腺苷信号通路在肾间质纤维化过程中的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察ADO信号通路对肾间质纤维化过程的影响。方法:(1)动物分组:共44只雄性小鼠,采取随机分组的方式,分成3个组别:其中,假手术组(Sham)12只,模型组(UUO)16只,干预组(PT)16只。干预组在单侧输尿管结扎(UUO)基础上予茶碱(8-PT)10mg/kg·d腹腔注射(1次/天),模型组在UUO基础上予生理盐水腹腔注射。于实验第1、3、7、14天分批次对小鼠进行处死操作,其中,假手术组实验小鼠,每次处死只数为3只,而模型组和干预组这两个组别的小鼠,每次处死的只数为4只。在处死前24小时将小鼠置入代谢笼内收集24小时尿测定尿肌酐(UCr)、β2微球蛋白(β2-MG)含量;处死前1.5小时通过小鼠阴茎静脉注射低氧探针Hypoxy probe-1(60mg/kg)。小鼠处死后,留取进行了结扎处理一侧的肾组织,开展后续的形态学以及免疫组织化学两个方面的研究。(2)观察指标:通过对肾组织进行HE以及Masson染色处理后,观察三个不同实验组的小鼠肾组织中肾小管受损的程度、肾间质中炎性细胞的侵润状况以及肾间质纤维化程度;运用免疫组织化学技术观察实验对象的肾小管上皮细胞和间质细胞的增殖细胞核抗原(PCNA)表达状况以及肾组织低氧程度及分布;利用高效液相色谱法(HPLC)检测肾组织中腺苷(ADO)的水平。结果:(1)UUO术后肾组织处于持续低氧状态,肾组织内ADO水平较假手术组明显增高;(2)UUO术后小鼠肾组织均发生了不同程度的肾小管受损状况,而茶碱能够对这类损伤提供一定的保护作用;(3)在实验小鼠肾间质出现纤维化的过程中,PCNA的阳性表达随时间延续主要集中于肾间质部分;尤其是UUO组,肾间质细胞持续处于高增殖状态;(4)在模型组实验小鼠的观察过程中发现:小鼠的肾间质炎性细胞侵润随病程的进展出现了进行性加重的趋势,使用茶碱进行处理后这种炎性细胞侵润的状况则大幅降低;(5)使用茶碱处理后,干预组小鼠的肾间质纤维化程度显著低于同期模型组。结论:(1)肾间质纤维化过程中存在肾组织持续低氧,伴随组织内ADO水平升高;(2)阻断ADO信号通路,能抑制炎症细胞侵润、肾间质细胞增殖及纤维化,对肾功能起保护作用。图12幅,参考文献39篇。
     目的:观察肾间质纤维化过程中相关致纤维化因子的动态变化与ADO的关系。进一步阐明肾间质纤维化的发生机制和ADO致纤维化的分子机制。方法:44只雄性小鼠随机分成3组:假手术组(Sham)12只,模型组(UUO)16只,干预组(PT)16只。干预组在单侧输尿管结扎(UUO)基础上予茶碱(8-PT)10mg/kg·d腹腔注射(1次/天),模型组在UUO基础上予生理盐水腹腔注射。利用RT-PCR方法动态观察术后第1、3、7、14天肾组织TGF-β1、PAI-1、α1(Ⅰ) procollagen mRNA表达;并利用免疫组织化学方法观察各实验组肾组织TGF-β1、α平滑肌肌动蛋白(α-SMA)的蛋白表达和分布规律。结果:(1)模型组小鼠肾组织TGF-β1、 PAI-1、α1(Ⅰ) procollagen mRNA表达明显上调并随时间延续进行性升高。(2)阻断ADO信号通路后对肾组织TGF-β1、PAI-1、 α1(Ⅰ) procollagen mRNA表达均具有显著抑制作用。(3)模型组小鼠肾组织TGF-β1、α-SMA蛋白水平表达较假手术组在各时间段均显著上调;阻断ADO通路后,上述细胞因子的表达受到明显抑制。结论:(1)腺苷信号通路通过调节细胞因子TGF-β1、PAI-1、α1(Ⅰ) procollagen mRNA表达,干预肾间质纤维化的进展。(2)ADO信号通路能调节成纤维细胞的活化以及转分化的过程。图13幅,表5幅,参考文献17篇。
     目的:观察ADO信号通路对小鼠肾成纤维细胞生物学行为的影响。方法:小鼠肾成纤维细胞株NIH3T3,采用TaqMan探针法确定成纤维细胞表面腺苷受体的类型。再将细胞株分为4组:对照组;NECA组(予以NECA); PT组(予以NECA+8-PT); MRS组(予以NECA+MRS1754),动态观察药物干预第1、2、3天后细胞内TGF-β1、α1(Ⅰ)procollagen、α-SMA mRNA的表达水平。运用MTT法,测定以上4组细胞在实验0、12、24、48、72小时的增殖情况。结果:(1)肾成纤维细胞表面以A2BR为主要ADO受体类型;(2) NECA刺激能上调TGF-β1、α1(Ⅰ)procollagen、α-SMA mRNA的表达,而8-PT与MRS1754则能显著抑制TGF-β1、 a1(Ⅰ)procollagen、α-SMA mRNA的表达;(3) NECA能促进成纤维细胞增殖,而8-PT与MRS1754则能抑制成纤维细胞的增殖。结论:(1)腺苷通过成纤维细胞表面A2BR介导,上调细胞内促纤维化细胞因子以及细胞增殖活化,导致纤维化发生和进展(2)A2BR阻断剂能有效抑制成纤维细胞增殖活化及促纤维化细胞因子的生成。图27幅,表15幅,参考文献24篇。
Purpose:To observe the influence of the ADO signal pathway on the renal interstitial fibrosis.Methods:(1) Animals grouping:44male mice were randomly divided into3groups, including sham-operation group (n=12), model group (n=16) and intervention group (n=16). The intervention group was given theophylline and10mg/kg·d intraperitoneal injection (once/day) on the basis of the unilateral ureteral ligation and the model group was given the normal saline intraperitoneal injection based on the UUO. The mice were sacrificed respectively in the1st,3rd,7th and14th days of the experiment, among which three mice were killed in the sham-operation group at each time, and four mice were respectively killed in the model group and the intervention group at each time. The mice were put into the metabolism cage within24hours before being killed to collect the urine so that the content of the urine creatinine and the β2-microglobulin could be determined; the hypoxia probe was injected into the mouse penis vein within1.5hours before being killed. After the mice were killed, the renal tissues of the ligation side were taken for chemical study of the morphology and the immunologic tissue.(2) Observation target:After the renal tissue was stained by HE and Masson, it was observed for the renal tubular injury, the renal interstitial inflammatory cell infiltration and the interstitial fibrosis degree of the each experimental group; the immunohistochemistry technique is used to observe the epithelial cells of the renal tubular injury, proliferation cell nuclear antigen expression of the interstitial cells and the hypoxia degree and distribution of the renal tissues and the HPLC is adopted to detect the adenosine level in the renal tissue.Results:(1) Renal tissues was in the continued hypoxia status after UUO operation and the ADO level in the renal tissues was notably higher than that in the sham-operation group;(2) Broad renal tubular injury occurred after UUO and the8-PT had a protective effect on the renal tubular injury;(3) PCNA positive expression along with the time progress mainly focused on renal interstitial part in the renal interstitial fibrosis process, especially the UUO group, while the renal interstitial cells remained in the high proliferative status;(4) the renal interstitial inflammatory cell infiltration of the model group increased progressively along with the disease course progress and its inflammatory cell infiltration decreased significantly after8-PT intervention;(5) the renal interstitial fibrosis degree of the intervention group was significantly lower than that of the model group in the same period.Conclusion:(1) Hypoxia status of renal tissues exists in the renal interstitial fibrosis process and increases along with ADO level in the tissues;(2) Blocking the ADO signal pathway could restrain inflammatory cell infiltration, renal interstitial cell proliferation and fibrosis, and also has a protective effect on the renal function.
