具有缺口的多晶Co纳米盘状、环状磁体的微磁学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有人为形状缺陷的图案化薄膜介质是近年来磁存储领域研究的热点,缺陷的存在改变了磁体的磁化反转模式,磁滞回线的形状以及剩磁态等,含有扇形缺口的圆形磁体被认为是对几何圆形磁体的结构改进。研究具有一定形状缺陷的小磁性单元不仅能促进磁存储和磁性传感器等领域的发展,而且能够丰富和完善微磁学理论。
     本文选择多晶Co纳米磁体作为研究对象,依据实验结果,利用微磁学有限差分的方法系统研究了具有不同扇形缺口的盘状、环状磁体的磁化反转过程。得到结果如下:磁体的形状各向异性对磁化反转过程的影响是最主要的,磁体的剩磁态磁矩分布还强烈地依赖于外场的方向,磁体的直径和厚度对于磁体的剩磁和矫顽力有很大的影响。此外对于环状磁体阵列来说,近邻磁体单元之间的静磁耦合作用对于磁体的回线的形状没有明显的影响,但对磁体单元的剩磁态有一定的影响。
Nowadays is information age, magnetic store has been the most capital instrument in the storage of messages. As the deal of digital information which people attend to steps up constantly, people bring up higher request about storage capacity and performance continuously. That how to increase the magnetic store domain density and abridge the response time of read/write is the problem that schoolers who work at magnetic material have to resolve all the time.
     As a memory media, nanomagnetic thin film have expansive applicatives for high-density recording devices、MRAM and magnetic sensors. the circular element is an ideal candidate which can be packed closely for high density magnetic recording applications. However, for the circular elements, it is difficult to control the remanent state magnetic rotation directions, i.e., clockwise or counterclockwise directions, for information storage applications. The inductiveness of artificial defects in the circular element changed the magnetization reversal pattern and remanent states of magnetics, which is a improve for the circular geometry. While it make the reverse magnetization process to be controlled easily. In resont years, the study on the circular magnetics which contain figurate defects have been being the hot spots.
     Before these technologys become products, the micromagnetic study on patterned thin film media with artificial defects is very necessary, which not only make us profound grasp the magnetization reversal mechanisms, but also provide beneficial guidance how to improve the performance of magnetic recording. In this paper, remanent states and magnetization reversal for polycrystalline Co slotted-disks and slotted-rings have been investigated using OOMMF micromagnetic calculated shoftware, with different combinations of diameter、slotted angle(α)、thickness and applied field directions. Our results as follows:
     (1) The 400-nm-diameter Co slotted disks were simulated. Different combinations of disk thickness and slot angles were studied using orthogonal applied field directions (perpendicular and parallel to the slot angle (α)). We found that: the shape anisotropy has great impact on magnetization reversal, while the applied field directions have effect on the magnetic hysteresis and remanent states: When the applied field was perpendicular to the slot direction, the remanent states of all the magnetic elements are Flux-closure configuration, the coercivity, remanent magnetism degrade with the accession in thinkness of disks, or the minishing of sector chip. For the parallel direction applied field, the remanent magnetization of slotted disks degrade with the increase of thinkness and sector chip of magnets, while the variety in coercivity are complicate.
     (2) The remanent state and magnetization revesal of 30-nm-thick Co slotted rings were simulated individually and in 2×2 arrays with different interelement distances, the field was orthogonal directions too. We found that: the shape anisotropy and the directions of applied field have great effects on the remanent state of the slotted-rings, no matter how the rings arrange (individually or in 2×2 arrays). The distribution of magnetic moment and magnetic rotation directions of the remanent state were decide by the direction of applied field: When the field applied perpendicular to the slots, the remanent states of all the magnetic elements are Flux-closure configuration. The width of annular magnetic affects the remanent magnetization and coercivity too.
