氟喹诺酮类对猪和鸡肝微粒体CYP1A2活性影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝微粒体细胞色素P450酶系(Cytochrome P450,CYP450)是生物体内主要负责外源性物质和内源性物质Ⅰ相代谢的超家族酶系统。药物在被CYP450代谢的过程中可能对CYP450活性产生诱导与抑制作用,从而影响自身或其它药物的代谢。当多种药物联合使用时,这种酶活性改变可能会导致另外一种或几种药物代谢改变,出现药物失效甚至毒副作用,这也是临床上药物代谢性相互作用(Drug-druginteraction,DDI)产生的重要原因之一。为避免药物相互作用带来更大的损失,FDA先后于1997和2006年公布了相应的指导性文件以加强对药物的安全性评价与监测。兽医领域加强和完善兽药对CYP450活性影响的研究,对指导兽医临床合理和安全用药、预防和避免潜在的药物相互作用具有重要意义。
     氟喹诺酮类药物(Fluoroquinolones,FQs)是第三代含氟的新型喹诺酮类(Quinolones)药物,具有抗菌谱广、杀菌能力强、吸收分布广、不良反应小等显著特点,在兽医临床上得到了广泛的应用。CYP1A2是CYP450代谢酶系中的重要成员之一,参与临床上5%-10%常规药物的代谢。实验动物包括大鼠、小鼠、狗及人的研究表明FQs对肝微粒体CYP1A2亚型的活性存在抑制作用,这也是其与许多药物发生相互作用的重要原因。但目前尚无该类药物对食品动物猪和鸡肝微粒体CYP1A2活性影响研究的报道。由于种属差异的存在,单纯依靠种属外推来预测FQs对食品动物肝微粒体CYP1A2活性的影响存在很大的不足,因此有必要直接以食品动物为靶动物进行相关研究。本试验采用体外探针药物法研究了当前兽医临床常用的8种FQs包括环丙沙星、诺氟沙星、氧氟沙星、洛美沙星、恩诺沙星、达氟沙星、二氟沙星、沙拉沙星对猪和鸡肝微粒体CYP1A2活性的影响,为其在兽医临床更合理和安全的使用提供科学依据。本试验主要包括以下三个方面的内容:
     1.肝微粒体CYP1A2活性检测体外探针药物法(HPLC-UV法)的建立及优化
     本试验以非那西丁O-去乙基反应(Phenacetin O-deethylation,POD)为探针检测肝微粒体CYP1A2亚型的活性。建立肝微粒体中非那西丁及扑热息痛同时检测的HPLC-UV法(梯度洗脱)。结果表明,猪和鸡肝微粒体中内源性物质均不干扰扑热息痛和非那西丁的测定,且猪和鸡肝微粒体中扑热息痛与非那西丁响应值与浓度均具有良好的线性关系,精密度和准确度均达到要求。
     差速离心法制备肝微粒体后测定CYP450差示光谱,考查探针药物非那西丁在微粒体中的代谢以检测肝微粒体活性,并建立肝微粒体体外孵育系统。结果表明,猪和鸡肝微粒体在450nm处有最大吸收,非那西丁在微粒体中能代谢生成扑热息痛,说明肝微粒体存在活性可用于代谢研究。
     采用共同孵育的方法考查6种常用的人源性CYP450抑制剂对猪和鸡肝微粒体非那西丁代谢的影响。结果表明,α-萘黄酮、花椒霉素和4-甲基吡酮均对猪肝微粒体中非那西丁O-脱乙基反应有抑制作用,其他抑制剂无显著影响,α-萘黄酮抑制作用最强,其K_i值为16.8μmol/L,是基于可逆抑制的非竞争性抑制作用:α-萘黄酮、磺胺苯吡唑、4-甲基吡酮、喹尼丁和花椒霉素均对鸡肝微粒体非那西丁O-脱乙基反应有抑制作用,其他抑制剂无显著影响,α-萘黄酮抑制作用最强,其K_i值为19.8μmol/L,是基于可逆抑制的非竞争性抑制作用。
     2.8种FQs对猪肝微粒体CYP1A2活性影响研究
     FQs(500μmol/L)在猪肝微粒体孵育系统中预先反应不同时间(0min、10min、20min、30min)后继续反应15min,绘制FQs的预反应时间-依赖性抑制图(TDI)确定抑制作用的类型;不同浓度的FQs(0、500、1000μmol/L)与非那西丁(1.25、2.5、5、10、20、40μmol/L)在猪肝微粒体孵育体系中反应15min,通过Linweaver-Burk法作图研究抑制作用产生的机制。结果表明8种FQs均对猪肝微粒体CYP1A2活性有较弱的抑制作用。环丙沙星、二氟沙星、沙拉沙星和洛美沙星产生的是基于不可逆抑制类型的非竞争性抑制作用,达氟沙星、氧氟沙星、恩诺沙星和诺氟沙星产生的是基于可逆抑制类型的非竞争性抑制作用。
     3.8种FQs对鸡肝微粒体CYP1A2活性影响研究
     FQs(500μmol/L)在鸡肝微粒体孵育系统中预先反应不同时间(0min、10min、20min、30min)后继续反应20min,绘制FQs的预反应时间-依赖性抑制图(TDI)确定抑制作用的类型:不同浓度的FQs(0、500、1000μmol/L)与非那西丁(2.5、5、10、20、40、80μmol/L)在鸡肝微粒体孵育体系中反应20min,通过Linweaver-Burk法作图研究抑制作用产生的机制。结果表明8种FQs均对鸡肝微粒体CYP1A2活性有较弱的抑制作用。环丙沙星产生的是基于不可逆抑制类型的非竞争性抑制作用,沙拉沙星产生的是基于不可逆抑制类型的竞争性抑制作用,达氟沙星和洛美沙星产生的是基于可逆抑制类型的非竞争性抑制作用,诺氟沙星、二氟沙星、氧氟沙星、恩诺沙星产生的是基于可逆抑制类型的竞争性抑制作用。
     本试验所建立的体外探针法可用于猪和鸡肝微粒体CYP1A2活性的检测。该方法具有取材方便、检测结果稳定、重复性好,特异性好、精确度高等优点。本试验所考查的FQs的K_i均远大于其在正常使用下的血药浓度C_(max)(K_i/C_(max)>10),因此兽医临床上合理使用这8种FQs时均不会因其对CYP1A2活性的抑制作用而引发DDI。但是,由于不可逆抑制作用存在蓄积效应,因此临床上要尽量避免和减少环丙沙星、沙拉沙星、洛美沙星和二氟沙星的连续给药。本试验第一次得到了FQs对猪和鸡肝微粒体CYP1A2活性抑制的相关酶动力学参数,这对临床更加合理使用FQs、避免药物相互作用具有重要的指导意义。
Cytochromes P450(CYP450) is a superfamily of enzymes that take responsibility for phaseⅠmetabolism of foreign compounds and endogenous compounds in liver.The process of metabolising may be alterant as the activity of enzyme induced or inhibited by drugs,which may change the pharmacological and toxicological effect of drug itself or other drugs and even lead to fatal side-effec including drug-drug interaction(DDI) in clinics.In 1997 and 2006,testing of DDI has been the subject of FDA guidance documents,so as to avoid the risk of DDI in the development of new drugs and in clinics. It is of great importance to reinforce the reseach about induction and inhibition of CYP450,which is also important to advisable use of drugs and prevention of DDI in veterinary clinics.
