基于肝药酶代谢的金铃子散复方配伍研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     “辨证论治”是中医药认识和治疗疾病独特的思维方法,中药复方配伍是体现中医理论和“辨证论治”思想的载体。揭示中药复方配伍规律的科学内涵,一直是中药复方研究领域亟待解决的关键问题;探究中药配伍规律,对阐明中医“辨证论治”理论的科学内涵和中药复方的作用机制有着重要意义。中药复方配伍,从化学本质上来讲是不同中药的多组份间构成一个系统的、复杂的相互作用体系,这些相互作用的组份群是复方整体效应的重要物质基础。这些成分群可能直接作用于机体产生作用,也可能进入机体之后与机体代谢系统相互作用后产生药理作用。如果说中药化学解决的是中药复方起效的物质基础,中药药理学解决的是中药复方发生作用的结果,那么药代动力学就是联系起中药化学和中药药理学的一个纽带,它通过研究复方成分群在体内的动态变化规律,揭示复方如何相互作用产生药效作用。所以药代动力学的兴起和发展为研究中药复方物质基础、配伍规律和作用机理开辟了新的研究思路和方法以及必要的手段。运用药代动力学研究方法定性、定量地分析中药复方配伍后化学成分在体内的吸收、分布、代谢、排泄的动态变化规律,能够真实的反映中药的体内过程,阐明中药配伍后发挥药效的物质基础,是药效配伍研究方法的强有力补充。所以,探讨中药复方成分群与机体代谢系统之间的相互作用是阐述配伍规律的有效途径之一。
     中药复方最常见、最经典的用药方式是口服汤剂,方剂中的药效物质群必须经过胃肠道的吸收进入体内才能发挥药理效应。肠道的吸收是决定药物生物利用度和影响药物发挥治疗作用的关键因素之一,因此,从肠道吸收的角度研究方剂配伍时的吸收动力学变化,可以阐释方剂配伍的科学内涵。
     药物在机体内的生物转化主要由肝细胞内滑面内质网上的肝药酶催化,在肝脏中参与药物代谢的代谢酶中以P450酶最为重要,人类肝微粒体中参与药物代谢的P450酶比较简单,主要有CYP1A、CYP2C、CYP2D、CYP2E和CYP3A五大类,由P450酶催化的Ⅰ相反应是其体内代谢转化的关键性步骤,因为这一步反应常常是药物从体内消除的限速步骤,它可以影响到药物的许多重要的药动学特性。
     中药复方数以万计,为了体现研究的代表性和科学性,本课题通过遴选临床疗效确切、应用较为广泛的金铃子散为研究对象:金铃子散由川楝子和延胡索等量配比而成,首见于刘完素《素问·病机气宜保命集》为“疗肝郁化火而致的胸胁、腹脘、疝气痛、痛经”等痛症的代表方剂。方子虽小,但却不失配伍原则,有明确的君臣佐使关系,方中用川楝子疏肝气,泄肝火,为君药,延胡索行气活血,为臣使药,二药相配,气行血畅,疼痛自止,功效卓著。基于小复方或药对的配伍研究对于揭示中药复方配伍规律有着先导和示范意义。
     1实验目的
     本研究以经典小复方金铃子散为范例,基于药代动力学的研究思路,从药物吸收、代谢两个主要环节着手,利用正交设计的方法,一方面,从体内和体外两个层面探索金铃子散不同配比方对肝药酶P450活性的影响(诱导或抑制作用);另一方面,提出并建立适合中药复杂系统研究的药物吸收-代谢模型,探讨金铃子散不同配比方吸收行为、吸收-代谢行为与复方配伍间的内在规律。从中药复方与肝药酶代谢相互作用角度探讨中药复方配伍规律及其科学内涵。
     2实验方法和结果
     2.1金铃子散及不同配比方对CYPlA2活性影响的研究
     方法:采用L9(34)正交设计表,将金铃子散中的川楝子和延胡索作为两因素,每个因素设3个不同剂量作为实验的三水平,研究金铃子散9个不同配比及其相应的单味药物在体外和体内对CYP1A2活性的影响。体外实验以肝微粒体为研究工具,采用单一探针非拉西丁观察不同配伍的金铃子散对CYP亚型(CYP1A2)的半数抑制浓度(IC50)。体内实验采用探针药物法,先以金铃子散对大鼠进行预处理,再给予探针药(非拉西丁)后,应用微透析采样技术直接在肝脏采集样本,测定非拉西丁和对乙酰氨基酚的体内药动学参数,考察金铃子散不同配比方对酶(CYP1A2)活性的影响。实验结果进行正交-t检验和方差分析统计。
     结果:川楝子、延胡索单味提取物和配比方1-9对肝药酶CYP1A2的半数抑制浓度(IC50)分别为:0.0252±0.0052、0.0121±0.0079、0.0919±0.0150、0.0719±0.0053、0.0282±0.0045、0.0754±0.0155、0.0628±0.0033、0.0919±0.0150、01976±0.0273、0.1591±0.0081、0.1311±0.0085g·L-1,对CYP1A2活性无显著抑制作用。体内实验,药代参数显示:金铃子散不同配比方均能诱导CYP1A2活性,诱导作用强弱顺序是:诱导剂组(方3)>方4(方5)>方9(方6,方1,方2,方8,川楝子,延胡索组)>方7>正常对照组。
     2.2金铃子散及不同配比方对CYP3A4活性影响的研究
     方法:采用L9(34)正交设计表,将金铃子散中的川楝子和延胡索作为两因素,每个因素设3个不同剂量作为实验的三水平,研究金铃子散9个不同配比及其相应的单味药物在体外和体内对CYP3A4活性的影响。体外实验以肝微粒体为研究工具,采用单一探针睾酮观察不同配伍的金铃子散对CYP亚型(CYP3A4)的半数抑制浓度(IC50)。体内实验采用探针药物法,先以金铃子散对大鼠进行预处理,再给予探针药(睾酮)后,应用微透析采样技术直接在肝脏采集样本,测定其体内药动学参数,考察不同配比方对酶(CYP3A4)活性的影响。实验结果进行正交-t检验和方差分析。
     结果:川楝子、延胡索单味提取物和配伍方1-9体外对肝药酶CYP3A4的IC50值分别为2.59±0.33,0.87±0.30,1.14±0.20,1.00±0.13,1.19±0.10,2.33±0.15,1.39±0.19,1.14±0.20,1.29±0.14,1.43±0.32,1.49±0.28mg·L-1:体内实验结果显示:与正常对照组比较,金铃子散不同配比方、川楝子和延胡索单味提取物处理组大鼠CYP3A4酶活性均降低,金铃子散配比方抑制CYP3A4酶活性的强弱顺序:方1(方4)>方7>方2(方5)>方8>方3>方9。
     2.3Cocktail探针药物法观察金铃子散及不同配比方对CYPs活性的影响
     方法:采用L9(34)正交设计表,将金铃子散中的川楝子和延胡索作为两因素,每个因素设3个不同剂量作为实验的三水平,研究金铃子散9个不同配比及其相应的单味药体外对CYPs活性的影响。实验以肝微粒体为研究工具,采用多探针药物非拉西丁(PHE)、香豆素(COM)、甲苯磺丁脲(TOL)、奥美拉唑(OME)、睾酮(TST)为工具,观察金铃子散的不同配伍对CYP亚型(CYP1A2,CYP2A6,CYP2C9,CYP2C19和CYP3A4)的半数抑制浓度(IC50)。实验结果进行正交-t检验和方差分析。