     Purpose:To observe the relationship between dynamic changes of the fibrogenic cytokines leading to fibrosis and the ADO in the renal interstitial fibrosis process, and to further elucidate the renal interstitial fibrosis mechanism and ADO molecular mechanism leading to the fibrosis.Methods:The RT-PCR is used to dynamically observe the TGF-β1, PAI-1and α1(I) procollagen mRNA expression of the renal tissues in the1st, the3rd, the7th and the14th days after operation; immunohistochemical method is adopted to observe the protein expression and distribution regulation of TGF-β1and a-SMA of renal tissues of each experimental group.Results:(1) The expression of renal tissue cytokines of the mice in the model group raised up and progressively increased along with the extension of the time.(2) The blocking-up of the ADO pathway had a significant inhibition function on the expression of the renal tissue cytokines.(3) The expressions of TGF-β1and a-SMA protein levels of the mouse renal tissue in the model group were significantly up-regulated in various experimental periods; after the ADO pathway was blocked-up, these cytokines' expressions were obviously inhibited. Conclusion:(1) adenosine signal pathway interferes the progress of the renal interstitial fibrosis by adjusting the cytokines expression.(2) ADO signal pathway could regulate activation and transdifferentiation process of the fibroblast.
     Purpose:To study the biological behaviour change of the mouse renal fibroblast in different intervention condition.Methods:For the mouse renal fibroblast strain NIH3T3, the TaqMan probe method is used to identify the adenosine receptor type of the fibroblast surface. Four groups were divided:control group; NECA group (NECA); PT group (NECA+8-PT); MRS group (NECA+MRS1754). It was dynamically observed for TGF-β1, α1(Ⅰ)procollagen and α-SMA mRNA expression levels in the cells after the1st, the2nd and the3rd days of the drug intervention. The MMT methods are used to determine the proliferation condition above four groups of cells after being experimented for0,12,24,48and72hours.Results:The main receptor type of the renal fibroblast surface was A2BR;(2) NECA stimulation could up-regulate TGF-β1,α1(Ⅰ)procollagen and a-SMA mRNA expressions, and8-PT and MRS1754could significantly restrain TGF-β1,α1(Ⅰ)procollagen and α-SMA mRNA expressions;(3) NECA could promote the fibroblast proliferation, and8-PT and MRS1754could restrain the fibroblast proliferation.Conclusion:(1) Adenosine up-regulates pro-fibrogenic cytokines and cell proliferation activation in the cells through A2BR inducing on the fibroblast surface, leading to fibrosis occurrence and progress;(2) A2BR blocking agent could effectively restrain proliferation and activation of the fibroblast and the generation of the pro-fibrogenic cytokines.
引文
[1]Dussaule JC, Chatziantoniou C. Reversal of renal disease:is it enough to inhibit the action of angiotensin II. Cell Death Differ,2007,14(7):1343-1349
    [2]Suzuki K, Wang R, Kubota H, et al. Kinetics of biglycan, decorin and thrombospondin-1 in mercuric chloride-induced renal tubulointerstitial fibrosis. Exp Mol Pathol,2005,79(1):68-73
    [3]Kang DH, Kanellis J, Hugo C, et al. Role of the microvascular endothelium in progressive renal disease. J Am Soc Nephrol,2002,13(3):806-816
    [4]Ohashi R, Shimizu A, Masuda Y, et al. Peritubular capillary regression during the progression of experimental obstructive nephropathy. J Am Soc Nephrol, 2002,13(7):1795-1805
    [5]Fredholm BB. Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ,2007,14(7):1315-1323
    [6]Eltzschig HK, Thompson LF, Karhausen J, et al. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation:coordination by extracellular nucleotide metabolism. Blood,2004,104(13):3986-3992
    [7]Lasley RD, Rhee JW, Van Wylen DG, et al. Adenosine Al receptor mediated protection of the globally ischemic isolated rat heart. J Mol Cell Cardiol, 1990,22(1):39-47
    [8]Fishman P, Bar-Yehuda S, Farbstein T, et al. Adenosine acts as a chemoprotective agent by stimulating G-CSF production:a role for Al and A3 adenosine receptors. J Cell Physiol,2000,183(3):393-398
    [9]Linden J. Adenosine in tissue protection and tissue regeneration. Mol Pharmacol,2005,67(5):1385-1387
    [10]Lu B, Rajakumar SV, Robson SC, et al. The impact of purinergic signaling on renal ischemia-reperfusion injury. Transplantation,2008,86(12):1707-1712
    [11]Hatfield S, Belikoff B, Lukashev D, et al. The antihypoxia-adenosinergic pathogenesis as a result of collateral damage by overactive immune cells. J Leukoc Biol,2009,86(3):545-548
    [12]Klahr S, Morrissey J. Obstructive nephropathy and renal fibrosis. Am J Physiol Renal Physiol,2002,283(5):F861-875
    [13]Wen J, Jiang X, Dai Y, et al. Increased adenosine contributes to penile fibrosis, a dangerous feature of priapism, via A2B adenosine receptor signaling. FASEB J,2010,24(3):740-749
    [14]Zhou Y, Murthy JN, Zeng D, et al. Alterations in adenosine metabolism and signaling in patients with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. PLOS ONE,2010,5(2):e9224
    [15]Ophascharoensuk V, Fero ML, Hughes J, et al. The cyclin-dependent kinase inhibitor p27Kipl safeguards against inflammatory injury. Nat Med, 1998,4(5):575-580
    [16]张翠薇,马跃荣,张旭,等.小鼠肾间质纤维化动物模型的实验探索与研究.泸州医学院学报,2010,(06):598-600