     Fluoroquinolones(FQs),the third new type quinolones antibacterial agents with fluorin,are extensively used in veterinary clinics as wide antibacterial spectrum,strong antibacterial activity,efficient absorption and low side-effect.CYP1A2 is one of the major CYP450 isoforms that take part in nearly 5%-10%of drug metabolism at clinics.It is reported that some FQs have inhibitory effect on CYP1A2 activities in human and other laboratory animal like rats and dogs,which leading to some side effect at clinical states. But there are no relative reports in pig and chicken.It is essential to complete the research of CYP450 inhibition of FQs on food-producing animals as the species-difference is significant.This study was designed for integral investigation about the potential inhibitory effect of eight FQs including ciprofloxacin(CFX),norfloxacin(NFX),ofloxacin (OFX),lomefloxacin(LFX),enrofloxacin(EFX),danofloxacin(DFX),difloxacin(DIFX), sarafloxacin(SFX) on CYP1A2 activities in pig and chicken.The information of inhibitory magnitude and mechanism were determined with probe method in vitro,which was consisted of three parts as follows.
     1.Probe method(HPLC-UV) in vitro for CYP1A2 in mierosomes
     Phenacetin O-deethylation(POD) was used as the classical probe for measuring CYP1A2 activity in liver microsomes.Phenacetin(PHE) and acetaminophen(ACE) were determined together by HPLC-UV using the gradient.The results showed that there was no interference for ACE and PHE in pig and chicken hepatic microsomes,and a good linear correlation for ACE and PHE in each calibration range,while the accuracy and precision were both good.
     Fresh liver was surgically obtained from pig and chicken then hepatic microsomes were prepared by differential centrifugation to establish the incubation syetem.The enzymeatic activities of microsomes were investigated by the carbon monoxide(CO) differential spectrum and the metabolism of PHE.The spectrum had peak at 450nm and PHE could be metabolized to ACE in microsomes,indicating that these microsomes could be used for drug metabolism.Then the microsomal incubation system were established for PHE in pig and chicken,respectively.
     The incubation system had been examined through enzyme inhibition with chmical inhibitors for 6 main CYP450 isoforms by coinstantaneous incubation.In pig, alpha-naphthoflavone,xanthotoxin and 4-methylpyrazone had inhibitory effect on CYP1A2 activity,while other inhibitors had no siginificant inhibition.Alpha-naphthoflavone inhibited CYP1A2 activity in non-competitive manner,the K_i value was 16.8μmol/L.In chicken,alpha-naphthoflavone,sulfaphenazole,4-methylpyrazone, xanthotoxin and quinidine had inhibitory effect on CYP1A2 activity,while other inhibitors had no siginificant inhibition.Alpha-naphthoflavone inhibited CYP1A2 activity in noncompetitive manner,the K_i value was 19.8μmol/L.
     2.Inhibitory effect of eight FQs on hepatic CYP1A2 isoenzyme activities in pig microsomes
     FQs(at the concentration of 500μmol/L) were pre-incubated for a certain time(0min, 10min,20min,30min) before the incubation(15 min) with phenacetin(at the concentration of 10μmol/L) in PLMs,then TDI figure was drawed to show the manner of inhibition;FQs(at the concentrations of 0,500,1000μmol/L) and PHE(at the concentrations of 1.25,2.5,5,10,20,40μmol/L) were incubated together for 15 min,then Lineweaver-Burk plots were estabolished to study the mechanism of inhibition.All the FQs had weak inhibitory effect on CYP1A2 activity in pig.DFX,OFX,EFX and NFX had noncompetitive inhibition in reversible manner,while CFX,DIFX,SFX and LFX had noncompetitive inhibition in irreversible manner.
     3.Inhibitory effect of eight FQs on hepatic CYP1A2 isoenzyme activities in chicken microsomes
     FQs(at the concentration of 500μmol/L) were pre-incubated for a certain time(0min, 10min,20min,30min) before the incubation(20 min) with PHE(at the concentration of 10μmol/L) in CLMs,then TDI figure was drawed to show the manner of inhibition;FQs (at the concentrations of 0,500,1000μmol/L) and PHE(at the concentrations of 1.25,2.5, 5,10,20,40μmol/L) were incubated together for 20 min,then Lineweaver-Burk plots were estabolished to study the mechanism of inhibition.All the FQs had weak inhibitory effect on CYP1A2 activity in chicken too.CFX had noncompetitive inhibition in irreversible manner,SFX had competitive inhibition in irreversible manner,DFX and LFX had noncompetitive inhibition that in reversible manner,NFX,DIFX,OFX and EFX had competitive inhibition in reversible manner.