     结果:Cocktail探针法川楝子、延胡索单味提取物和配伍方1-9体外对肝药酶CYP1A2的IC50值分别为0.029±0004,0.015±0.006,0.096±0.015,0.077±0.003,0.033±0.005,0.079±0.016,0.068±0.009,0.096±0.015,0.194±0.023,0.156±0.048,0.111±0.012g·L-1;对肝药酶CYP2A6的IC50值分别为0.051±0.003,0.059±0.009,0.129±0.013,0.068±0.004,0.064±0.007,0.070±0.013,0.079±0.008,0.129±0.013,0.054±0.010,0.060±0.013,0.091±0.010g.L-1;对肝药酶CYP2C9的IC50值分别为0.149±0.020,0.125±0.013,0.067±0.005,0.059±0.004,0.064±0.005,0.077±0.003,0.061±0.006,0.067±0.005,0.059±0.004,0.064±0.003,0.077±0.003g·L--1;对肝药酶CYP2C19的IC50值分别为0.056±0.010,0.091±0.008,0.104±0.010,0.105±0.008,0.091±0.010,0.070±0.006,0.062±0.008,0.104±0.010,0.094±0.010,0.085±±0.009,0.069±±0.005g.L"1;对肝药酶CYP3A4的IC50值分别为:0.0031±0.0003,0.0010±0.0004,0.0014±0.0002,0.0010±0.0003,0.0019±0.0001,0.0025±0.0005,0.0016±0.0009,0.0014±0.0002,0.0019±0.0004,0.0023±0.0003,0.0017±0.0008g·L1。Cocktail探针法对CYP1A2和CYP3A4的IC50与单一探针法数值上虽然不等同,但是结果的生物学意义一致。
     2.4吸收-代谢模型的建立和验证
     方法:中药复杂体系的体内过程(ADME/Tox)重点和核心是吸收和代谢环节,建立了吸收-代谢模型对于中药药效物质、复方配伍研究意义重大。针对药物体内过程的特点建立中药代谢研究的体外模型,将药物的肠吸收模型和肝微粒体代谢模型结合起来,体外模拟药物的吸收-代谢过程,在外翻肠囊的基础上,向肠囊外浴槽内注入肝微粒体CYPs底物,30min后取样,向肠囊内加入肝微粒体及还原型辅酶Ⅱ,30min、60min后取样,HPLC分析和测定吸收样品中探针药物的原型及吸收-代谢样品中原型物、代谢物。
     结果:单一探针吸收-代谢验证结果显示吸收液样品中能检测到探针药物原型、吸收-代谢样品中能同时检测到原型物、代谢产物;多探针吸收-代谢也验证上述结论,该模型可用于药物的吸收和代谢过程研究。
     2.5基于吸收-代谢模型的金铃子散及其配伍研究
     方法:建立适合中药研究的吸收-代谢模型,将药物的肠吸收研究模型和肝微粒体代谢模型结合起来;向肠囊外浴槽内注入不同配比的金铃子散,30min后取样,加入肝微粒体及还原型辅酶Ⅱ,30min、60min后取样,HPLC定性和定量分析吸收样品中金铃子散可吸收组份及吸收-代谢样品中可吸收-代谢组份,同时采用LC-MS进行验证。
     结果:金铃子散提取物中15个主要组份中的10个组份可被小肠吸收,经A-M模型代谢后出现一个新的组份峰;金铃子散吸收组份比与配伍相关,川楝子是影响主要组份吸收比(Ar)和吸收-代谢比(Mr)的主要因素,延胡索次之,方1和方9主要组份吸收比最大,吸收-代谢比的顺序:方5>方6(方1)>方9>方4>方3>方7>方2>方8。
     3结论
     从中药复方对肝药酶的影响而言,金铃子散配比方对肝药酶CYP1A2活性有诱导作用,延胡索是诱导作用的主要因素;对CYP3A4酶的活性有抑制作用,配伍之后复方抑制作用显著增强,二者配伍显示出协同抑制作用;Cocktail探针药物法体外实验显示对CYP2A6、CYP2C9、CYP2C19无显著抑制作用。
     从代谢酶对复方作用的角度而言,建立了适合中药复杂体系研究的吸收-代谢模型并用于金铃子散复方配伍研究,金铃子散配伍可吸收组份比与方剂配伍相关,方1(川楝子:延胡索比为1:1)和方9(川楝子:延胡索比为4:3)主要组份的吸收比最大,方5、方6(方1)主要组份吸收-代谢比最大;同时从复方药代(吸收-代谢差异)层面也能阐释方剂配伍理论的内涵:君药(川楝子)是影响全方吸收、吸收-代谢的主要因素,臣使药(延胡索)是处于从属地位的因素。
Background
     The "syndrome differentiation and treatment" is unique understanding thought method which is recognition and treatment of the disease of the traditional Chinese medicine (TCM). Complex prescription compatibility of TCM is to reflect the characteristics and essence of TCM theory and "syndrome differentiation and treatment" thinking. Revealing the scientific connotation of complex prescription compatibility law of TCM is always the key problems expected to solve in TCM compound research field. It is important to explore compatibility law of TCM for clarifying the scientific connotation of "syndrome differentiation and differentiation"(TCM) theory and the mechanism of action of complex prescription of TCM. Essentially, the compatibility of traditional Chinese complex prescription constitutes a systematic and complex interaction system of multi-component Chinese medicine. These ingredients group, which may have pharmacological effects directly or after the interaction with the body's metabolic system, is an important material basis of therapeutic effects of traditional Chinese complex prescription. If what Chinese medicine chemical solves is the material basis of complex prescription (TCM) and the things that Pharmacology resolved are the result of complex prescription (TCM), then Pharmacokinetics, which is through the research on the dynamic change regularity in vivo of compound composition to reveal compound how to produce therapeutic effects, is a key link between the TCM chemistry and pharmacology. So the rise and development of Pharmacokinetic opened up new ideas, methods and provided