    [17]Grenz A, Baier D, Petroktistis F, et al. Theophylline improves early allograft function in rat kidney transplantation. J Pharmacol Exp Ther, 2006,317(2):473-479
    [18]Sobh M, Sabry A, Moustafa F, et al. Effect of colchicine on chronic ciclosporin nephrotoxicity in Sprague-Dawley rats. Nephron,1998,79(4):452-457
    [19]Mizuguchi Y, Miyajima A, Kosaka T, et al. Atorvastatin ameliorates renal tissue damage in unilateral ureteral obstruction. J Urol,2004,172(6 Pt 1):2456-2459
    [20]Miyajima A, Chen J, Lawrence C, et al. Antibody to transforming growth factor-beta ameliorates tubular apoptosis in unilateral ureteral obstruction. Kidney Int,2000,58(6):2301-2313
    [21]Gao X, Mae H, Ayabe N, et al. Hepatocyte growth factor gene therapy retards the progression of chronic obstructive nephropathy. Kidney Int, 2002,62(4):1238-1248
    [22]刘春风,丁小强,朱加明,等.低氧在单侧输尿管梗阻大鼠模型肾间质纤维化中的作用初探.复旦学报(医学版),2007,(05):732-736
    [23]Coresh J, Astor BC, Greene T, et al. Prevalence of chronic kidney disease and decreased kidney function in the adult US population:Third National Health and Nutrition Examination Survey. Am J Kidney Dis,2003,41(1):1-12
    [24]Zhang L, Zhang P, Wang F, et al. Prevalence and factors associated with CKD: a population study from Beijing. Am J Kidney Dis,2008,51(3):373-384
    [25]Hewitson TD. Renal tubulointerstitial fibrosis:common but never simple. Am J Physiol Renal Physiol,2009,296(6):F1239-1244
    [26]Fine LG, Orphanides C, Norman JT. Progressive renal disease:the chronic hypoxia hypothesis. Kidney Int Suppl,1998,65:S74-78
    [27]Fine LG, Bandyopadhay D, Norman JT. Is there a common mechanism for the progression of different types of renal diseases other than proteinuria? Towards the unifying theme of chronic hypoxia. Kidney Int Suppl, 2000,75:S22-26
    [28]Fine LG, Norman JT. The breathing kidney. J Am Soc Nephrol, 2002,13(7):1974-1976
    [29]Matsumoto M, Tanaka T, Yamamoto T, et al. Hypoperfusion of peritubular capillaries induces chronic hypoxia before progression of tubulointerstitial injury in a progressive model of rat glomerulonephritis. J Am Soc Nephrol, 2004,15(6):1574-1581
    [30]Ries M, Basseau F, Tyndal B, et al. Renal diffusion and BOLD MRI in experimental diabetic nephropathy. Blood oxygen level-dependent. J Magn Reson Imaging,2003,17(1):104-113
    [31]Basile DP, Donohoe DL, Roethe K, et al. Chronic renal hypoxia after acute ischemic injury:effects of L-arginine on hypoxia and secondary damage. Am J Physiol Renal Physiol,2003,284(2):F338-348
    [32]Manotham K, Tanaka T, Matsumoto M, et al. Evidence of tubular hypoxia in the early phase in the remnant kidney model. J Am Soc Nephrol, 2004,15(5):1277-1288
    [33]Nangaku M. Chronic hypoxia and tubulointerstitial injury:a final common pathway to end-stage renal failure. J Am Soc Nephrol,2006,17(1):17-25
    [34]Gobe GC, Axelsen RA. Genesis of renal tubular atrophy in experimental hydronephrosis in the rat. Role of apoptosis. Lab Invest,1987,56(3):273-281
    [35]Truong LD, Petrusevska G, Yang G, et al. Cell apoptosis and proliferation in experimental chronic obstructive uropathy. Kidney Int,1996,50(1):200-207
    [36]Hughes J, Brown P, Shankland SJ. Cyclin kinase inhibitor p21CIP1/WAF1 limits interstitial cell proliferation following ureteric obstruction. Am J Physiol, 1999,277(6 Pt 2):F948-956
    [37]Miyajima A, Chen J, Poppas DP, et al. Role of nitric oxide in renal tubular apoptosis of unilateral ureteral obstruction. Kidney Int,2001,59(4):1290-1303
    [38]Choi YJ, Baranowska-Daca E, Nguyen V, et al. Mechanism of chronic obstructive uropathy:increased expression of apoptosis-promoting molecules. Kidney Int,2000,58(4):1481-1491
    [39]Zhang G, Oldroyd SD, Huang LH, et al. Role of apoptosis and Bcl-2/Bax in the development of tubulointerstitial fibrosis during experimental obstructive nephropathy. Exp Nephrol,2001,9(2):71-80
    [40]王颖航,潘志,南红梅,等.肾纤维化的分子病理机制探讨.中国中西医结合肾病杂志,2006,(01):34-37
    [41]高春芳,王皓,徐玲玲,等.人皮肤成纤维细胞中α1(Ⅰ)前胶原基因转录调控研究.中国生物化学与分子生物学报,2002,18(3):293-298
    [42]黄云剑,王沂芹,杨唐俊.PAI-1和TIMP-1基因在肾小管间质纤维化中的 表达及HGF的干预作用.中国病理生理杂志,2004,(09):6-10
    [43]Fan JM, Ng YY, Hill PA, et al. Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int, 1999,56(4):1455-1467
    [44]Yamagishi H, Yokoo T, Imasawa T, et al. Genetically modified bone marrow-derived vehicle cells site specifically deliver an anti-inflammatory cytokine to inflamed interstitium of obstructive nephropathy. J Immunol, 2001,166(1):609-616
    [45]Rohatgi R, Flores D. Intratubular hydrodynamic forces influence tubulointerstitial fibrosis in the kidney. Curr Opin Nephrol Hypertens, 2010,19(1):65-71
    [46]Sakai N, Wada T, Furuichi K, et al. MCP-1/CCR2-dependent loop for fibrogenesis in human peripheral CD14-positive monocytes. J Leukoc Biol, 2006,79(3):555-563
    [47]Iwano M, Plieth D, Danoff TM, et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest,2002,110(3):341-350
    [48]Kitagawa K, Wada T, Furuichi K, et al. Blockade of CCR2 ameliorates progressive fibrosis in kidney. Am J Pathol,2004,165(1):237-246
    [49]陈超,蒋建伟,周序珑,等CTGF反义寡核苷酸对大鼠肾间质纤维化的影响.广东医学,2008,29(11):1800-1802
    [50]Liu Y. Renal fibrosis:new insights into the pathogenesis and therapeutics. Kidney Int,2006,69(2):213-217
    [51]Li J, Zhang Z, Wang D, et al. TGF-beta 1/Smads signaling stimulates renal interstitial fibrosis in experimental AAN. J Recept Signal Transduct Res, 2009,29(5):280-285