     The sigle probe assay in vitro for CYP1A2 in pig and chicken liver microsomes have many merits including better stability,repeatability,specificity and fidelity,which could be used for determing CYP1A2 activity.All the eight FQs examined are safe while advisable using,as the inhibitory effect are too weak to cause DDI at clinics(K_i /C_(max)>10).But it is better to avoid the perseverative use of CFX,SFX,LFX and DIFX as the irrevisible inhibitory effect could be accumulated.The enzymatic parameters of FQs on CYP1A2 activities in pig and chicken were obtained,which could be useful for optimal use of FQs at veterinary clinics.
引文
1.岑彦艳,黄亚琴,曾本华,刘宇,魏泓.巴马小型香猪口服洛伐他汀的药代动力学研究.中国比较医学杂志,2006,16(3):140-143
    2.樊慧蓉,和凡,刘昌孝.Cocktail探针药物法用于评价细胞色素P450同功酶影响的研究进展.中国药学杂志,2006,41(14):1045-1048
    3.范桂兰.呋吗唑酮对鸡肝微粒体蛋白的影响.中国兽药杂志,1990(1):15-18
    4.高志伟,施孝金,余琛,李水军,钟明康.混合探针底物法同时预测细胞色素P450酶5种亚型的抑制作用.药学学报,2007,42(6):589-594
    5.郭喻,汪晖.人细胞色素P450同功酶探针药物特异性的研究进展.中国药理学通报,2007,23(7):851-854
    6.胡屹屹,杨海峰,江善祥.Flunixin对猪肝微粒体细胞色素P450酶系的影响.中国兽医科学,2006,36(12):992-995
    7.胡屹屹.猪肝微粒体细胞色素P450酶系的初步研究.[硕士学位论文].南京:南京农业大学图书馆,2006
    8.靳国昌,胡功政.扑热息痛的代谢及其临床意义.中国兽药杂志,1997,27:2-7
    9.冷欣夫,邱星辉.细胞色素P450酶系的结构、功能与应用前景.北京:科学出版社,2001
    10.李菲,程泽能.与细胞色素P4501A2相关的药物相互作用.中国药房,2002,13(9):568-569
    11.李焕德,李坤艳.药物代谢性相互作用体外研究的重要性.中南药学,2005,3(3):197-181
    12.李剑勇,鲁润华.动物用氟喹诺酮类药物的研究进展概况.中兽医医药杂志,2004,6:19-23
    13.李健,刘勇,张江伟,魏泓,杨凌.贵州小型香猪与人五种CYP酶活性的比较.中国比较医学杂志,2006,16(3):157-160
    14.李新,余应年.药物的Ⅱ相代谢与酶系及其进展.中国临床药理学杂志,2000,16(6):459-462
    15.刘颖,焦建杰,娄建石.“Cocktail”探针药物法的研究进展.中国临床药理学与治疗学,2006,11(11):1225-1229
    16.刘宇,曾本华,黄亚琴,岑彦艳,魏泓.洛伐他汀在巴马香猪体内的长期毒性试 验.氨基酸和生物资源,2007,29(1):53-57
    17.魏东,李振华,张乃生.氟喹诺酮类药物特性及其常用兽药.中国兽药杂志,2007,41(4):37-40
    18.许振华,周宏灏.细胞色素氧化酶CYP1A2与药物代谢.中国临床药理学杂志,1996,12(2):115-121
    19.杨海峰,鸡肝微粒体细胞色素P450的初步研究.[硕士学位论文].南京:南京农业大学图书馆,2006
    20.姚根富,吴一迁,瞿永华.鸭乙型肝炎病毒对肝脏细胞色素P450含量的影响.肿瘤,1991,11(1):18-19
    21.郑英,楼宜嘉.微粒体谷胱甘肽S-转移酶与药物代谢.中国药学杂志,2003,38(7):484-487
    22.朱大岭,韩维娜,张荣.细胞色素P450酶系在药物代谢中的作用.医药导报,2004,23(7):440-443
    23.Adav S S,Padmawar P A,Govindwar S P.Effect of sodium sulfadimethylpyrimidine on multiple forms of cytochrome P450 in chicken.Indian Journal of Pharmacology,2005,37(3):169-173
    24.Akira K,Hisato I,Heather M H G,Kim E Y,John J S,Shinsuke T.Cytochrome P450 1A4 and 1A5 in Common Cormorant(Phalacrocorax carbo):Evolutionary Relationships and Functional Implications Associated with Dioxin and Related Compounds.Toxicological Science,2006,92(2):394-408
    25.Annalise D M,Antonella C,Ashok C,Massimiliano F,Ralph L.High-throughput radiometric CYP2C19 inhibition assay using tritiated(S)-mephenytoin.Drug Metabolism and Disposition,2007,35(10):1737-1743
    26.Annalise D M,Isabella M,Ashok C,Marina T,Ralph L.Development and validation of a high throughput radiometric CYP2C9 inhibition assay using tritiated diclofenac.Drug Metabolism and Disposition,2004,33(3):359-364
    27.Ansede J H,Thakker D R.High-throughput screening for stability and inhibitory activity of compounds toward cytochrome P450-mediated metabolism.Journal of Pharmaceutical Sciences,2004,93(2):239-255
    28.Anzenbacher P,Anzerbacherova E,Zuber R,Soucek P,Guengerich F P.Pig and minipig cytochromes P450.Drug Metabolism and Disposition,2002,30(1):100-102
    29.Anzenbacher P,Soucek P,Anzenbacherova E,Gut I,Htuby K,Svoboda Z,Kevtina J. Presence and activity of cytochrome P450 isoforms in minipig liver microsomes. Comparison with human liver samples. Drug Metabolism And Disposition, 1998, 26(1): 56-59
    