necessary means for the research on the material basis of TCM compound, compatibility law and mechanism of action. With the using of Pharmacokinetic methods, after complex prescription compatibility, the qualitative and quantitative analysis of chemical composition's dynamic change regulation of absorption, distribution, metabolism, excretion in vivo can reflect the true process of TCM in the body, really clarify the material basis of efficacy after complex prescription compatibility, and be a strong complement of research on relation between efficacy and compatibility. Therefore, it is one of the most effective ways for describing compatibility law to explore the interaction between the group of complex prescription and the metabolic system of the body.
     To take decoction orally is the most common and classic administration method of complex prescription. Only the substance groups which can express efficacy in the prescription go through the gastrointestinal tract and be absorbed into the body, can they play a pharmacological effect. Intestinal absorption is one of key factors in determining drug bioavailability and the therapeutic impact of drugs. Therefore, the research on change of absorption dynamics from a view of intestinal absorption can explain the scientific law of prescription compatibility.
     The biotransformation of drugs in the body is mainly by the hepatic drug enzyme catalyst, which is on the slip endoplasmic of liver cells. Cytochrome P450is the most important in all enzymes that take part in drug metabolism in liver. Liver microsomal cytochrome P450enzymes in human body that take part in drug metabolism are relatively simple, mainly includes five categories:CYP1A, CYP2C, CYP2D, CYP2E, and CYP3A4. I reaction through the P450enzyme catalytic is a critical step of metabolic transformation in vivo. This reaction is often rate-limiting step in drug elimination from the body, so it can affect many important drug pharmacokinetic properties.
     There are tens of thousands of Chinese medicine compound. But in order to reflect the research's features of representativeness and science, after selection, this topic selected JinLingZi powder as object, which has definitely clinical efficacy and is widely used. JinLingZi Powder is composed of Toosendan fruit and the same amount of Rhizoma Corydalis. Jinlingzi powder consists of Toosendan fruit and Rhizoma Corydalis with equal amount into ratio. It was firstly recorded in the "SuWen·BingJiQiYiBaoMingJi", written by LiuWansu. And it is the representative prescription of pain diseases caused by liver depression of the fire, such as hypochondrium pain, bellyache, hernia pain and dysmenorrhea. This prescription may be small, but it did not lose the principle of compatibility at all. In this prescription, Toosendan fruit, as the Monarch, can disperse liver stagnation and clear away the liver fire, Rhizoma Corydalis can promote Qi and activate blood, so it is the Minister and the Guide. The foregoing herbs being coordinative work, the Qi and the blood can move swimmingly and then the pain can stopped. The research based the compatibility of the small complex prescription and the herb couple have pioneering and demonstrative effect in clarifying the regulation of prescription compatibility in TCM.