     In 2×2 arrays of slotted rings with the thinkness of 30nm [OD/ID (nm): 300/50, ], The interelement distance have effects on the shape of hysteresis, the distribution of magnetization vector in remanent state, coercivity and remanent magnetization due to the static coupling action of neighboring elements, When the distance is twice as outer diameter, it’s affection could be ignored.α=60o
引文
[1] P.Curie, Compt. Rend. 118(1894)796.
    [2] P.Curie, J. de Phys. 4(1895)197.
    [3] P.Curie, Ann. De. Chim. Phys. 5(7)(1895)289.
    [4] P.Langevin, J. Phys. 4(1905)678.
    [5] P.Langevin, Ann. De. Chim. Phys. 5(8)(1905)70.
    [6] P.Weiss, J. Phys. Radium 6(1907)661.
    [7] 周寿增等,《超强永磁体-稀土铁系永磁材料》, 冶金工业出版社,1999.
    [8] Werner Scholz. Scalabe Parallel Micromagnetic Solvers for Magnetic Nanostructures. PhDthesis, Institute of Solid Stata Physics, Vienna University Of Technology, 2003.
    [9] K. J. Strnat, G. Hoffer, J Oson, and W. Ostertag, A family of cobaltbased permanent magnet materials, Journal of Applied Physics, 1967, vol. 38, p.1001-1002.
    [10] M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, and Y. Matsuura, New material for permanent magnets of a base of Nd and Fe, Journal of Applied Physics, 1984,vol. 55,p.2083-2087.
    [11] V. Poulaen, U, S. Patent, 1900, No :661619.
    [12] G. C. Hadjipanayis, R. C. Hazelton, and K. R. Lawless. Cobalt-free permanent magnet materials based on iron-rare-earth alloys. Journal of Applied Physics, 1984, vol.55(6), p.2073-2077.
    [13] S. N. Piramanaygam, H. B. Zhao, J. Z. Shi, Palladium-based intermediate layers for CoCrPt–SiO2 perpendicular recording media, Applied Physics Letter, 2006, vol.88, p.092506.
    [14] Jae-Song Kim, Yang-Mo Koo, Byeong-Joo Lee, et al. The origin of (001) texture evolution in FePt thin films on amorphous substrates, Journal of Applied Physics, 2006, vol.99, p.053906.
    [15] R. Chomko, D. Litvinov, and Sakhrat Khizroev, Nanoscale recording transducer for perpendicular magnetic recording, Applied Physics Letter, 2005, vol.87, p.162523.
    [16] S. X. Xue, Hao Wang, H. B. Wang, et al, Proc. SPIE, 2005, vol.5966, p.59660F.
    [17] T. Shima, K. Takansshi, Y. K. Takahashi, Preparation and magnetic properties of highly coercive FePt films, Applied Physics Letter, 2002, vol.81, p.1050.
    [18] J. S. Chen, Y. F. Xu, and J. P. Wang, Effect of Pt buffer layer on structural and magnetic properties of FePt thin films, Journal of Applied Physics, 2003, vol.93, p.1661.
    [19] G. Q. Li. H. Takahoshi, H. Ito, H. Saito, and S. Ishio, Morphology and domain pattern of L10 ordered FePt films, Journal of Applied Physics, 2003, vol.94,p.5672.
    [20] Zheng Gai. J. Y. Howe. Jiandong Guo, Self-assembled FePt nanodot arrays with mono-dispersion and –orientation, Applied Physics Letter, 2003, vol.86, p.023107.
    [21] S. Okamoto, O. Kitakami, T. Miyazaki, and Y. Shimada, Assembly of FePt L10 nanoparticles grown on MgO(110) with self-organized groove structure, Journal of Applied Physics, 2004, vol.96, p.5217.
    [22] T. Thomson . M. F. Toney . S. L. Lee, Structural and magnetic model of self-assembled FePt nanoparticle arrays. Journal of Applied Physics, 2003, vol.96, p.1197.
    [23] Shishou Kang, Zhiyong Jia, David E. Nikles, and J. W. Harrell, Synthesis and phase transition of self-assembled FePd and FePdPt nanoparticles, Journal of Applied Physics, 2003, vol.95, p.6744.