    30. Armstrong R N. Structure, catalytic mechanism, and evolution of the glutathione transferases. Chemical Research in Toxicology, 1997, 10(1): 2-18
    
    31. Baliharova V, Velik J, Fimanova K, Lamka J, Szotakova B, Savlik M, Skalova L. Inhibitory effect of albendazole and its metabolites on cytochromes P450 activities in rat and mouflon in vitro. Pharmacological Reports, 2005, 57(1): 97-106
    
    32. Bapiro T E, Egnell A C, Hasler J A, Masimirembwa C M. Application of higher throughput screening (HTS) inhibition assays to evaluate the interaction of antiparasitic drugs with cytochrome P450s. Drug Metabolism and Disposition, 2001,29(1): 30-35
    
    33. Bentivegna C S, Ihnat M A, Baptiste N S, Hamilton J W. Developmental regulation of the 3-methylcholanthrene and dioxin-inducible CYP1A5 gene in chick embryo liver in vivo. Toxicology and Applied Pharmacology, 1998,151(1):166-173
    
    34. Bosetti A, Sobol M, Ma D, Troy G, Cali J J. Bioluminescent Cytochrome P450 Assays. Pharmacologyonline, 2005, 3:9-18
    
    35. Breimer D D. Interindividual variations in drug disposition: Clinical implications and methods of investigation. Clinical Pharmacokinetics, 1983, 8(5): 371-377
    
    36. Brockmoller J, Roots J. Assensement of liver metabolic function: clinical implications. Clinical Pharmacokinetics, 1994, 27 (3): 216-248
    
    37. Bryan D M, Tony A G, Heidi A. B, Mary S. O, Ronald W S, Connie L K, Olga V T. High-Throughput Screening Assays for CYP2B6 Metabolism and Inhibition Using Fluorogenic Vivid Substrates. American Association of Pharmaceutical Scientists, 2003, 5(2): 1-11
    
    38. Burke M D, Mayer R T. Ethoxyresorufin: direct fluorimetric assay of a microsomal O-dealkylation which is preferentially inducible by 3-methylcholanthrene. Drug Metabolism and Disposition, 1974,2(6): 583-588
    
    39. Cali J J, Ma D, Sobol M, Simpson D J, Frackman S, Good T D, Daily W J, Liu D. Luminogenic cytochrome P450 assays. Expert Opinion on Drug Metabolism and Toxicology, 2006, 2(4): 629-645
    
    40. Cali J J. Screen for CYP450 inhibitors using P450-Glo~(? )Luminescent Cytochro-some P450 Assays. 2003, www.promega.com/p450glo
    
    41. Cali J J. Screen for CYP450 Inhibitors Using P450-Glo~(?)Luminescent Cytochrome P450 Assays. 2003, http://www.promega.com/cnotes
    
    42. Carletti M, Gusson F, Zaghini A, Dacasto M, Marvasi L, Nebbia C. In vitro formation of metabolic-intermediate cytochrome P450 complexes in rabbit liver microsomes by tiamulin and various macrolides. Veterinary Research, 2003, 34(4): 405-411
    
    43. Carrillo J A, Benitez J. Clinically significant pharmaco kinetic interactions between dietary caffeine and medications. Clinical Pharmacokinetics, 2000, 38(2): 127-153
    
    44. Chainuvati S, Nafziger A N, Leeder J S, Gaedigk A, Kearns G L, Sellers E, Kashuba A D, Zhang Y, Rowland E, Bertino J S. Combined phenotypic assessment of cytochrome P4501A2, 2C9, 2C19, 2D6, and 3A, N-acetyltransferase-2, and xanthine oxidase activities with the "Cooperstown 5+1 Cocktail". Clinical Pharmacology and Therapeutics. 2003, 74(5): 437-447
    
    45. Charles L C, Vaughn P. M, Bruce W. P. Microtiter Plate Assays for Inhibition of Human, Drug-Metabolizing Cytochromes P450. Analytical Biochemistry, 1997, 248(1): 188-190
    
    46. Chide O E, Orisakwe O E. Structural development, haematological immunological and pharmacological effects of quinolones. Recent Patents of Anti-infective Drug Discovery, 2007, 2(2): 157-168
    
    47. Chirulli V, Marvasi L, Zaghini A, Fiorio R, Longo V, Gervasi P G. Inducibility of AhR-regulated CYP genes by beta-naphthoflavone in the liver, lung, kidney and heart of the pig. Toxicology, 2007,240(2): 25-37
    
    48. Cohen L H, Remley M J, Raunig D, Vaz A D. In vitro drug interactions of cytochrome P450: an evaluation of fluorogenic to conventional substrates. Drug Metabolism and Disposition, 2003, 31(8): 1005-1015
    
    49. Cooke C E, Sklar G E, Nappi J M. Possible interaction with quinidine: ciprofloxacin or metronidazole. The Annals of Pharmacotherapy, 1996, 30(4): 364-366
    
    50. Costas I. Cytochrome P450 expression in the liver of food-producing animals. Current Drug Metabolism, 2006, 7(4): 335-348
    
    51. Craigmill A L, Cortright K A. Interpecises consideration in the evaluation of human food safety for veterinary drugs. Journal of American Association of Pharmaceutical Scientists, 2004,4(4): 1-11
    
    52. Dacasto M, Eeckhoutte C, Capolongoa F, Dupuy J, Carletti M, Calleja C, Nebbia C, Alvinerie M, Galtier P. Effect of breed and gender on bovine liver cytochrome P450 3A (CYP3A) expression and inter-species comparison with other domestic ruminants. Veterinary Research, 2005, 36(2): 179-190
    
    53. Dalvi R R, Nunn V A, Juskevich J. Studies on comparative drug metabolism by hepatic cytochrome P450 containing microsomal enzymes in quail, duck, geese, chicken, turkeys and rats. Comparative Pharmacology and Toxicology, 1987, 87(2):421-424
    