     1Objective
     In this study, took the classic small compound Jinlingzi Powder as an example, Pharmacokinetics research ideas and orthogonal experimental design were applied to explore the effects of Jinlingzi powder formula and the compatibility on CYP enzyme activity in vitro and in vivo. On the other hand, absorption-metabolic model was proposed and established for the study of traditional Chinese medicine complex systems.The absorption-metabolic model was used to searching for the internal disciplines between the compability and the Pharmacokinetics. From the interaction point of view of traditional Chinese medicine and liver drug metabolic enzymes to explore the compatibility law of traditional Chinese medicine and its scientific connotation.
     2Methods and Results
     2.1The effects of Jinlingzi powder formula and the compatibility on CYP1A2
     Method:L9(34) orthogonal design table was used. Put the Toosendan fruit and Rhizoma Corydalis of Jinlingzi powder as the two factors, each factor has three different doses as three levels of the experiment, which is to study the effects of nine different compatibility and corresponding single herbs in vitro and in vivo on enzymatic activity of CYP1A2employs. In vitro test, rat liver microsome was applied to observe the50%inhibitory concentration of Jinlingzi powder on CYP subtypes (CYP1A2) by using a single probe phenacetin. In vivo experiment by the means of specific subtype probe drug, rats were administered with medicine, then injected probe drug phenacetin. Pharmacokinetic parameters in vivo were determined so as to examine the effects of different formulas on the activity of enzyme (CYP1A2). The statistics is carried out by orthogonal-t test and variance analysis.
     Result:The half maximal inhibitory concentrations (IC50) of the extract of Toosendan fruit, Rhizoma Corydalis and Jinlingzi Powder(formula.1-9) on the enzymatic activity of CYP1A2were:0.0252±0.0052,0.0121±0.0079,0.0919±0.0150,0.0719±0.0053,0.0282±0.0045,0.0754±0.0155,0.0628±0.0033,0.0919±0.0150,0.1976±0.0273,0.1591±0.0081,0.1311±0.0085g·L-1g·L-1, respectively. No significant inhibition CYP4501A2enzyme activity. In vivo test, pharmacokinetic parameters showed that the CYP1A2enzyme activity was inhibited by the different compatibility of Jinglingizi powder. The inhibited intensity of Jinglingizi powder followed the order: induction group (formula3)>formula4(formula5)>formula9(formula6, formula1, formula2, formula8, Toosendan fruit, Rhizoma Corydalis group)>formula7> normal group.
     2.2The effects of Jinlingzi powder formula and the compatibility on CYP3A4
     Method:L9(34) orthogonal design table was used. Put the Toosendan fruit and Rhizoma Corydalis of Jinlingzi powder as the two factors, each factor has three different doses as three levels of the experiment, which is to study the effects of nine different compatibility and corresponding single herbs in vitro and in vivo on enzymatic activity of CYP sub-typed(CYP3A4)employs. In vitro test, rat liver microsome was applied to observe the50%inhibitory concentration of Jinlingzi powder on CYP3A4by using a single probe testosterone. In vivo experiment by the means of specific subtype probe drug, rats were administered with Jinglingzi Powder, then injected probe drug testosterone. Pharmacokinetic parameters in vivo were determined so as to examine the effects of different formulas on the activity of enzyme (CYP3A4). The statistics is carried out by orthogonal-t test and variance analysis.
     Result:The half maximal inhibitory concentrations (IC50) of the extract of Toosendan fruit, Rhizoma Corydalis and Jinlingzi Powder(formula.1-9) on the enzymatic activity of CYP3A4were2.59+0.33,0.87±0.30,1.14±0.20,1.00±0.13,1.19±0.10,2.33±0.15,1.39±0.19,1.14±0.20,1.29±0.14,1.43±0.32,1.49±0.28mg·L-1mg·L-1, respectively. In vivo test, the CYP3A4enzyme activity was inhibited by the different compatibility of Jinlingizi powder, compared with the normal control group. The inhibited intensity of Jinlingzi powder followed the order:formula1(formula4)> formula7> formula2(formula5)> formula8>formula3> formula9.
     2.3The effects of Jinlingzi Powder formula and the compatibility on CYPs by Cocktail probe substrates approaches
     Method:L9(34) orthogonal design table was used. Put the Toosendan fruit and Rhizoma Corydalis of Jinlingzi powder as the two factors, each factor has three different doses as three levels of the experiment, which is to study the effects of nine compatibility and corresponding single herbs in vitro and in vivo on enzymatic activity of CYPs employs.Rat liver microsome was applied to observe the50%inhibitory concentration of Jinlingzi powder on CYP sub-typed(CYP1A2, CYP2A6, CYP2C9, CYP2C19and CYP3A4) by the means of probe phenacetin (PHE), coumarin (COM), tolbutamide (TOL), omeprazole(OME), testosterone (TST). The statistics is carried out by orthogonal-t test and variance analysis.