    [52]Phanish MK, Wahab NA, Colville-Nash P, et al. The differential role of Smad2 and Smad3 in the regulation of pro-fibrotic TGFbetal responses in human proximal-tubule epithelial cells. Biochem J,2006,393(Pt 2):601-607
    [53]Hills CE, Squires PE. TGF-beta 1-induced epithelial-to-mesenchymal transition and therapeutic intervention in diabetic nephropathy. Am J Nephrol, 2010,31(1):68-74
    [54]van KEM, Zurcher C, Oussoren YG, et al. Long-term effects of total-body irradiation on the kidney of Rhesus monkeys. Int J Radiat Biol, 2000,76(5):641-648
    [55]Zhao W, Spitz DR, Oberley LW, et al. Redox modulation of the pro-fibrogenic mediator plasminogen activator inhibitor-1 following ionizing radiation. Cancer Res,2001,61(14):5537-5543
    [56]Rodemann HP, Binder A, Burger A, et al. The underlying cellular mechanism of fibrosis. Kidney Int Suppl,1996,54:S32-36
    [57]Zeisberg M, Strutz F, Muller GA. Renal fibrosis:an update. Curr Opin Nephrol Hypertens,2001,10(3):315-320
    [58]Razzaque MS, Taguchi T. Cellular and molecular events leading to renal tubulointerstitial fibrosis. Med Electron Microsc,2002,35(2):68-80
    [59]Eddy AA. Molecular basis of renal fibrosis. Pediatr Nephrol,2000,15(3-4):290-301
    [60]Badid C, Vincent M, Fouque D, et al. Myofibroblast:a prognostic marker and target cell in progressive renal disease. Ren Fail,2001,23(3-4):543-549
    [61]Roberts IS, Burrows C, Shanks JH, et al. Interstitial myofibroblasts:predictors of progression in membranous nephropathy. J Clin Pathol,1997,50(2):123-127
    [62]Ohtaka A, Ootaka T, Sato H, et al. Phenotypic change of glomerular podocytes in primary focal segmental glomerulosclerosis:developmental paradigm. Nephrol Dial Transplant,2002,17 Suppl 9:11-15
    [63]Jinde K, Nikolic-Paterson DJ, Huang XR, et al. Tubular phenotypic change in progressive tubulointerstitial fibrosis in human glomerulonephritis. Am J Kidney Dis,2001,38(4):761-769
    [64]Johnson RJ, Iida H, Alpers CE, et al. Expression of smooth muscle cell phenotype by rat mesangial cells in immune complex nephritis. Alpha-smooth muscle actin is a marker of mesangial cell proliferation. J Clin Invest, 1991,87(3):847-858
    [65]Ng YY, Fan JM, Mu W, et al. Glomerular epithelial-myofibroblast transdifferentiation in the evolution of glomerular crescent formation. Nephrol Dial Transplant,1999,14(12):2860-2872
    [66]Chunn JL, Molina JG, Mi T, et al. Adenosine-dependent pulmonary fibrosis in adenosine deaminase-deficient mice. J Immunol,2005,175(3):1937-1946
    [67]Chunn JL, Mohsenin A, Young HW, et al. Partially adenosine deaminase-deficient mice develop pulmonary fibrosis in association with adenosine elevations. Am J Physiol Lung Cell Mol Physiol,2006,290(3):L579-587
    [68]Chunn JL, Young HW, Banerjee SK, et al. Adenosine-dependent airway inflammation and hyperresponsiveness in partially adenosine deaminase-deficient mice. J Immunol,2001,167(8):4676-4685
    [69]Blackburn MR, Volmer JB, Thrasher JL, et al. Metabolic consequences of adenosine deaminase deficiency in mice are associated with defects in alveogenesis, pulmonary inflammation, and airway obstruction. J Exp Med, 2000,192(2):159-170
    [70]Van Belle H, Goossens F, Wynants J. Formation and release of purine catabolites during hypoperfusion, anoxia, and ischemia. Am J Physiol, 1987,252(5 Pt 2):H886-893
    [71]Dip RG Adenosine receptor modulation:potential implications in veterinary medicine. Vet J,2009,179(1):38-49
    [72]Mi T, Abbasi S, Zhang H, et al. Excess adenosine in murine penile erectile tissues contributes to priapism via A2B adenosine receptor signaling. J Clin Invest,2008,118(4):1491-1501
    [73]Rudolphi KA, Schubert P, Parkinson FE, et al. Adenosine and brain ischemia. Cerebrovasc Brain Metab Rev,1992,4(4):346-369
    [74]Schubert P, Rudolphi KA, Fredholm BB, et al. Modulation of nerve and glial function by adenosine--role in the development of ischemic damage. Int J Biochem,1994,26(10-11):1227-1236
    [75]朱剑飞,汤黎明,李德春.腺苷2A受体激活减轻小体积肝移植中的氧化应激反应.中国普外基础与临床杂志,2010,(03):243-247
    [76]Grenz A, Osswald H, Eckle T, et al. The reno-vascular A2B adenosine receptor protects the kidney from ischemia. PLoS Med,2008,5(6):e137
    [77]Eddy AA. Molecular insights into renal interstitial fibrosis. J Am Soc Nephrol, 1996,7(12):2495-2508
    [78]Zhang G, Moorhead PJ, el NAM. Myofibroblasts and the progression of experimental glomerulonephritis. Exp Nephrol,1995,3(5):308-318
    [79]Hewitson TD, Wu HL, Becker GJ. Interstitial myofibroblasts in experimental renal infection and scarring. Am J Nephrol,1995,15(5):411-417
    [80]Ling H, Li X, Jha S, et al. Therapeutic role of TGF-beta-neutralizing antibody in mouse cyclosporin A nephropathy:morphologic improvement associated with functional preservation. J Am Soc Nephrol,2003,14(2):377-388
    [1]Boor P, Ostendorf T, Floege J. Renal fibrosis:novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol,2010,6(11):643-656
    [2]Zeisberg M, Neilson EG. Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol,2010,21(11):1819-1834
    [3]Farris AB, Adams CD, Brousaides N, et al. Morphometric and visual evaluation of fibrosis in renal biopsies. J Am Soc Nephrol,2011,22(1):176-186
    [4]Pape L, Henne T, Offner G, et al. Computer-assisted quantification of fibrosis in chronic allograft nephropaty by picosirius red-staining:a new tool for predicting long-term graft function. Transplantation,2003,76(6):955-958