    54. David M S. High-Throughput Screening of Human Cytochrome P450 Inhibitors Using Fluorometric Substrates: Methodology for 25 Enzyme/Substrate Pairs. Optimization in Drug Discovery: In Vitro Methods. 2008, Humana Press, New Jersey,USA
    
    55. Diaz G J, Squires E J. Metabolism of 3-Methylindole by Porcine Liver Microsomes: Responsible Cytochrome P450 Enzymes. Toxicological Sciences, 2000, 55(2): 284- 292
    
    56. Diserks E A, Stams K R, Lim H K,Cornelius G, Zhang H, Ball S E. A method for the simutaneous evaluation of the activities of seven major human drug-metabolizing cytochrome P450s using in vitro cocktail of probe subtrates and fast gradient liquid chromatography tandem mass spectrometry. Drug Metabolism and Disposition, 2001,29(1): 23-29
    
    57. Domagala J M. Structure-activity and structure-side effect relationships for the quinolone antibacterials. Journal of Antimicrobial Chemotherapy, 1994, 33(4), 685-706
    
    58. Edward J R, Christine W A, Jeffery R K, George R, Robert A, Nicola J B, Neil J H, Artemios B V, Allen J S. Drug interaction with clinafloxacin. Antimicrobail Agents and Chemothrapy, 2001,45(9): 2543-2552
    
    59. Ekins S, Ring B J, Grace J, McRobie-Belle D J, Wrighton S A. Present and future in vitro approcaches for drug metabolism. Journal of Pharmacological and Toxicological methods, 2000,44(1): 313-324
    
    60. Faber M S, Jetter A, Fuhr U. Assessment of CYP1A2 activity in clinical practice: why, how, and when. Basic Clinical Pharmacology Toxicology, 2005, 97(3): 125-134
    
    61. Fontaine S M, Hoyer P B, Halpert J R, Sipes, I G. Role of Induction of Specific Hepatic Cytochrome P450 Isoforms in Epoxidation of 4-Vinylcyclohexene. Drug Metabolism and Disposition, 2001,29(9): 1236-1242
    
    62. Fontana E, Dansette P M, Poli S M. Cytochrome p450 enzymes mechanism based inhibitors: common sub-structures and reactivity. Current Drug Metabolism, 2005,6(5): 413-454
    63. Frank F, Keith V W. Bioluminescent Assays for High-Throughput Screening. Assay and Drug Development Technologies, 2007, 5(1): 127-136
    
    64. Freudenthal R I, Leber P, Emmerling D, Kerchner G,Campbell D. Characterization of the hepatic rrricrosomal mixed-function oxidase enzyme system in miniature pigs. Drug Metabolism and Disposition, 1976,4(1): 25-27
    
    65. Fuhr U, Strobl G, Manaut F, Anders E M, Sorgel F, Lopez-de-Brinas E, Chu D T, Pernet A G, Mahr G, Sanz F. Quinolone antibacterial agents: relationship between structure and in vitro inhibition of the human cytochrome P450 isoform CYP1A2. Molecular Pharmacology, 1993, 43(2): 191 -199
    
    66. Gao J. Validation of methodology of bioanalytical methods for pharmacokinetics:highlight of FDA guidelines. Asian Journal of Drug Metabolism and Pharmacokinetics, 2004,4(1): 5-12
    
    67. Gilday D, Gannon M, Yutzey K, Bader D, Rifkind A B. Molecular cloning and expression of two novel avian cytochrome P450 1A enzymes induced by 2,3,7,8- tetrachlorodibenzo-p-dioxin. The Journal of Biological Chemistry, 1996, 271(571):33054-33059
    
    68. Guengerich F P. Human cytochrome P450 enzymes. In: Ortiz de Montellano P R (ed) Cytochrome P450. Plenum Press, New York. 1995,473-535
    
    69. Hansen A J, May B K. Sequence of a chicken phenobarbital-inducible cytochrome P450 cDNA: regulation of two mRNAs transcribed from different genes. DNA (Mary Ann Liebert, Inc), 1989, 8(3): 179-191
    
    70. Hirt R A, Teinfalt M, Dederichs D, vanden Hoven R. The effect of orally administered marbofloxacin on the pharmacokinetics of theophylline. Journal of Veterinary Medicine, 2003, 50(5), 246-250
    
    71. Johanna F G. Implications of hepatic cytochrosome P450-mediated biotransformation processes in veterinary science. European Journal of Pharmacology, 2005, 585(2): 502-509
    
    72. Kawalek J C, Said K R. Comparison of maturation of drug-metabolizing enzymes in calves with functioning or nonfunctioning rumen. American Journal of Veterinary Research, 1994, 55(11): 1579-1586
    
    73. Kawalek J C, Said K R. Maturational development of drug-metabolizing enzymes in sheep. American Journal of Veterinary Research, 1990, 51(11): 1736-1741
    
    74. Khalil W F, Saitoh T, Shimoda M, Kokue E. In vitro cytochrome P450-mediated hepatic activities for five substrates in specific pathogen free chickens. Journal of Veterinary Pharmacology and Therapeutics, 2001,24(5): 343-348
    
    75. Kimberly A T, Daniel E, Bruce R W, Stegaman J J. Cytochrome P4501A Induction in Sea Ducks Inhabiting Nearshore Areas of Prince William Sound, Alaska. Marine Pollution Bulletin, 2000, 40(5): 397-403
    
    76. Lawrence H C, Michael J R, David R, Alfin D N V. In vitro drug interactions of cytochrome P450: An evaluation of fluorogenic to conventional substrate. Drug Metabolism and Disposition, 2003, 31(8): 1005-1016
    