     Result:The half maximal inhibitory concentrations (IC50) of the extract of Toosendan fruit, Rhizoma Corydalis and Jinlingzi Powder(formula.1-9) on the CYP1A2:0.029±0.004,0.015±0.006,0.096±0.015,0.077±0.003,0.033±0.005,0.079±0.016,0.068±0.009,0.096±0.015,0.194±0.023,0.156±0.048,0.111±0.012g·L-1, respectively; on the CYP2A6:0.051±0.003,0.059±0.009,0.129±0.013,0.068±0.004,0.064±0.007,0.070±0.013,0.079±0.008,0.129±0.013,0.054±0.010,0.060±0.013,0.091±0.010g·L-1, respectively; on the CYP2C9:0.149±0.020,0.125±0.013,0.067±0.005,0.059±0.004,0.064±0.005,0.077±0.003,0.061±0.006,0.067±0.005,0.059±0.004,0.064±0.003,0.077±0.003g·L-1, respectively; on the CYP2C19:0.056±0.010,0.091±0.008,0.104±0.010,0.105±0.008,0.091±0.010,0.070±0.006,0.062±0.008,0.104±0.010,0.094±0.010,0.085±0.009,0.069±0.005g·L-1; on the CYP3A4:0.0031±0.0003,0.0010±0.0004,0.0014±0.0002,0.0010±0.0003,0.0019±0.0001,0.0025±0.0005,0.0016±0.0009,0.0014±0.0002,0.0019±0.0004,0.0023±0.0003,0.0017±0.0008g·L-1。IC50value of CYP1A2and CYP3A4by Cocktail probe method is not equivalent to that by individual probe method, but the biological significance of the results are consistent.
     2.4Modeling and verification of Absorption-Metabolism model
     Method:Absorption and metabolism was the key and core to ADME in vivo of TCM complex system. It is important to make a suitable absorption-metabolic model for TCM, which can contact the model of intestinal absorption with liver microsomal metabolic for TCM efficacy material research. Aiming at the characteristics of drug in the body, the establishment of Chinese medicine in vitro model must simplify and grasp the key link. Put the drug intestinal absorption model and the liver microsomal metabolism model together and then simulate the process of drug absorption and metabolism in vivo. Rat liver microsome CYPs was injected to gut sac outside bath slot based on everted gut sac. Then, rat liver microsome and NADPH would be injected after30min. The amount of components which can be absorbed from the prototype and the metabolin of probe drugs was analysed and detected by HPLC after30and60min.
     Result:A single probe absorption-metabolism verification results show that the prototype and the metabolin of probe drugs can be detected in absorbing sample simultaneously. It can also be verified in multi-probe absorption-metabolism, which can be used in study of drug absorption and metabolism process.
     2.5Study on the Compatibility of Jinlingzi powder formula based on the Absorption-Metabolism model
     Method:The absorption-metabolic model suitable for TCM research was made to contact the model of intestinal absorption with liver microsomal metabolism model. Different prescriptions of Jinlingzi powder were injected to gut sac outside bath slot, and took samples after30min, then, rat liver microsome and NADPH would be injected into the everted gut sac. The amount of different components which can be absorbed from absorption-metabolic and the metabolic sample of Jinlingzi powder was analysed and detected by HPLC after30and60min, and meanwhile detected by LC-MS.
     Result:About16main components which were derived from Jinlingzi Powder,10of them can be absorbed by intestinal tract. A new component peak was shown after the A-M metabolism model. The absorption ingredient proportion of Jinlingzi Powder was related to compatibility. Toosendan fruit is the major factor in influence on main group absorption ratio (Ar) and absorption-metabolic ratio (Mr), and Rhizoma Corydalis's influence followed it. The main group absorption ratios of formula1and formula9are maximum than others. The order of absorptio-metabolism ratio:formula5> formula6(formula1)> formula9> formula4> formula3> formula7> formula2> formula8.
     3Conclusions
     From the perspective of complex prescription of TCM's impact on hepatic enzyme, the different compatibility of Jinlingizi powder can induce the CYP1A2activity, and the intensity of this induction is associated with the compatibility of Jinlingzi powder, it can also inhibit the activity of CYP3A4. Synergistic inhibitory effect was shown on compatibility between Toosendan fruit and Rhizoma Corydalis. The experiment in vitro by Cocktail indicates that it has no significant effect on CYP2A6、CYP2C9、CYP2C19.
     From the perspective of the metabolic enzyme's impact on complex prescription, the absorption ingredient proportion of Jinlingzi Powder was related to its compatibility. The main absorption ratios of formula1and formula9are maximum in all groups. The main absorption-metabolic ratios of formula5and formula6(formula1) are maximum. From the perspective of compound pharmacokinetics (the difference between absorption and metabolism), the connotation of prescription compatibility theory can also be explained meanwhile, which is that as the Monarch herb, Toosendan fruit plays a leading role factor in absorption, absorption-metabolism of complex prescription, while Rhizoma Corydalis,as the Minister herb, plays a subordinate role in it.