    [5]Moreso F, Seron D, Vitria J, et al. Quantification of interstitial chronic renal damage by means of texture analysis. Kidney Int,1994,46(6):1721-1727
    [6]Pape L, Mengel M, Offner G, et al. Renal arterial resistance index and computerized quantification of fibrosis as a combined predictive tool in chronic allograft nephropathy. Pediatr Transplant,2004,8(6):565-570
    [7]Servais A, Meas-Yedid V, Buchler M, et al. Quantification of interstitial fibrosis by image analysis on routine renal biopsy in patients receiving cyclosporine. Transplantation,2007,84(12):1595-1601
    [8]Servais A, Meas-Yedid V, Noel LH, et al. Interstitial fibrosis evolution on early sequential screening renal allograft biopsies using quantitative image analysis. Am J Transplant,2011,11(7):1456-1463
    [9]Nicholson ML, Bailey E, Williams S, et al. Computerized histomorphometric assessment of protocol renal transplant biopsy specimens for surrogate markers of chronic rejection. Transplantation,1999,68(2):236-241
    [10]Nicholson ML, McCulloch TA, Harper SJ, et al. Early measurement of interstitial fibrosis predicts long-term renal function and graft survival in renal transplantation. Br J Surg,1996,83(8):1082-1085
    [11]Diaz EMM, Griffin MD, Slezak JM, et al. Correlation of quantitative digital image analysis with the glomerular filtration rate in chronic allograft nephropathy. Am J Transplant,2004,4(2):248-256
    [12]王颖航,潘志,南红梅,等.肾纤维化的分子病理机制探讨.中国中西医结合肾病杂志,2006,(01):34-37
    [13]Rohatgi R, Flores D. Intratubular hydrodynamic forces influence tubulointerstitial fibrosis in the kidney. Curr Opin Nephrol Hypertens, 2010,19(1):65-71
    [14]Li L, Zepeda-Orozco D, Patel V, et al. Aberrant planar cell polarity induced by urinary tract obstruction. Am J Physiol Renal Physiol,2009,297(6):F1526-1533
    [15]Hinz B. The myofibroblast:paradigm for a mechanically active cell. J Biomech,2010,43(1):146-155
    [16]Fujigaki Y, Muranaka Y, Sun D, et al. Transient myofibroblast differentiation of interstitial fibroblastic cells relevant to tubular dilatation in uranyl acetate-induced acute renal failure in rats. Virchows Arch,2005,446(2):164-176
    [17]Dussaule JC, Guerrot D, Huby AC, et al. The role of cell plasticity in progression and reversal of renal fibrosis. Int J Exp Pathol,2011,92(3):151-157
    [18]Meran S, Steadman R. Fibroblasts and myofibroblasts in renal fibrosis. Int J Exp Pathol,2011,92(3):158-167
    [19]Lin SL, Kisseleva T, Brenner DA, et al. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol,2008,173(6):1617-1627
    [20]Humphreys BD, Lin SL, Kobayashi A, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol, 2010,176(1):85-97
    [21]Picard N, Baum O, Vogetseder A, et al. Origin of renal myofibroblasts in the model of unilateral ureter obstruction in the rat. Histochem Cell Biol, 2008,130(1):141-155
    [22]Crisan M, Yap S, Casteilla L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. CELL STEM CELL,2008,3(3):301-313
    [23]Kida Y, Duffield JS. Pivotal role of pericytes in kidney fibrosis. Clin Exp Pharmacol Physiol,2011,38(7):467-473
    [24]Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol, 2011,179(3):1074-1080
    [25]Schrimpf C, Duffield JS. Mechanisms of fibrosis:the role of the pericyte. Curr Opin Nephrol Hypertens,2011,20(3):297-305
    [26]Zeisberg EM, Potenta SE, Sugimoto H, et al. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol, 2008,19(12):2282-2287
    [27]Li J, Qu X, Bertram JF. Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am J Pathol,2009,175(4):1380-1388
    [28]Wada T, Sakai N, Sakai Y, et al. Involvement of bone-marrow-derived cells in kidney fibrosis. Clin Exp Nephrol,2011,15(1):8-13
    [29]Niedermeier M, Reich B, Rodriguez GM, et al. CD4+ T cells control the differentiation of Grl+ monocytes into fibrocytes. Proc Natl Acad Sci U S A, 2009,106(42):17892-17897
    [30]Sakai N, Furuichi K, Shinozaki Y, et al. Fibrocytes are involved in the pathogenesis of human chronic kidney disease. Hum Pathol,2010,41 (5):672-678
    [31]Pilling D, Fan T, Huang D, et al. Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLOS ONE,2009,4(10):e7475
    [32]Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol, 2004,4(8):583-594
    [33]Shao DD, Suresh R, Vakil V, et al. Pivotal Advance:Th-1 cytokines inhibit, and Th-2 cytokines promote fibrocyte differentiation. J Leukoc Biol, 2008,83(6):1323-1333
    [34]Takakuta K, Fujimori A, Chikanishi T, et al. Renoprotective properties of pirfenidone in subtotally nephrectomized rats. Eur J Pharmacol,2010,629(1-3):118-124
    [35]RamachandraRao SP, Zhu Y, Ravasi T, et al. Pirfenidone is renoprotective in diabetic kidney disease. J Am Soc Nephrol,2009,20(8):1765-1775
    [36]Cho ME, Kopp JB. Pirfenidone:an anti-fibrotic therapy for progressive kidney disease. Expert Opin Investig Drugs,2010,19(2):275-283
    [37]Cho ME, Smith DC, Branton MH, et al. Pirfenidone slows renal function decline in patients with focal segmental glomerulosclerosis. Clin J Am Soc Nephrol,2007,2(5):906-913
    [38]Macias-Barragan J, Sandoval-Rodriguez A, Navarro-Partida J, et al. The multifaceted role of pirfenidone and its novel targets. Fibrogenesis Tissue Repair,2010,3:16
    [39]Boor P, Sebekova K, Ostendorf T, et al. Treatment targets in renal fibrosis. Nephrol Dial Transplant,2007,22(12):3391-3407
    [40]Shweke N, Boulos N, Jouanneau C, et al. Tissue transglutaminase contributes to interstitial renal fibrosis by favoring accumulation of fibrillar collagen through TGF-beta activation and cell infiltration. Am J Pathol, 2008,173(3):631-642
