MicroRNA-430靶向调控CXCR7对膀胱癌细胞生物学行为的影响及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     膀胱癌是人类常见的恶性肿瘤,然而其增殖和侵袭的分子机制依旧不明。
     MicroRNAs (miRNAs)是一类微小的内源性非编码的RNA,通过与靶位点mRNA的3’端非翻译区UTR相互作用来抑制基因的表达。新近的数据表明,miRNAs在各种生物过程,包括人类癌症的发生发展侵袭转移的调控中发挥着重要的作用。mirna-430的研究主要是在斑马鱼上进行研究,miR-430已被证明与斑马鱼的早期胚胎发育有重要关系。然而,mir-430在涉及人类恶性肿瘤的调控上暂时没有报道。CXCR7是趋化因子SDF-1α即CXCL12的受体,其是一种具有7次跨膜的基质蛋白。CXCR7的高表达被很多研究报道在肿瘤的发生发展侵袭转移中有增强作用,建议CXCR7作为癌症治疗中一个有吸引力的目标。Yates等发现CXCR7的表达在膀胱癌组织中增高,并且其增高的水平伴随着高级别的肿瘤及肿瘤转移。此外,CXCR7已被证实通过多种途径与膀胱癌的增殖、迁移、侵袭有关,其中包括ERK,Stat3与AKT等信号通路.。本研究目的为验证miR-430靶向作用于CXCR7,并进一步阐述这种靶向作用对膀胱癌细胞的影响及对其作用机制进行初步的研究。
     方法:
     1、采用Real-time PCR检测miR-430在正常膀胱组织、癌旁组织及不同分期的膀胱癌组织中的表达情况。采用双荧光素酶报告系统验证miR-430与CXCR7之间的靶向调控关系。
     2、构建miR-430过表达慢病毒载体和CXCR7过表达真核质粒载体。
     3、采用MTT法、流式细胞检测法、TransWell法等常用方法对miR-430过表达慢病毒感染和CXCR7过表达质粒转染的人膀胱癌5637细胞进行实验,从细胞生长、细胞周期、侵袭能力、克隆形成的方面来检测miR-430靶向调控CXCR7对膀胱癌生物学行为的影响。
     4、用Western-Blot方法来检测转染了miR-430过表达慢病毒和CXCR7过表达质粒的膀胱癌5637细胞中ERK、p-ERK、MMP-2、 MMP-9的表达情况,来初步探寻其对膀胱癌细胞生物学影响的机制。
     结果:
     1、miR-430在膀胱癌组织中表达较正常组织组和癌旁组织组降低,且在膀胱癌组织中随病理分期的增加而降低明显。通过双荧光素酶报告基因系统验证了miR-430与CXCR7之间存在靶向调控关系,miR-430能够降低CXCR7在膀胱癌细胞中的表达。
     2.成功建立了miR-430过表达慢病毒载体及CXCR7过表达真核质粒载体。
     3、在人膀胱癌5637细胞株中使mir-430的强制过表达明显抑制细胞增殖,迁移侵袭和克隆形成的能力,与CXCR7强制过表达的结果截然相反。
     4.在人膀胱癌5637细胞株中miR-430的过表达能抑制ERK、 p-ERK、MMP-2、MMP-9的表达,而上调TFAM表达却促进ERK、 p-ERK、MMP-2、MMP-9的表达。
     结论:
     本研究首先发现在正常膀胱、癌旁组织和膀胱癌组织中的mir-430的异常表达。此外,在人膀胱癌5637细胞株中使mi-430的强制过表达明显抑制细胞增殖,迁移侵袭和克隆形成的效率,与CXCR7强制过表达的结果截然相反,而CXCR7在本研究中已经被验证是miR-430的直接靶向目标。我们进一步的研究表明,在膀胱癌5637细胞株中过表达miR-430后与细胞增殖和迁移相关的基因包括ERK, p-ERK, MMP2和MMP9均明显下调,而在过表达CXCR7的膀胱癌5637细胞株中这些基因的表达显著上调。我们的研究首次揭示了mi-430在膀胱癌细胞中靶向调控CXCR7从而对膀胱癌细胞的生物学行为进行调控的潜在机制。
Objective:
     Bladder cancer is a common malignant tumor in human; however, the molecular mechanism underlying its growth and invasion remains unclear. MicroRNAs (miRNAs) are small, endogenous and non-coding RNAs that inhibit gene expression via interaction with target sites in the3'-untranslational region (UTRs) of mRNA.. Emerging data has shown that miRNAs play crucial roles in the regulation of various biological processes including the development of human cancers. MiRNA-430(miR-430) has mainly been researched in zebrafish, and has been shown to be associated with early embryo development. However, whether miR-430involves in the development of malignant tumors has not been reported.
     CXCR7is7-transmembrane chemokine receptors of the stroma-derived factor (SDF-1α). Its expression has been reported to be enhanced during tumor development, suggesting that CXCR7is an attractive therapeutic target for cancer. Yates. et al. found that CXCR7expression was elevated in bladder cancer tissues and was associated with high-grade and metastasis. Moreover, CXCR7has been demonstrated to be associated with proliferation, migration and invasion of bladder cancer through several signaling pathways including ERK, Stat3and AKT signaling.