引文
[1]刘昌孝.中药药代动力学研究的难点和热点[J].药学学报,2005,40(5):395-401
    [2]韩国柱.中药药代动力学[M].北京:中国医药科技出版社.1999:3-16
    [3]Dokoumetzidis A, Kalantzi L, Fotaki N. Prediction models for oral drug absorption:from in silico methods to integrated dynamical models[J]. Expert Opin Drug Metab Toxicol,2007, 3(4):491.
    [4]Hidalgo IJ. Assessing the absorption of new pharmaceuticals[J]. Curr Top Med Chem, 2001,1:385.
    [51 Curran P F, Solomon A K. Ion and water fluxes in the ileum of rats[J]. J Gen Physiol,1957, 41(1):143.
    [6]Ohta KY, Inoue K, Hayashi Y, er al. carried- mediated transport of glycerol in the perfused rat small intestine[J]. Biol Pharm Bull,2006,29(4):785.
    [7]Lennernas H, Ahrenstedt 0, Hallgren R, et al. Reginal jejunal perfusion, a new in vivo approach to study oral drug absorption in man[J]. Pharm Res,1992,9:1243.
    [8]FuKatsu K, Ueno C, Maeshima Y, et al. Detrimental effects of early nutrition administration after severe gut is chemia-reperfusion[J]. J Surg Res,2008,149(1),31
    [9]Kunes M, Svoboda Z, Kvetina J, et al. Intestinal single-pass in situperfusion technique in rat: the influence of L-carnitine on absorption of 7-methoxytacrine [J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub,2005,149 (2):433.
    [10]Pang KS, Cherry WF, Ulm EH. Disposition of enalapril in the perfused rat intestine-liver preparation:absorption, metabolism and first-pass effect[J]. J Pharmacol Exp Ther.1985,233(3): 788.
    [11]Wen Y, Remmel RP, Zimmerman CL. First-pass disposition of (-)-6-aminocarbovir in rats. I. Prodrug activation may be limited by access to enzyme[J]. Drug Metab Dispos,1999,27(1):113-121.
    [12]Hirayama H, Xu X, Pang KS. Viability of the vascularly perfused, recirculating rat intestine and intestine-liver preparations [J]. Am J Physiol,1989,257(2 Pt 1):G249-258.
    [13]Hirayama H, Xu X, Pang KS. Viability of the vascularly perfused, recirculating rat intestine and intestine-liver preparations[J]. Am J Physiol,1989,257(2 Pt 1):G249-258.
    [14]王素军,张志伟,赵艳红,等.建立大鼠原位肠-肝灌流模型评价绿原酸的代谢[J].中国临床药理学与治疗学,2006,11(12):1340.
    [15]王怡薇,梁日欣,杨伟鹏,等.大鼠原位肠-肝灌流模型研究概况[J].中国中药杂志,2009,34(21):2701.
    [16]KanniKar P, Richard A F. Enteropathogencity of Escherichia coli[J]. Infect Immun,1971, 4(4):473-478
    [17]董红林,蔡军伟,杨晶.研究小肠吸收的常用方法[J].医学研究通讯,1999,28(12):28.
    [18]Barthe L, Woodley J, Houin G. Gastrointestinal absorption of drugs:methods and studies[J]. Fundam Clin Pharmacol,1999,13(2):154.
    [19]Kilic FS, Batu O, Sirmagul B, et al. Intestinal absorption of digoxin and interaction with nimodipine in rats[J|. Pol J Pharmacol,2004,56:137.
    [20]Barthe L, Woodley J, Houin G. Gastrointestinal absorption of drugs:methods and studies [J]. Fundam Clin Pharmacol,1999,13(2):154.
    [21]Kilic FS, Batu O, Sirmagul B, et al. Intestinal absorption of digoxin and interaction with nimodipine in rats[J]. Pol J Pharmacol,2004,56:137.
    [22]Leppert PS, Fix JA. Use of everted intestinal rings for in vitro examination of oral absorption potential [J]. J Pharm Sci,1994,83:976-981.
    [23]Matsumoto M, Matsukawa N, Mineo H, et al. A soluble flavonoid-glycoside, alphaG-rutin, is absorbed as glycosides in the isolated gastric and intestinal mucosa [J]. Biosci Biotechnol Biochem,2004,68(9):1929-1934.
    [24]Bajor A, Kilander A, Fae A, et al. Normal or increased bile acid uptake in isolated mucosa from patients with bile acid malabsorption [J]. Eur J Gastroenterol Hepatol,2006;18(4):397-403.
    [25]Heylings JR. Gastrointestinal absorption of paraquat in the isolated mucosa of the rat[J]. Toxicol Appl Pharmacol,1991,107(3):482-493.
    [26]Ussing H H, Zerahn K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin[J]. Acta Physiol Scand,1951,23(2-3):110.
    [27]王敏,齐云.Caco-2细胞模型及其在药物吸收研究中的应用新进展[J].中国药学杂志,2007,42(16):1201.
    [28]Pranav S, Viral J, Tamishraha B, et al. Role of Caco-2 Cell Monolayers in Prediction of Intestinal Drug Absorption[J]. Biotechnol Prog,2006,22:186-198.
    [29]Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cellsfJ]. Biochem Biophys Res Commun,1991,175(3):880.
    [30]陈伟薇,李俊,宋珏.药物肠吸收的研究方法进展[J].安徽医药,2009,13(4):349.