    77. Levy M, Caraco Y, Geisslinger G. Drug acetylation in liver disease. Clinical Pharm-acokinetics, 1998, 34(3): 219-226
    
    78. Lewis D F. Cytochrome P450 Structure, Function and Mechannism. Taylor Francis, 1996, 79-88
    
    79. Lin J H, Lu A Y. Inhibition and induction of cytochrome P450 and the clinical implications. Clinical Pharmacokinetics, 1998, 35(5): 361-390
    
    80. Mackenzie P I, Owens I S, Burchell B, Block K W, Bairoch A A, Belanger S. Fournel-Gigleux M, Green D W, Hunt T, Iyanagi D, Lancet P, Louisot J, Magdalou J R, Chowdhury J K, Ritter H, Schachter T R, Tephly K F, Tipton D W, Nebert. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics, 1997, 7(4): 255-269
    
    81. Maesen F P, Teengs J P, Baur C, Davies B I. Quinolones and raised plasma concentrations of theophylline. Lancet, 1984,1(2), 530-535
    
    82. Marchbanks C R. Drug-drug interactions with fluoroquinolones. Pharmacotherapy, 1993,13(2): 23-28
    
    83. Marjo J K, Pertti J N, Janne T B. In vitro Inhibition of CYP1A2 by Model Inhibitors, Anti-Inflammatory Analgesics and Female Sex Steroids: Predictability of in vivo Interactions. Basic Clinical Pharmacology and Toxicology, 2008,103(2): 157-165
    
    84. Marvasi L, Zaghini A, Gervasi P G, Vaccaro E, Chirulli V. Induction of cytochrome P4501A by P-naphto-flavon within the pig liver and central nervous system. Veterinary Research Communications, 2006, 30(1): 333-336
    
    85. Matsui M, Homma H. Biochemistry and molecular biology of drug-metabolizing sulfotransferase. The International Journal of Biochemistry, 1994,26(11): 1237-1247
    
    86. McLellan R A, Drobitch R K, Monshouwer M, Renton K W. Fluoroquinolone antibiotics inhibit cytochrome P450-mediated microsomal drug metabolism in rat and human. Drug Metabolism and Disposition, 1996,24(10): 1134-1138
    
    87. Messina A, Chirulli V, Gervasi P G, Longo V. Purification, molecular cloning, heterologous expression and characterization of pig CYP1A2. Xenobiotica, 2008, 38(12): 1453-1470
    
    88. Meyer U A. Overiew of enzymes of drug metabolism. Journali of Pharmacokinetics and Biopharmaceutics, 1996, 24(5): 449-459
    
    89. Michael J C, Willy A S, Lashitew G, Daniel W N. Activation of Transcription Factors in Zebrafish Cell Cultures by Environmental Pollutants. Archives of Biochemistry and Biophysics, 2000, 376(2): 320-327
    
    90. Miechelle O B, Gary D K, Kenneth D T. The influence of coordinate overexpression of glutathione phase II detoxification gene products on drug resistance. The Journal of Pharmacology and Experimental Therapeutics, 2000, 294(2): 480-487
    
    91. Miller V P, Stresser D M, Blanchard A P, Turner S, Crespi C L. Fluorometric highthroughput screening for inhibitors of cytochrome P450. Annals of the New York Academy of Sciences, 2000, 919: 26-32
    
    92. Monshouwer M, Klooster G A, Nijmeijer S M, Witkamp R F, Miert A S. Characterization of cytochrome P450 isoenzymes in primary cultures of pig hepatocytes. Toxicology In vitro, 1998, 12(6):715-723
    
    93. Myers M J, Farrell D E, Howard K D, Kawalek J C. Identification of multiple constitutive and inducibl hepatic cytochrome P450 enzymes in market weight swine. Drug Metabolism and Disposition. 2001, 29(6): 908-915
    
    94. Nebbia C, Ceppa L, Dacasto M, Carlrtti M, Nachtmann C. Oxidative monensin metabolism and cytochrome P4503A content and functions in liver microsomes from horses, pigs, broiler, cattle and rats. Journal of Veterinary Pharmacology and Therapeutics, 2001,24(6): 399-403
    
    95. Obermayer S P, Strassburg C P, Manns M P. Target proteins in human autoimmunity: cytochromes P450 and UDP-glucuronosyl transferases. Canadian Journal of Gastroen terology, 2000, 14(5): 429-439
    
    96. Paine A J. Heterogeneity of cytochrome P450 and its toxicological significance. Human Experimental Toxicology, 1996, 14(1): 1-7
    
    97. Paul G, Robert P C. Cytochrome P450 Enzymes and Drug Metabolism-Basic Concepts and Methods of Assessment. Cellular and Molecular Neurobiology, 1999,19(3): 309-323
    
    98. Porter T D. Jud Coon: 35 years of P450 research: a synopsis of P450 history. Drug Metabolism and Disposition, 2004, 32(1): 1-6
    