    [24] T. S. Vedantam and J. P. Liu , H. Zeng and S. Sun , Thermal stability of self-assembled FePt nanoparticles, Journal of Applied Physics, 2003, vol.93, p.7184.
    [25] Y. Kamata, A. Kikitsu, H. Hieda, M. Sakurai, and K. Naito, Ar ion milling process for fabricating CoCrPt patterned media using a self-assembled PS-PMMA diblock copolymer mask, Applied Physics Letter, 2004, vol.95, p.6705.
    [26] Chiseki Haginoya and Kazuyuki Koike Yoshiyuki Hirayama and Jiro Yamamoto Masayoshi Ishibashi, Thermomagnetic writing on 29 Gbit/in.2 patterned magnetic media, Applied Physics Letter, 1999, vol.75, p.3159.
    [27] Xiangdong Lin, Jian-Gang Zhu, and William Messner, Investigation of advanced position error signal patterns in patterned media, Journal of Applied Physics, 2000, vol.87, p.5117.
    [28] D. Weller, J. E. E. Baglin, A. J. Kellock, K. A. Hannibal, and M. F. Toney .G. Kusinski, Ion induced magnetization reorientation in Co/Pt multilayers for patterned media, Journal of Applied Physics, 2000, vol.87, p.5768.
    [29] Akihiko Takeo and H. Neal Bertram, Pulse shape, resolution, and signal-to-noise ratio in patterned media recording. Journal of Applied Physics, 2005, vol.97, p.10N104.
    [30] M. Albrecht. C. T. Rettner. M. E. Best and B. D. Terris, Magnetic coercivity patterns for magnetic recording on patterned media, Applied Physics Letter, 2003, vol.83, p.4363.
    [31] M. Albrecht, C. T. Rettner, A. Moser, M. E. Best, and B. D. Terris, Recording performance of high-density patterned perpendicular magnetic media, Applied Physics Letter, 2002, vol.81, p.2875.
    [32] Evan Small, Yizhang Yang, Sadegh M. Sadeghipour, and Mehdi Asheghi. Simulation of the writing on the patterned optical phase-change recording media. Journal of Applied Physics, 2006, vol.99, p.033101.
    [33] D. Karns, J. Y. Kim, B. Lu, et al., Proc. SPIE, 6027 (2006) 60270X.
    [34] Rok Dittrich, Thomas Schrefl, Dieter Suess, Werner Scholz, Hermann Forster, andJosef Fidler, Thermally induced magnetization reversal in antiferromagnetically coupled media, Journal of Applied Physics, 2003, vol.93, p.7405.
    [35] 戴道生等.《铁磁学》上册. 科学出版社,1987,第一版.
    [36] W. F. Brown. Theory of the approach to magnetic saturation. Physical Review, 1940, vol.48, p.736.
    [37] W. F. Brown. Micromagnetics. Interscience, New York, 1963.
    [38] W. F. Brown. Magnetostatic principles in ferromagnetism. Interscience, New York, 1962.
    [39] M. Donahue and D. Porter. Object oriented micromagneticframework (oommf) home page. Available from http://math.nist.gov/oommf/, October 2002.
    [40] Werner Scholz, Josef Fidler, Thomas Schrefl, et al. Scalable parallel micromagnetic solvers for magnetic nanostructures. Computational Materials Science, 2003, vol.28, p.66.
    [41] M. R. Scheinfein. LLG(Landau-Lifshitz-Gilbert) micromagnetics simulator home page. Available from http://llgmicro.home.mindspring.com/, 2003.
    [42] M. Rahm, J. Stahl, W. Wegscheider, and D. Weiss, Multistable switching due to magnetic vortices pinned at artificial pinning sites, Applied Physics Letters, 2004, vol.85, p.1553.