    [31]Beresford A P, Selick H E, Tarbit M H. The emerging importance of predictive ADME simulation in drug discovery [J]. Drug Discov. Today,2005,7(2):109-116.
    [32]柳晓泉,钱之玉,王广基细胞色素P450酶在药物代谢及开发研究中的应用 药学进展,2000,24(6):334-338
    [33]T Omura, R Sato. The carbon monoxide-binding pigment of liver microsomes I. evidence for it hemoprotein Nature [J]. J Biol chem,1964,239(7):2370
    [34]T.Omura, R.Sato. The carbon monoxide-binding pigment of liver microsomes I. evidence for it hemoprotein Nature[J]. J Biol chem,1964,239(7):2379
    [35]Ring BJ, Gillespie JS, Eckstein JA, et al Identification of the human cytochromes P450 responsible for atomoxetine metabolism[J]Drug Metab Disp,2002,30(3):319
    [36]Amato G, Grasso E, Longo V, et al Oxidation of N, N-dimethy-fortrtamlde and N, N-diethyomaamide by human liver microsome and human recombinant P450S [J] Toxical Lett.2001.15(13):11
    [37]McGinnity DF, Soars MG, Urbanowicz RA, etal. Evaluation of fresh and cryopreserved hepatocytes as in vitro drug metabolism tools for the Prediction of metabolic clearance [J]. Drug Metab Dispos,2004,32:1247-1253
    [38]Alexandra S, Birgit H. Metabolism and disposition of the novel antileukaemic drug o benzamide riboside, in the isolated perfused rat liver[J]. Life Sci,2001, (69):2489.
    [39]谭晓斌,贾晓斌,陈彦,等.在体肠灌流模型及其在中药研究中的应用[J].中成药,2007,29(11):1665.
    [40]程锦,狄留庆.在体肠段灌流模型在中药吸收研究中的应用[J].中国中医药信息杂志,2008,15(2):98.
    [41]王彦荣,何应Caco-2细胞模型在天然药物吸收研究中的应用[J].中国生化药物杂志,2007,28(1):66.
    [42]鲁鑫焱 杭白菊提取物效应成分的吸收、代谢和药物相互作用研究[D].浙江:浙江大学,2008
    [43]马国 山楂叶总黄酮吸收机理与吸收调控研究[D].四川:四川大学,2007
    [44]陈彦 基于活性成分肠吸收的中药淫羊藿炮制机理研究[D].江苏:南京中医药大学,2008
    [45]郭莹,万海同,张莉,等.不同中药复方有效部位组合对脑缺血大鼠血浆中葛根素代谢变化的研究[J].中国中药杂志,.32(23):2531-33.
    [46]林文慧,朱春燕,陈卫.葛根黄酮在大鼠肠道的吸收动力学研究[J].中国中药杂志,2008,33(2):164-168.
    [47]周冬菊,赵会英,杨英禄.大鼠小肠对葛根素吸收的动力学研究[J].北京化工大学学报,2006,33(5):106.
    [48]郭建平,成国祥,孙其荣,等.葛根黄酮滴丸兔体内药动学[J].中国药学杂志,2004,39(5):364.365.
    [49]崔升淼,赵春顺.大鼠离体肝灌流中葛根索的代谢动力学研究[J].中药药理与临床,2008,24(1):17.19.
    [50]张海防,郭建新,黄罗生,等.羟基红花黄色素A在大鼠体内的药代动力学[J].中国药科大学学报,2006,37(5):456-460.
    [51]乔逸,杨志福,奚苗苗,等.羟基红花黄色素A在血瘀和正常大鼠体内药动学研究[J].中 国药师,2009,12(8):995-997.
    [52]杨志福,文爱东,梅其炳,等.红花黄色素在急性血瘀大鼠体内的药代动力学研究[J].中药材,2008,24(10):730
    [53]肖芬注射用红花黄色素人体药代动力学和药效学评价[D].陕西:陕西中医学院,2009.
    [54]Odani T. Studies on the absorption, distribution, excretion and metabolism of ginseng saponins IV. Decomposition of ginsenoside Rg, and Rb, in the digestive tract of rat [J] Chem Pharm Bull,1983,31 (10):3691-3697
    [55]王毅,刘铁汉,王巍,等.肠内菌群对人参皂苷Rgl的代谢转化作用的研究[J].中国中药杂志,2001,26(3):188-189.
    [56]王毅,刘铁汉,王巍,等.人参皂苷Rgl的肠内菌代谢及其代谢产物吸收入血的研究[J].药学学报,2000,35(4):288-288
    [57]杨柳,许舜军,曾星,等.人参皂苷Rbl在大鼠体内的药物代谢研究[J].高等学校化学学报,2006.27(6):1042-44
    [58]李昊,孙建国,谢海棠等.大鼠肠管外翻模型对人参皂苷Rg1吸收机制的研究[J].中国临床药理学与治疗学,2004,9(5):510.
    [59]盛美萍,孙洪,王宏.盐酸小檗碱在Beagle狗静脉注射和口服药动学研究[J].中国药理学通报,,1993,9(1):64-67.
    [60]吕晓艳,白彩艳,陈加俊等.癸酸钠对盐酸小檗碱在小肠各段促吸收作用的研究[J].中国老年医学杂志2010,,30(17):12.