    [41]Huang L, Haylor JL, Hau Z, et al. Transglutaminase inhibition ameliorates experimental diabetic nephropathy. Kidney Int,2009,76(4):383-394
    [42]Wang X, Zhou Y, Tan R, et al. Mice lacking the matrix metalloproteinase-9 gene reduce renal interstitial fibrosis in obstructive nephropathy. Am J Physiol Renal Physiol,2010,299(5):F973-982
    [43]Yang J, Shultz RW, Mars WM, et al. Disruption of tissue-type plasminogen activator gene in mice reduces renal interstitial fibrosis in obstructive nephropathy. J Clin Invest,2002,110(10):1525-1538
    [44]Edgtton KL, Gow RM, Kelly DJ, et al. Plasmin is not protective in experimental renal interstitial fibrosis. Kidney Int,2004,66(1):68-76
    [45]Cheng S, Lovett DH. Gelatinase A (MMP-2) is necessary and sufficient for renal tubular cell epithelial-mesenchymal transformation. Am J Pathol, 2003,162(6):1937-1949
    [46]Radisky DC, Levy DD, Littlepage LE, et al. Raclb and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 2005,436(7047):123-127
    [47]Abrass CK, Hansen KM, Patton BL. Laminin alpha4-null mutant mice develop chronic kidney disease with persistent overexpression of platelet-derived growth factor. Am J Pathol,2010,176(2):839-849
    [48]Xie P, Sun L, Nayak B, et al. C/EBP-beta modulates transcription of tubulointerstitial nephritis antigen in obstructive uropathy. J Am Soc Nephrol, 2009,20(4):807-819
    [49]Zhong J, Guo D, Chen CB, et al. Prevention of angiotensin Ⅱ-mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2. Hypertension,2011,57(2):314-322
    [50]Zhou L, Xue H, Yuan P, et al. Angiotensin AT1 receptor activation mediates high glucose-induced epithelial-mesenchymal transition in renal proximal tubular cells. Clin Exp Pharmacol Physiol,2010,37(9):e152-157
    [51]Naito T, Ma LJ, Yang H, et al. Angiotensin type 2 receptor actions contribute to angiotensin type 1 receptor blocker effects on kidney fibrosis. Am J Physiol Renal Physiol,2010,298(3):F683-691
    [52]Takeda Y, Nishikimi T, Akimoto K, et al. Beneficial effects of a combination of Rho-kinase inhibitor and ACE inhibitor on tubulointerstitial fibrosis induced by unilateral ureteral obstruction. Hypertens Res,2010,33(9):965-973
    [53]Laksmi NK, Khullar M, Kaur B, et al. Association of angiotensin converting enzyme and angiotensin type 2 receptor gene polymorphisms with renal damage in posterior urethral valves. J Pediatr Urol,2010,6(6):560-566
    [54]Schulman IH, Zhou MS, Treuer AV, et al. Altered renal expression of angiotensin Ⅱ receptors, renin receptor, and ACE-2 precede the development of renal fibrosis in aging rats. Am J Nephrol,2010,32(3):249-261
    [55]Rodrigues DR, Rodrigues-Diez R, Lavoz C, et al. Statins inhibit angiotensin II/Smad pathway and related vascular fibrosis, by a TGF-beta-independent process. PLOS ONE,2010,5(11):e14145
    [56]Scruggs BS, Zuo Y, Donnert E, et al. Increased capillary branching contributes to angiotensin type 1 receptor blocker (ARB)-induced regression of sclerosis. Am J Pathol,2011,178(4):1891-1898
    [57]Tang R, Yang C, Tao JL, et al. Epithelial-mesenchymal transdifferentiation of renal tubular epithelial cells induced by urinary proteins requires the activation of PKC-alpha and betal isozymes. Cell Biol Int,2011,35(9):953-959
    [58]Wiwanitkit V. Fibrosis and evidence for epithelial-mesenchymal transition in the kidneys of patients with staghorn calculi. BJU Int,2011,107(11):1847
    [59]Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest,2009,119(6):1429-1437
    [60]Kriz W, Kaissling B, Le HM. Epithelial-mesenchymal transition (EMT) in kidney fibrosis:fact or fantasy. J Clin Invest,2011,121(2):468-474
    [61]Fragiadaki M, Mason RM. Epithelial-mesenchymal transition in renal fibrosis-evidence for and against. Int J Exp Pathol,2011,92(3):143-150
    [62]Quaggin SE, Kapus A. Scar wars:mapping the fate of epithelial-mesenchymal-myofibroblast transition. Kidney Int,2011,80(1):41-50
    [63]Sharfuddin AA, Molitoris BA. Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol,2011,7(4):189-200
    [64]Sakairi T, Hiromura K, Yamashita S, et al. Nestin expression in the kidney with an obstructed ureter. Kidney Int,2007,72(3):307-318
    [65]Hertig A, Anglicheau D, Verine J, et al. Early epithelial phenotypic changes predict graft fibrosis. J Am Soc Nephrol,2008,19(8):1584-1591
    [66]Rastaldi MP, Ferrario F, Giardino L, et al. Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies. Kidney Int,2002,62(1):137-146
    [67]Docherty NG, Calvo IF, Quinlan MR, et al. Increased E-cadherin expression in the ligated kidney following unilateral ureteric obstruction. Kidney Int, 2009,75(2):205-213
    [68]Ohnuki K, Umezono T, Abe M, et al. Expression of transcription factor Snail and tubulointerstitial fibrosis in progressive nephropathy. J Nephrol, 2012,25(2):233-239
    [69]Saad S, Stanners SR, Yong R, et al. Notch mediated epithelial to mesenchymal transformation is associated with increased expression of the Snail transcription factor. Int J Biochem Cell Biol,2010,42(7):1115-1122
    [70]Hakroush S, Moeller MJ, Theilig F, et al. Effects of increased renal tubular vascular endothelial growth factor (VEGF) on fibrosis, cyst formation, and glomerular disease. Am J Pathol,2009,175(5):1883-1895