    [43] M. Rahm, M. Schneider, J. Biberger, R. Pulwey, J. Zwech, and D. Weiss. Vortex mucleation in submicrometer ferromagnetic disks. Applied Physics Letters, 2003, vol.82(23), p.4110.
    [44] M. Rahm, J. Stahl, and D. Weiss. Programmable logic elements based on ferromagnetic nanodisks containing two antidotes. Applied Physics Letters, 2005, vol.87(18), p.182107.
    [45] 刘明博,吉林大学硕士论文, 2006.
    [46] C. A. F. Vaz, L. Lopez-Diaz, M. Kl?aui, J. A. C. Bland, T. L. Monchesky, J. Unguris, Z. Cui, Direct observation of remanent magnetic states in epitaxial fcc Co small disks, Physical Review B, 2003, vol.67, p.140405(R).
    [47] W. Heisenberg, Z. Physik, 1931, vol.69, p.287.
    [48] 禄迈,兰州大学博士论文, 1999.
    [49] Hanmin Jin, Y. B. Kim, W. S. Park, M. J. Park and X.F. Wang, Journal of Physics: Condens Matter, 1998, vol.10, p.389.
    [50] T. Schrefl, J. Fidler and H. Kronmüller, Nucleation fields of hard magnetic particles in 2D and 3D micromagnetic calculations, Journal of Magnetism and Magnetic. Materials, 1994, vol.138, p.15-30.
    [51] J. Kuma, N. Kitajima, Y. Kanai and H. Fukunaga, Maximum energy product of isotropic Nd-Fe-B-based nanocomposite magnets, Journal of Applied Physics, 1998, vol.83, p.6623-6625.
    [52] W. F. Brown, Jr., J. Phys. Soc. Jpn. (1962) 17 Suppl. B-I 540.
    [53] Werner Scholz, Josef Fidler, Thomas Schrefl, et al. Scalable parallel micromagnetic solvers for magnetic nanostructures. Computational Materials Science, 2003, vol.28, p.366.
    [54] Y. Nakatani, Y. Usesake, and N. Hayashi, Japan Journal of Applied Physics, 1989, vol.28, p.2485.
    [55] R. P. Cowburn, M. E. Welland, Phase transitions in planar magnetic nanostructures, Applied Physics Letter, 1998, vol.72, p.2041.
    [56] N. Tezuka, N. Koike, K. Inomata, S. Sugimoto, Single domain observation for synthetic antiferromagnetically coupled bits with low aspect ratios, Applied Physics Letter, 2003, vol.82, p.604.
    [57] K. J. Kirk, J. N. Chapman, S. McVitie, P. R. Aitchison, C. D. W. Wilkinson, Switching of nanoscale magnetic elements, Applied Physics Letter, 1999, vol.75, p.3683.
    [58] L. Tomas, S. S. P. Parkin, J. Yu, U. R?udiger, A. D. Kent, Switching of nanoscale magnetic elements, Applied Physics Letter, 2000, vol.76, p.766.
    [59] F. Carace, P. Vavassori, G. Gubbiotti, S. Tacchi, M. Madami, G. Carlotti, T. Okuno, Magnetization reversal process in elliptical Permalloy nanodots, Thin Solid Films, 2006, vol.515, p.727 – 730.
    [60] X. B. Zhu, P. Gr?utter, V. Metlushko, B. Ilic, Magnetic force microscopy study of electron-beam-patterned soft permalloy particles: Technique and magnetization behavior, Physics Review B, 2002, vol.66, p.024423.
    [61] R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E.Welland, D. M. Tricker, Single-Domain Circular Nanomagnets, Physics Review Letter, 1999, vol.83, p.1042.
    [62] S. P. Li, D. Peyrade, M. Natali, A. Lebib, Y. Chen, U. Ebels, L.D. Buda, K. Ounadjela, Flux Closure Structures in Cobalt Rings, Physical Review Letter, 2001, vol.86, p.1102.