    99. Ram P, Gupta, Mohamed H, Abou-Donia. Cytochrome P450 enzymes in chickens: charaterstics and induction by xenobiotics. Comparative Biochemistry and Physiology, 1998,121(1-3): 73-83
    100.Rasmusson B B, Nieelsen T L, Broson K. Fluvoxamine is a potent inhibitor of the metabolism of caffeine in vitro. Pharmacology and Toxicology, 1998, 83(6): 240-245
    101.Reed K M, Mendoza K M, Coulombe R A. Structure and genetic mapping of the Cytochrome P450 gene (CYP1A5) in the turkey (Meleagris gallopavo). Cytogenetic and Genome Research, 2007, 116(2): 104-109
    102.Reginald F. Probing the World of Cytochrome P450 Enzymes. Molecular Interventions, 2004,4(3): 157-162
    103.Regmi N L, Abdelath A M, Kubota R, Shah S S, Shimoda M. Lack of inhibitory effects of several fluoroquinolones on cytochrome P450 3A activities at clinical dosage in dogs. Journal of Veterinary Pharmacology and Therapeutics, 2007, 30(1): 37-42
    104.Regmi N L, Abdelath A M, Kuroha M, Nakamura M, Shimoda M. Inhibitory effect of several fluoroquinolones on hepatic microsomal cytochrome P450 1A acticities in dogs. Journal of Veterinary Pharmacology and Therapeutics, 2005,28(6): 553-557
    105.Riley R J, Howbrook D. In vitro analysis of the activity of the major human hepatic CYP enzyme (CYP3A4) using [N-methyl-~(14)C]-erythromycin. Journal of Pharmacological and Toxicological Methods, 1997,38(4): 189-193
    106.Robert L W, Sherri E B. In Vitro Cytochrome P450 Inhibition and Induction. Current Drug Metabolism, 2008, 9(9): 928-939
    107.Rodrigues A D, Kukulka M J, Surber B W, Thomas S B, Uchic J T, Rotert G A, Michel G, Thomekromer B, Machinist J M. Measurement of Liver Microsomal Cytochrome P450 (CYP2D6) Activity Using [O-methyl-~(14)C] dextromethorphan. Analytical Biochemistry, 1994,219(2): 309-320
    108.Rodrigues A D, Surber B W, Yao Y, Wong S L, Roberts E M. [O-ethyl ~(14)C] phenacetin O-deethylase activity in human liver microsomes. Drug Metabolism and Disposition, 1997,25(9): 1097-1100
    109.Samuel A, Testino J, Gabor P. High-throughput inhibition screening of major human cytochrome P450 enzymes using an in vitro cocktail and liquid chromatography -tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2003,30(5): 1459-1467
    110.Scott R J, Palmer J, Lewis I A, Pleasance S. Determination of a"GW Cocktail"of cytochrome P450 probe substrates and their metabolites in plasma and urine using automated solid phase extraction and fast gradient liquid chromatography tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 1999, 13(23):2305-2319
    111 .Shelepova T, Nafziger A N, Victory J, Kashuba A D, Rowland E, Zhang Y, Leeder J S, Sellers E, Kearns G, Gaedigk A, Bertino J S. Effect of a triphasic oral contraceptive on drug-metabolizing enzyme activity as measured by the validated Cooperstown 5+1 cocktail. Journal of Clinical Pharmacology, 2005, 45(12): 1413-1421
    112.Shlosberq A, Ershov E, Bellaiche M. The inhibitory effects of the fiuoroquinolone antimicrobials norfloxacin and enrofloxacin on hepatic microsomal cytochrome P450 monooxygenases in broiler chickens. Drug Metabolism and Interaction, 1997, 14(2): 109-122
    113.Short C R, Maines M D, Westfall B A. Postnatal developrpent of drug-metabolizing enzyme activity in liver and extrahepatic tissues of swine. Biology of The Neonate, 1972,21(1): 54-68
    114.Sinclair P R, Gorman N, Walton H S, Sinclair J F, Lee C A, Rifkind A B. Identification of CYP1A5 as the CYP1A enzyme mainly responsible for uroporphy-rinogen oxidation induced by AH receptor ligands in chicken liver and kidney. Drug Metabolism and Disposition, 1997,25(7): 779-783
    115.Skaanild M T, Friis C. Characterization of the P450 system in Goettingen minipigs. Pharmacology and Toxicology, 1997, 80 (2): 28-33
    116.Skaanild M T, Friis C. Porcine CYP2A polymorphisms and activity. Basic Clinical Pharmacology and Toxicology, 2005,97(2): 115-121
    117.Skaanild M T. Porcine Cytochrome P450 and metabolism. Current Pharmaceutical Design, 2006, 12( 11), 1421 -1427
    118.Slaughter R L, Edwards D J. Recent advances: The cytochrome P450 enzymes. The Annals of Pharmacotherapy, 1995,29(6): 619-624
    119.Soucek P, Zuber R, Anzenbacherova E, Zuber R, Anzenbacher P, Guenerich F P. Minipig cytochrome P4503A, 2A and 2C enzymes have similar properties to human analogs. BMC Pharmacology, 2001,1 (1): 11 -15
    120.Stein G E. Drug interactions with fluoroquinolones. The American Journal of Medicine, 1991, 91(6): 81-86
    121. Stephen F, Zhang H J. In vitro evaluation of reversible and irreversible cytochrome P450 inhibition: current status on methodologies and their utility for Predicting Drug-drug interactions. Journal of American Association of Pharmaceutical Scientists, 2008,10(2): 410-424
    
    122.Streetman D S, Bertino J S, Nafziger A N. Phenotyping of drug-metabolizing enzymes in adults: a review of in vivo cytochrome P450 phenotyping probes. Pharmacogenetics, 2000,10(3): 187-216
    
    123.Streetman D S, Bleakley J F, Kim J S, Nafzaiger A N, Leeder J S, Gaedigk A, Gotschall R, Keams G L, Bertino J S. Combined phenotypic assessment of CYP1A2, CYP2C19, CYP2D6, CYP3A, N-acetyltransferase-2, and xanthine oxidase with the "Cooperstown cocktail". Clinical Pharmacology and Therapeutics, 2000, 68(10): 375-383
    
    124.Sugimoto M. GlutathioneS-transferases (GSTs). Nippon-Rinsho: Japanese Journal of Clinical Medicine, 1995, 53: 1253-1259
    
    125.Szotakova B, Baliharova V, Lamka J, Nozinova E, Wsol V, Velik J, Machala M, Neca J, Soucek P, Susova S, Skalova L. Comparison of in vitro activities of biotransformation enzymes in pig, cattle, goat and sheep. Research in Veterinary Science, 2004 76(1): 43-51
    
    126.Theresa C P, Marc R P, Philip A W, Mattthew G B, Frank J G Role of CYP1A2 and CYP2E1 in the pentoxifylline ciprofloxacin drug interaction. Biochemical Pharmacology, 2004, 68(2): 395-402
    