    [71]Lian YG, Zhou QG, Zhang YJ, et al. VEGF ameliorates tubulointerstitial fibrosis in unilateral ureteral obstruction mice via inhibition of epithelial-mesenchymal transition. Acta Pharmacol Sin,2011,32(12):1513-1521
    [72]Higgins DF, Kimura K, Iwano M, et al. Hypoxia-inducible factor signaling in the development of tissue fibrosis. Cell Cycle,2008,7(9):1128-1132
    [73]Kimura K, Iwano M, Higgins DF, et al. Stable expression of HIF-1alpha in tubular epithelial cells promotes interstitial fibrosis. Am J Physiol Renal Physiol,2008,295(4):F 1023-1029
    [74]Higgins DF, Kimura K, Bernhardt WM, et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest,2007,117(12):3810-3820
    [75]Wang Z, Tang L, Zhu Q, et al. Hypoxia-inducible factor-1alpha contributes to the profibrotic action of angiotensin Ⅱ in renal medullary interstitial cells. Kidney Int,2011,79(3):300-310
    [76]Bechtel W, McGoohan S, Zeisberg EM, et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med,2010,16(5):544-550
    [77]Dwivedi RS, Herman JG, McCaffrey TA, et al. Beyond genetics:epigenetic code in chronic kidney disease. Kidney Int,2011,79(1):23-32
    [78]Marumo T, Hishikawa K, Yoshikawa M, et al. Histone deacetylase modulates the pro inflammatory and -fibrotic changes in tubulointerstitial injury. Am J Physiol Renal Physiol,2010,298(1):F133-141
    [79]Pang M, Zhuang S. Histone deacetylase:a potential therapeutic target for fibrotic disorders. J Pharmacol Exp Ther,2010,335(2):266-272
    [80]Tapmeier TT, Fearn A, Brown K, et al. Pivotal role of CD4+ T cells in renal fibrosis following ureteric obstruction. Kidney Int,2010,78(4):351-362
    [81]Nikolic-Paterson DJ. CD4+ T cells:a potential player in renal fibrosis. Kidney Int,2010,78(4):333-335
    [82]Snelgrove SL, Kausman JY, Lo C, et al. Renal dendritic cells adopt a pro-inflammatory phenotype in obstructive uropathy to activate T cells but do not directly contribute to fibrosis. Am J Pathol,2012,180(1):91-103
    [83]Scian MJ, Maluf DG, Archer KJ, et al. Gene expression changes are associated with loss of kidney graft function and interstitial fibrosis and tubular atrophy: diagnosis versus prediction. Transplantation,2011,91(6):657-665
    [84]Khan F, Sar A, Gonul I, et al. Graft inflammation and histologic indicators of kidney chronic allograft failure:low-expressing interleukin-10 genotypes cannot be ignored. Transplantation,2010,90(6):630-638
    [85]Anders HJ, Ryu M. Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int,2011,80(9):915-925
    [86]Vernon MA, Mylonas KJ, Hughes J. Macrophages and renal fibrosis. Semin Nephrol,2010,30(3):302-317
    [87]Lin SL, Castano AP, Nowlin BT, et al. Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J Immunol,2009,183(10):6733-6743
    [88]Henderson NC, Mackinnon AC, Farnworth SL, et al. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol,2008,172(2):288-298
    [89]Okamura DM, Pasichnyk K, Lopez-Guisa JM, et al. Galectin-3 preserves renal tubules and modulates extracellular matrix remodeling in progressive fibrosis. Am J Physiol Renal Physiol,2011,300(1):F245-253
    [90]Menke J, Iwata Y, Rabacal WA, et al. CSF-1 signals directly to renal tubular epithelial cells to mediate repair in mice. J Clin Invest,2009,119(8):2330-2342
    [91]Semedo P, Donizetti-Oliveira C, Burgos-Silva M, et al. Bone marrow mononuclear cells attenuate fibrosis development after severe acute kidney injury. Lab Invest,2010,90(5):685-695
    [92]Kaissling B, Le HM. The renal cortical interstitium:morphological and functional aspects. Histochem Cell Biol,2008,130(2):247-262
    [93]Macconi D, Chiabrando C, Schiarea S, et al. Proteasomal processing of albumin by renal dendritic cells generates antigenic peptides. J Am Soc Nephrol,2009,20(1):123-130
    [94]Heymann F, Meyer-Schwesinger C, Hamilton-Williams EE, et al. Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. J Clin Invest,2009,119(5):1286-1297
    [95]Kanamaru Y, Scandiuzzi L, Essig M, et al. Mast cell-mediated remodeling and fibrinolytic activity protect against fatal glomerulonephritis. J Immunol, 2006,176(9):5607-5615
    [96]Fan YY, Nishiyama A, Fujisawa Y, et al. Contribution of chymase-dependent angiotensin Ⅱ formation to the progression of tubulointerstitial fibrosis in obstructed kidneys in hamsters. J Pharmacol Sci,2009,111(1):82-90
    [97]Timoshanko JR, Kitching AR, Semple TJ, et al. A pathogenetic role for mast cells in experimental crescentic glomerulonephritis. J Am Soc Nephrol, 2006,17(1):150-159
    [98]Scandiuzzi L, Beghdadi W, Daugas E, et al. Mouse mast cell protease-4 deteriorates renal function by contributing to inflammation and fibrosis in immune complex-mediated glomerulonephritis. J Immunol,2010,185(1):624-633
    [99]Veerappan A, Reid AC, O'Connor N, et al. Mast cells are required for the development of renal fibrosis in the rodent unilateral ureteral obstruction model. Am J Physiol Renal Physiol,2012,302(1):F192-204
    [100]Li Y, Zhou L, Liu F, et al. Mast Cell Infiltration Is Involved in Renal Interstitial Fibrosis in a Rat Model of Protein-Overload Nephropathy. Kidney Blood Press Res,2010,33(3):240-248
    [101]Kim DH, Moon SO, Jung YJ, et al. Mast cells decrease renal fibrosis in unilateral ureteral obstruction. Kidney Int,2009,75(10):1031-1038
    [102]Ortiz A, Ucero AC, Egido J. Unravelling fibrosis:two newcomers and an old foe. Nephrol Dial Transplant,2010,25(11):3492-3495
    [103]Wang Q, Usinger W, Nichols B, et al. Cooperative interaction of CTGF and TGF-beta in animal models of fibrotic disease. Fibrogenesis Tissue Repair, 2011,4(1):4