    [63] Z. B. Guo, Y. K. Zheng, K. B. Li, Observation of a flux closure state in NiFe/IrMn exchange biased rings, Journal of Applied Physics, 2003, vol.93, p.7435.
    [64] Z. B. Guo, Y. K. Zheng, K. B. Li, Saturation field direction dependence of domain structures in NiFe elements, Solid State Communications, 2006, vol.139, p.419–423.
    [65] A. Subramani, D. Geerpuram, V. Baskaran, J. Friedlund, V. Metlushko, Precise Control of vortex chirality in magnetic nano-ringgs with deliberately introduced asymmetry, Physica C, 2006, vol.437-438, p.293-298.
    [66] C. A. F. Vaz, M. Kl?ui, L. J. Heyderman, C. David, F. Nolting, and J. A. C. Bland, Multiplicity of magnetic domain states in circular elements probed by photoemission electron microscopy, Physical Review B, 2005, vol.72, p.224426.
    [67] F. J. Castan?, C. A. Ross, A. Eilez, W. Jung, and C. Frandsen, Magnetic configurations in 160–520-nm-diameter ferromagnetic rings, Physical Review B, 2004, vol.69, p.144421.
    [68] J. L. Costa-Kr?mer, R. Alvarez-Sánchez, A. Bengoechea, Noninvasive magnetic imaging and magnetization measurement of isolated mesoscopic Co rings, Physical Review B, 2005, vol.71, p.104420.
    [69] J. Bekaert, D. Buntinx, C. Van Haesendonck, V. V. Moshchalkov, magnetic imaging and magnetization measurement of isolated mesoscopic Co rings, Applied Physics Letters, 2002, vol.81, p.3413.
    [70] H. Wang, H. Hu, M. R. McCartney, D. J. Smith., Remanent states of nanoscale Co ferromagnets having different shapes. Journal of Magnetism and Magnetic Materials, 2006, vol.303, p.237-242.
    [71] 张振华, 吉林大学硕士学位论文. 2007.
    [72] Jomathan Kin Ha, Riccardo Hertel, J. Kirschner, Micromagnetic study of magnetic configurations in submicron permalloy disks, Physical Review B, 2003, vol.67, p.224432
    [73] T. Thomson, G. Hu, and B. D. Terris, Intrinsic Distribution of Magnetic Anisotropy in Thin Films Probed by Patterned Nanostructures, Physcal Review Letter, 2006, vol.96, p.257204.
    [74] M. H. Park, Y. K. Hong, B. C. Choi, M. J. Donahue, H. Han, and S. H. See, Vortex head-to-head domain walls and their formation in onion-state ring elements, Physical Review B, 2006, vol.73, p.094424.
    [75] F. Q. Zhu, G. W. Chern, O. Tchernyshyov, X. C. Zhu, J. G. Zhu, and C. L. Chien, Magnetic Bistability and Controllable Reversal of Asymmetric Ferromagnetic Nanorings, Physics Review Letter, 2006, vol.96, p.027205.
    [76] F. J. Castano, C. A. Ross, and A. Eilez, Journal of Appllied Physics, Journal of Physical D, 2003, vol.36, p.2031.
    [77] H. Hu, H. Wang, M.R. McCartney, David J. Smith,Switching behavior of nanoscale Co ferromagnetic elements using off-axis electron holography,Journal of Magnetism and Magnetic Materials, 2005, vol.290-291, p.234-237.
    [78] H. Hu, H. Wang, M. R. McCartney, and D. J. Smith, Switching mechanisms and remanent states for nanoscale slotted Co circular elements studied by electron holography, Physical Review B, 2006, vol.73, p.153401.
    [79] J. G. Zhu, Y. F. Zheng, Gary A. Prinz, Ultrahigh density vertical magnetoresistive random access memory .(invited) , Journal of Applied Physics, 2000, vol.87, p.6668.
    [80] Nipun Agarwal, Martha R. McCartney, Effect of shape on magnetic respose for slotted Co nanorings, Journal of Applied Physics, 2007, vol.102, p.023911.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700