    127.Thomas S. Refinement of the coomassie blue method of protein quantitation. A simple and linear spectrophotometric assay for less than or equal to 0.5 to 50 microgram of protein. Analytical Biochemistry, 1978,86(1): 142-146
    
    128.Thomsen M K, Friis C, Nielsen P. Purification and characterization of hepatic microsomal cytochrome P450 in phenobarbital and beta-naphthoflavone-treated pigs. Pharmacology and Toxicology, 1991,69(5): 381-385
    
    129.Thorir D B, John T C, Heidi J E, Volker F, Lawrence G, Scott G, John K, Peter K, Gerald M, Lan N, Gondi K, James M R, Scott O, Stanley R, Amy R, Anita S, Fred S, John T S, Donald T, Jose M V, John W, Steven A W. The conduct of in vitro and in vivo drug-drug interaction studies: A Pharmaceutical research and manufacturers of America (PhRMA) perspective. Drug Metabolism and Disposition, 2003, 31(7): 819-825
    
    130.Trepanier L A. Cytochrome P450 and its role in veterinary drug interactions.Veterinary Clinical North American Small Animal Pharmaceutical, 2006, 36(5): 975 -985
    131.Tsuchida S, Kimura J, Hayakari M, Ishikawa T. Usefulness of glutathione S-transferase as a tumor marker. Rinsho Byori: The Japanese Journal of Clinical Pathology, 1997,45(12): 1125-1132
    132.U.S Food and Drugs Administration (FDA). Drug Interaction Studies: Study Design, Data Analysis, and Implications for Dosing and Labeling. http://www.fda.gov/cder/ guidance/index.htm, 2006
    133.U.S Food and Drugs Administration (FDA). Guidance for Industry: In vivo drug metabolism and drug interaction studies Study design, date analysis, and recommendations for dosing and labelling. http://www.fda.gov/cder/guidance/ index.htm, 1999
    134.Usia T, Iwata H, Hiratsuka A, Watabe T, Kadota S, Tezuka Y. CYP3A4 and CYP2D6 inhibitory activities of Indonesian medicinal plants. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 2006, 13(1): 67-73
    135.Van 't Klooster G A, Blaauboer B J, Noordhoek J, van Miert A S. Cytochrome P450 induction and metabolism of alkoxyresorufins, ethylmorphine and testosterone in cultured hepatocytes from goats, sheep and cattle. Biochemical Pharmacology, 199346(10):1781-1790
    136.Villar D, Furusawa N, Monshouwer M, Van Miert A S J P A M. Novobiocin inhibits both UDP-glucuronosyltransferase and cytochrome P450-metiated enzyme activities in pig liver microsomes. Veterinary Research Communications, 1998, 22(6): 405-414
    137.Walke C H, Johaston G O. Potentiation of pesticide toxicity in brids-the role of cytochrome P450. Biochemical Society Transactions, 1993, 21(4): 1066-1068
    138.Walke C H. Avian forms of cytochrome P450. Comparative Biochemistry and Physiology, 1998, 121(1-3): 65-72
    139.Walsky R L, Obach R S. Validated assays for human cytochrome P450 activities. Drug Metabolism and Disposition, 2004, 32(6): 647-660
    
    140. Weaver R, Graham K S, Beattie I G. Cytochrome P450 inhibition using recombinant proteins and mass spectrometry/multiple reaction monitoring technology in a cassette incubation. Drug Metabolism and Disposition, 2003, 31 (7): 955-966
    
    141. Weber W W, Hein D W. N-Acetylation pharmacogenetics: Michaelis-Menten constants for arylamine drugs as predictors of their N-acetylation rates in vivo. American Society for Pharmacology and Experimental Therapeutics, 1986, 14(4):382-385
    
    142.Wexler D, Courtney R, Richards W, Banfield C, Lim J, Laughlin M. Effect of posaconazole on cytochrome P450 enzymes: a randomized, open-label, two-way crossover study. European Journal of Pharmaceutical Sciences, 2004, 21(5): 645-653
    
    143.Wijnands W J, Vree T B. Interaction between the fluoroquinolones and the bronchodilator theophylline. Journal of Antimicrob Chemother, 1988, 22: 109-114
    
    144.Wrighton S A, Vardonbra B M, Ring B J. The human drug metabolizing cytochromes P450. Journal of Pharmacokinetics and Biopharmaceutics, 1996, 24 (5): 461-473
    
    145.Yuan R, Madani S, Wei X X, Kellie R, Huang S M. Evaluation of cytochrome P450 probe substrates commonly used by the pharmaceutical industry to study in vitro drug interactions. Drug Metabolism and Disposition, 2002, 30(12): 1311-1319
    
    146.Zhang T Y, Zhu Y X, Gunaratna C. Rapid and quantitative determination of metabolites from multiple cytochrome P450 probe substrates by gradient liquid chromatography-electrospray ionization-ion trap mass spectrometry. Journal of Chromatogr B Analytical Technology Biomed Life Science, 2002, 780(2): 371-379
    
    147.Zhang T Y, Zhu Y X, Gunaratna C. Simultaneous determination of metabolites from multiple cytochrome P450 probe substrates by gradient liquid chromatography with UV detection. Current Separations, 2003,20 (3): 87-91
    
    148.Zhang X P, Lalezari J P, Badley A D, Dorr A, Kolis S J, Kinchelow T, Patel I H. Assessment of drug-drug interaction potential of enfuvirtide in human immunodeficiency virus type 1-infected patients. Clinical Pharmacology and Therapeutics,2004, 75(6): 558-568
    
    149.Zhou J Q, Tang Z Q. Effect of quercetin on CYP1A2, CYP2E1, CYP3A2 activities and its inhibitory mechanism studies in rat liver microsomes. Journal of Chinese Pharmaceutical Sciences, 2005, 14 (4): 231-236
    
    150.Zlokarnik G, Grootenhuis P D, Watson J B. High throughput P450 inhibition screens in early drug discovery. Drug Discovery Today, 2005,10(21): 1443-1450

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700