究搭建了一个硬件平台,为国内该领域的研究工作者提供了一个研究方案。
     我们进行了电子耳蜗生理实验的尝试,在高斯白噪声刺激下进行了单根听神经发放信号的采集,试验结果是令人鼓舞的。
Cochlear implant is an electronic device that could restore partial hearing ability of people with profoundly binaural deaf. The cochlear implant converts an acoustic signal to an electrical signal which is delivered to electrodes implanted in the cochlea, effectively causing direct stimulation of the spiral ganglion cell. This study investigated the laboratory cochlear implant and introduced the equipment used for electrophysiological experimentation of cochlea implant, and mainly introduced the principle and capability of laboratory cochlea implant stimulator which was designed by ourselves. Computer is the only equipment to obtain and process exterior sound information. It acts both as microphone and speech processor which were part of cochlear implants. Stimulator is capable of forming random wave which could operate with various strategies depending on the program compiled beforehand on the computer. The capability of high rate electrical stimulation, great range of current and flexible output of wave meet not only the requirement of existing strategies, but also the requirement of exploring new strategies. This study built a platform for the investigation of cochlear implants strategy and transmission of auditory nerve signal, and provided a research project for this field.
     We completed the electrophysiological experimentation of cochlea implant, and did a recording of single auditory nerve signal. The result is inspiring.
引文
[1] Nancy Young, Tam Nguyen, Richard Wiet, Facs. Cochlear Implantation. Operative Techniques in Otolaryngol-Head and Neck Surgery, 2003, 14(4)(DEC): 263-267
    [2] Johan Laneau, Bart Boets, Marc Moonen, Astrid van Wieringen, Jan Wouters. A Flexible Auditory Research Platform Using Acoustic or Electric Stmuli For Adults and Young Children. Journal of Neuroscience Methods, 2005, 142: 131-136
    [3] Philipos Loizou. An Overview of Signal-Processing Strategies for Converting Sound into Electrical Signal in Cochlear Implants. IEEE signal processing magazine, September 1998
    [4] C. van den Honert and P. H. Stypulkowski. Temporal Response Patterns of Single Auditory Nerve Fibers Elicited by Periodic Electrical Stimuli. Hearing Research, 1987, 29: 207-222
    [5]潘涛,曹克利,王直中.记录听神经和下丘的单位放电.中国医学科学院学报, 2001, 23(5): 481-484
    [6]陈小平.声与人而听觉.中国广播电视出版社, 2006, ISBN: 7504350532
    [7]陈小平.听觉临界频带及其在声频信号处理中的应用.北京广播学院学报, 2004, 11(2)
    [8] Wilson BS, Lawson DT, Muller JM, et al. Cochlear Implants: Some likely Next Steps. Ann Rev Biomed Engin, 2003, 5: 207-249
    [9] B. Wilson, D. Lawson, and M. Zerbi. Advance in Coding Strategies For Cochlear Implants. Advances in Otolaryngology-Head and Neck Surgery, 1995, 9: 105-129
    [10] Wilson. BS, Lawson. DT, Zerbi M. New Processing Strategies in Cochlear Implantation. The American Journal of Otology, 1995, 16: 668-675
    [11] Fu Qj, Shannon Rv. Frequcncy Mapping in Cochlear Implants. Ear Hear, 2002, 23: 339-348
    [12] Rubinstein JT, Miller CA. How do Cochlear Prostheses Work. Current opinion Neurobiol, 1999, 9: 399-404
    [13] Battmer. R, Zilberman, Y, Haake, P., Lenarz, T. SAS-CIS Pilot Comparison Study inEurope. Annals of Otology, Rhinology & Laryngology, 1999, 108: 69-73
    [14] Osberger, M. and Fisher, L. SAS-CIS Preference Study in Postlingually Deafen Adults Implanted with the Clarion Cochlear Implant. Annals of Otology, Rhinology & Laryngology. Suppl, 1999, 177(4)L 74-79
    [15] Jay. Rubinstein. How Cochlear Implants Encode Speech. Current Opinion in Otolaryngology & Head and Neck Surgery, 2004, 12: 444-448
    [16] Eberhard E. F. Temporal Coding in Neural Populations. Science, 1997, 278: 1901-1902
    [17] O. Poroy and P. C. Loizou. Dvevelopment of a Speech Processor for Laboratory Experiments with Cochlear Implant patients. Acoustics, Speech, and Signal Processing, 2000. ICASSP '00. Proceedings. 2000 IEEE International Conference on, 2000, 3626-3629
    [18] Loizou, P. and Poroy, O. A Parametric Study of the CIS Strategy. Presented at the 1999 Conference on Implantable Auditory Prostheses, Asilomar, Monterey, CA., 1999
    [19] Charles A. Miller, Barbara K. Robinson. Auditory Nerve Responses to Monophasic and Biphasic Electric Stimuli. Hearing Research, 2001, 151: 79-94