    [104]Wang S, Wilkes MC, Leof EB, et al. Noncanonical TGF-beta pathways, mTORCl and Abl, in renal interstitial fibrogenesis. Am J Physiol Renal Physiol,2010,298(1):F142-149
    [105]Yeh YC, Wei WC, Wang YK, et al. Transforming growth factor-{beta} 1 induces Smad3-dependent{beta}1 integrin gene expression in epithelial-to-mesenchymal transition during chronic tubulointerstitial fibrosis. Am J Pathol, 2010,177(4):1743-1754
    [106]Zeng R, Han M, Luo Y, et al. Role of Sema4C in TGF-betal-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. Nephrol Dial Transplant,2011,26(4):1149-1156
    [107]Zhu B, Wang YJ, Zhu CF, et al. Triptolide inhibits extracellular matrix protein synthesis by suppressing the Smad2 but not the MAPK pathway in TGF-betal-stimulated NRK-49F cells. Nephrol Dial Transplant,2010,25(10):3180-3191
    [108]Lan HY. Diverse roles of TGF-beta/Smads in renal fibrosis and inflammation. Int J Biol Sci,2011,7(7):1056-1067
    [109]Meng XM, Huang XR, Chung AC, et al. Smad2 protects against TGF- beta/Smad3-mediated renal fibrosis. J Am Soc Nephrol,2010,21(9):1477-1487
    [110]Zhou Y, Mao H, Li S, et al. HSP72 inhibits Smad3 activation and nuclear translocation in renal epithelial-to-mesenchymal transition. J Am Soc Nephrol, 2010,21(4):598-609
    [111]Luo DD, Phillips A, Fraser D. Bone morphogenetic protein-7 inhibits proximal tubular epithelial cell Smad3 signaling via increased SnoN expression. Am J Pathol,2010,176(3):1139-1147
    [112]Sakairi T, Hiromura K, Takahashi S, et al. Effects of proteasome inhibitors on rat renal fibrosis in vitro and in vivo. Nephrology (Carlton),2011,16(1):76-86
    [113]Sharma S, Sirin Y, Susztak K. The story of Notch and chronic kidney disease. Curr Opin Nephrol Hypertens,2011,20(1):56-61
    [114]Sirin Y, Susztak K. Notch in the kidney:development and disease. J Pathol, 2012,226(2):394-403
    [115]Zeisberg M. Bone morphogenic protein-7 and the kidney:current concepts and open questions. Nephrol Dial Transplant,2006,21(3):568-573
    [116]Maciel TT, Kempf H, Campos AH. Targeting bone morphogenetic protein signaling on renal and vascular diseases. Curr Opin Nephrol Hypertens, 2010,19(1):26-31
    [117]Yanagita M. Modulator of bone morphogenetic protein activity in the progression of kidney diseases. Kidney Int,2006,70(6):989-993
    [118]Tanaka M, Asada M, Higashi AY, et al. Loss of the BMP antagonist USAG-1 ameliorates disease in a mouse model of the progressive hereditary kidney disease Alport syndrome. J Clin Invest,2010,120(3):768-777
    [119]Grgurevic L, Macek B, Healy DR, et al. Circulating bone morphogenetic protein 1-3 isoform increases renal fibrosis. J Am Soc Nephrol, 2011,22(4):681-692
    [120]Okada H. Tolloid-like proteinases orchestrate extracellular matrix formation. J Am Soc Nephrol,2011,22(4):588-589
    [121]XIN BM, WANG XX, JIN W, et al. Activation of Toll-like receptor 9 attenuates unilateral ureteral obstruction-induced renal fibrosis. Acta Pharmacol Sin,2010,31(12):1583-1592
    [122]Pulskens WP, Rampanelli E, Teske GJ, et al. TLR4 promotes fibrosis but attenuates tubular damage in progressive renal injury. J Am Soc Nephrol, 2010,21(8):1299-1308
    [123]Bottinger EP, Bitzer M. TGF-beta signaling in renal disease. J Am Soc Nephrol,2002,13(10):2600-2610
    [124]Liu Y. Renal fibrosis:new insights into the pathogenesis and therapeutics. Kidney Int,2006,69(2):213-217
    [125]Iekushi K, Taniyama Y, Azuma J, et al. Hepatocyte growth factor attenuates renal fibrosis through TGF-betal suppression by apoptosis of myofibroblasts. J Hypertens,2010,28(12):2454-2461
    [126]Dai C, Saleem MA, Holzman LB, et al. Hepatocyte growth factor signaling ameliorates podocyte injury and proteinuria. Kidney Int,2010,77(11):962-973
    [127]Iekushi K, Taniyama Y, Kusunoki H, et al. Hepatocyte growth factor attenuates transforming growth factor-beta-angiotensin II crosstalk through inhibition of the PTEN/Akt pathway. Hypertension,2011,58(2):190-196
    [128]Mizuno S, Ikebuchi F, Fukuta K, et al. Recombinant human HGF, but not rat HGF, elicits glomerular injury and albuminuria in normal rats via an immune complex-dependent mechanism.LID-10.1111/j.1440-1681.2011.05483.x [doi]. Clin Exp Pharmacol Physiol,2011,
    [129]Pang M, Ma L, Gong R, et al. A novel STAT3 inhibitor, S3I-201, attenuates renal interstitial fibroblast activation and interstitial fibrosis in obstructive nephropathy. Kidney Int,2010,78(3):257-268
    [130]Sorensen I, Susnik N, Inhester T, et al. Fibrinogen, acting as a mitogen for tubulointerstitial fibroblasts, promotes renal fibrosis. Kidney Int, 2011,80(10):1035-1044
    [131]Eltzschig HK, Thompson LF, Karhausen J, et al. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation:coordination by extracellular nucleotide metabolism. Blood,2004,104(13):3986-3992
    [132]Fredholm BB. Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ,2007,14(7):1315-1323
    [133]Wen J, Jiang X, Dai Y, et al. Increased adenosine contributes to penile fibrosis, a dangerous feature of priapism, via A2B adenosine receptor signaling. FASEB J,2010,24(3):740-749
    [134]Zhou Y, Murthy JN, Zeng D, et al. Alterations in adenosine metabolism and signaling in patients with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. PLOS ONE,2010,5(2):e9224

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700