    [61]丁志平,林力,郑晓鹤,等.不同粒径黄连粉在大鼠体内药代动力学的研究[J].中医药学刊,2004,20(5):835
    [62]Sakuri,Shuichi, et al. Plastic Pharmacology[J].1976,11(3):351-355
    [63]朱志勇.小檗碱在人及大鼠体内代谢产物的研究[D].辽宁:沈阳药科大学,2002
    [64]祝婧云,廖正根,陈绪龙等.元胡白芷有效组分配伍对延胡索乙素小肠吸收的影响[J].江西中医学院学报,2009,21(3):56.
    [65]王东晓,刘屏,崔捷等。开心散及其各单药成分的肠吸收研究中国药物应用与监测,2007,4(3):10.
    [66]董宇,张英丰,杨庆等.金铃子散提取物不同配伍的肠外翻吸收研究[J].中国药理学通报,2010,26(10):1377.
    [67]杨洋,李文兰,季宇彬等.八珍汤中芍药苷、阿魏酸肠吸收影响因素研究[J].哈尔滨商业大学学报(自然科学版),2010,,26(4):385.
    [68]朱容慧,赵军宁,毕岳琦等.中药肠吸收动力学的研究进展[J].药物评价研究,33(1):25.
    [1]T. Omura, R. Sato The Carbon Monoxide-binding Pigment of Liver Microsomes Ⅰ. Evidence for it Hemoprotein Nature[J]. J Biological Chemistry,1964,239(7):2370
    [2]T. Omura, R. Sato The Carbon Monoxide-binding Pigment of Liver Microsomes Ⅱ. Solubilization, Purification [J]. J Biological Chemistry,,1964.239(7):2379
    [3]赵斌,葛金芳,朱娟娟,等.小议在MTT法测细胞增殖抑制率中IC50的计算方法[J].安徽医药,2007,11(9):834
    [4]孙卫民,孙瑞元.中药方剂研究的正交t值法[J].中药药理与临床,1992,8(1):41
    [5]RL Slaughter and DJ Edwards Recent advances:the cytochrome P450 enzymes[J].Ann Pharmacother,1995,29(6):619-624
    [6]王喜军,张伯礼.基于药物代谢组学的方剂配伍规律及配伍科学价值揭示[J].中国中药杂志,2010,.35(10):1346-48.
    [7]Delgado JM, DeFeudis FV. Roth RH, et al. Dialytrode for long term intracerebral perfusion in awake monkeys[J]. Arch Int Pharmacodyn Ther,1972,198:9-21
    [8]曹岗,邵玉蓝,张云,等微透析技术在药动学和药物代谢研究中的应用[J]中草药2009;40(4):663-666
    [9]Food and Drug Administration (CDER, CBER) Guidance for Industry In Vivo Drug Metabolism/Drug Interaction Studies —Study Design. Data Analysis, and Recommendations for Dosing and Labeling November 1999
    [10]European Medicines Agency Guideline on the Investigation of Drug Interactions 22 April 2010
    [11]ZHANG TY, ZHU Y X, GUNARATNA C.SimμLtaneous determination of metabolites form multiple cytochorme P 450 porbe substrates by gradient liquid chromatography with UV d election [J]. Currents eparations.2003,20(3):87-91.
    [12]WRIGHTONS A,V ARDONBRAM,R INGB J,et al The human drug metabolizing cytochormes P 450 [J]. J Phannaeokinet Biopharm,1996,24:461-473
    [13]M EYERU A.Overview of enzymes of drug metabolism[J].J Phannacokinet Bioph arm,1996,24(5):449-459
    [14]冷欣夫,邱星辉.细胞色素P450酶系的结构、功能与应用前景[M].北京:科学出版社,2001,43-47
    [15]Robert L. Walsky and R. Scott Obach. Validated assays for hunman cytochrome p450 activity [J]. Drug Metabolism and Disposition,2004,32:647-660,
    [16]Ian R. Phillips, Elizabeth A. Shephard. Cytochrome P450 Protocols (Second Edition) [M].New Jersey Humana Press Inc.2008,6,109
    [17]董宇,张英丰,杨庆.黄连提取物在大鼠肠外翻实验中的吸收研究[J].中国中药杂志,2008,33(9):1056.
    [18]柏冬,牛晓红,范斌,等.桂枝汤在肠道不同部位的吸收研究[J].中药新药与临床药理,2010,21(2):167.
    [19]BI X L, CHEN J. The Intestinal Absorption Characteristics of Forsythin in Rats [J]. Chin JMAP,2010,27(2):92.
    [20]王伟金铃子散不同配伍的肠吸收特征研究[D],北京中国中医科学院,2011年
    [21]秦永祺,杨企铮.延胡索治疗冠心病有效成分的研究[J].天津医药.1978(10):450-453.
    [22]张晓丽,曲扬,侯家鸣.延胡索的化学成分[J].沈阳药科大学学报.2005,25(7):537-539
    [23]许翔鸿,等.延胡索中生物碱成分的研究[Jl].中国药科大学学报.2002,33(6):483-486.
    [24]谢帆,张勉,张朝凤等.川楝子的化学成分研究[J].中国药学杂志.2008,43(7):1066-1069
    [25]李丰,朱训,陈敏.川楝子化学成分研究[J].中药材.2010,30(6):910-912

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700