    [20] C. de Balthasar, C. Boex, G.. Cosendai, G.. Valentini. Channel Interactions with High-Rate Biphasic Electrical Stimulation in Cochlear Implant Subject. Hearing, Research, 2003, 182: 77-87
    [21] Colette M. McKay, Anna O' Brien, Chris J. James. Effect of Current Level on Electrode Discrimination in Electrical Stimulation. Hearing Research, 1999, 136: 159-164
    [22] Shepherd, R. K. Javel, E. Electrical Stimulation of the Auditory Nerve: II. Effect of Stimulus Waveshape on Single Fibre Response Properties. Hearing Research, 1999, 130: 171-188
    [23] Huang C Q, Shepherd R. K. Reduction in Excitability of the Auditory Nerve Following Electrical Stimulation at High Stimulus Rate. IV. Effects of Stimulus Intensity”Hearing Research, 1999, 132: 60-68
    [24] Huang C. Q, Shepherd R. K. Reduction in Excitability of the Auditory NerveFollowing Electrical Stimulation at High Stimulus Rate. V. Effects of Electrode Surface Area. Hearing Research, 2000, 146: 57-71
    [25] Astrid van Wieringen, Robert P. Carlyon, Olivier Macherey. Effects of Pulse Rate on Thresholds and Loudness of Biphasic and Alternating Monophasic Pulse Trains in Electrical Hearing. Hearing Research, 2006, 220: 49-60
    [26] McKay, C. M., Henshall, K. R. The Perceptual Effects of Interphase Duration in Cochlear Implant Stimulation. Hearing. Research, 2003, 181: 94-99
    [27] Carlyon, R. P., van Wieringen, A., Deeks, Long, C. J., Lyzenga, J., Wouters, J. Effect of Inter-Phase Gap on the Sensitivity of Cochlear Implant Users to Electrical Stimulation. Hearing Research, 2005, 205: 210-224
    [28]陈宜.神经系统电生理学.人民卫生出版社, 1983: 436
    [29] ParéD, Gaudreau H.. Projection Cells and Interneurons of the Lateral and Basolateral Amygdala: Distinct Firing Patterns and Differential Relation to the Thera and Delta Rhythms in Conscious Cats. J Neursci, 1996, 16(10): 3334-3350
    [30]姚兵,唐小荣等.超微电极在测定单细胞中神经递质的进展.武汉大学化学学报, 1998, 14(4)
    [31]黄卫华,庞代文,王宗礼,程介克.一种新型低噪音碳纤维纳米电极.高等学校化学学报, 2001, 22: (9)
    [32]刘秀清,邵晓秋等.碳纤维纳米圆盘电极和金超微电极的制备.扬州大学学报, 2006, 9(2)
    [33] Rae, J. L., Germer, H. A. Junction Potentials in The Crystalline Lens. J. Appl. Physiol, 1974, 37: 464-467
    [34] Frank Rattay, Petra Lutter, Heidi Felix. A Model of The Electrically Excited Human Cochlear Neuron I. Contribution of Neural Substructures to The Generation and Propagation of Spikes. Hearing Research, 2001, 153: 43-63
    [35] Curtis, D. R. Microelectrophoresis.“In Physical Techniques in Biological Research, 1964, 5: 144-190
    [36] Zimmerer, R. P. A Simple, Rapid, Aseptic Method for Filling Micropipettes by Centrifugation. Expl Cell Res, 1973, 78: 150-251
    [37] Cerf, J. A. and Cerf, E. A holder for rapid filling of micropipette electrodes bycentrifugal action. Pflüger' s Arch, 1974, 349: 87-90
    [38] Tasaki, K., Tsukahara, Y., Ito, S., Wayner, M. J. and Yu, W. Y. A Simple, Direct and Rapid Method for Filling Microelectrode. Physiol. Behav, 1968, 3: 1009-1010
    [39] Ujec, E., Vit, Z., Vyskoěil, F. and KrálíK. O. Analysis of Geometrical and Electrical Parameters of Tips of Glass Microelectrodes. Physiol. bohemoslov, 1973, 22: 329-336
    [40] Geddes, L. A. Electrodes and the Measurement of Bioelectric Events. Wiley-Interscience, New York, 1972
    [41] Lanthier, R. and Schanne, O. Change of Microelectrode Resistance in Evolution of Different Resistivities. Naturwissenschaften, 1966, 53: 430-431
    [42] Firth, D. R. and DeFelice, L. J. Electrical Resistance Volume Flow in Glass Microelectrodes. Can. J. Physiol. Pharmac, 1971, 49: 436-447
    [43]南开大学实验动物解剖组.实验动物解剖学.高等教育出版社, 1988. 8: 290-295
    [44]潘滔,曹克利,王直中.听神经初级神经纤维自发放电的观察.听力学及言语疾病杂志, 1998, 6(3)
    [45] P. H. Atypulkowski. Single Fiber Mapping of Spatial Excitation Patterns in the Electrically Stimulated Auditory Nerve. Hearing Research, 1987, 29: 195
    [46] Eric D. Young, Patrick E. B. Rate Response of Auditory Nerve Fibers to Tones in Noise Near Masked Threshold. J. Acoust. Soc. Am., 1986, 79(2): 426-441
    [47] Shihab A. Shamma. Speech Processing in The Auditory System I: The Representation of Speech Sounds in The Response of The Auditory Nerve. J. Acoust. Soc. Am., 1985, 78(5): 1612-1621

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700