     The present study firstly revealed a miR-430expression pattern in normal bladder, adjacent tissue and bladder cancer tissue. Moreover, forced overexpression of miR-430in human bladder cancer5637cells significantly inhibited cell proliferation, migration and colony-formation efficiency, entirely contrary to the results of forced overexpression of CXCR7, which was validated to be a direct target of miR-430in this study. Further analysis showed that cell proliferation-and migration-related genes including ERK, p-ERK, MMP2and MMP9were significantly downregulated in miR-430overexpressed5637cells, while markedly upregulated in CXCR7overexpressed5637cells. Our study reveals a novel role as well as a potential regulation mechanism of miR-430in bladder cancer cells. Methods:
     1.The expression of miR-430was detected by Real-time PCR in the
     bladder cancer, adjacent tissues and normal tissues.The regulatory relation between miR-430and CXCR7was tested and verified by the Dual-Luciferase reporter assays.2. Construct the vectors of miR-430and CXCR7overexpression
     3. Effects of miR-430and CXCR7overexpression on proliferation,
     cell cycle, colony-formation efficiency and migration of5637cells were detected by MTT assays, flow cytometry assays and Trans-Well.4. The expressions of ERK、p-ERK、MMP-2and MMP-9in cells
     which were transfected with miR-430lentiviral vectors and CXCR7over-expression vectors were detected, to seek the signal control paths of their regulatory relation.
     Results:
     1.The bladder cancer tissues showed lower expression of miR-430th an normal tissue and adjacent tissues. Moreover, the higher stage of blad der cancer, the lower expression of miR-430. Dual Luciferase reporter assays Show that CXCR7was the direct target of miR-430.and miR-430can induce the expression of CXCR7.
     2. The vectors of miR-430and CXCR7overexpression were constructed.
     3. forced overexpression of miR-430in human bladder cancer5637cells significantly inhibited cell proliferation, migration and colony-formation efficiency, entirely contrary to the results of forced overexpression of CXCR7, which was validated to be a direct target of miR-430in this study.
     4.The results indicated that the expressions of ERK,p-ERK, MMP-2and MMP-9was decreased in cells transfected with miR-430lentiviral v ectors, while increased in the cells transfected with CXCR7overexpression vectors when compared with controls.
引文
[1]Parkin D M, Bray F, Ferlay J, et al. Global cancer statistics,2002[J]. CA Cancer J Clin,2005,55(2):74-108.
    [2]Yang L, Parkin D M, Li L D, et al. Estimation and projection of the national profile of cancer mortality in China:1991-2005[J]. Br J Cancer, 2004,90(11):2157-2166.
    [3]Razzak M. Bladder cancer:narrow-band imaging--improving urothelial carcinoma detection[J]. Nat Rev Urol,2012,9(1):3.
    [4]Yuan X K, Zhao X K, Xia Y C, et al. Increased circulating immunosuppressive CD14(+)HLA-DR(-/low) cells correlate with clinical cancer stage and pathological grade in patients with bladder carcinoma[J]. J Int Med Res, 2011,39(4):1381-1391.
    [5]De Berardinis E, Busetto G M, Giovannone R, et al. Recurrent transitional cell carcinoma of the bladder:A mixed nested variant case report and literature review[J]. Can Urol Assoc J,2012,6(2):E57-E60.
    [6]Arroyo J D, Chevillet J R, Kroh E M, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma[J]. Proc Natl Acad Sci U S A,2011,108(12):5003-5008.
    [7]Boeri M, Verri C, Conte D, et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer[J]. Proc Natl Acad Sci U S A,2011,108(9):3713-3718.
    [8]Chen Y, Zhu X, Zhang X, et al. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy [J]. Mol Ther, 2010,18(9):1650-1656.
    [9]Chu H, Wang M, Shi D, et al. Hsa-miR-196a2 Rs11614913 polymorphism contributes to cancer susceptibility:evidence from 15 case-control studies[J]. PLoS One,2011,6(3):e18108.
    [10]Clark M B, Mattick J S. Long noncoding RNAs in cell biology [J]. Semin Cell Dev Biol,2011,22(4):366-376.
    [11]Grange C, Tapparo M, Collino F, et al. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche[J]. Cancer Res,2011,71(15):5346-5356.
    [12]Gee H E, Buffa F M, Camps C, et al. The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis [J]. Br J Cancer,2011,104(7):1168-1177.
    [13]Gibb E A, Brown C J, Lam W L. The functional role of long non-coding RNA in human carcinomas [J]. Mol Cancer,2011,10:38.
    [14]Rosenthal J. Market watch:upcoming market catalysts in Q4 2010[J]. Nat Rev Drug Discov,2010,9(10):755.
    [15]Kovaleva V, Mora R, Park Y J, et al. miRNA-130a targets ATG2B and DICER1 to inhibit autophagy and trigger killing of chronic lymphocytic leukemia cells[J]. Cancer Res,2012,72(7):1763-1772.
    [16]Drebber U, Lay M, Wedemeyer I, et al. Altered levels of the onco-microRNA 21 and the tumor-supressor microRNAs 143 and 145 in advanced rectal cancer indicate successful neoadjuvant chemoradiotherapy[J]. Int J Oncol, 2011,39(2):409-415.
    [17]Svoboda M, Izakovicova H L, Sefr R, et al. Micro-RNAs miR125b and miR137 are frequently upregulated in response to capecitabine chemoradiotherapy of rectal cancer[J]. Int J Oncol,2008,33(3):541-547.
    [18]Valastyan S. Roles of microRNAs and other non-coding RNAs in breast cancer metastasis[J]. J Mammary Gland Biol Neoplasia,2012,17(1):23-32.
    [19]Volinia S, Galasso M, Sana M E, et al. Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA[J]. Proc Natl Acad Sci USA,2012,109(8):3024-3029.
    [20]Chen Y, Liu W, Chao T, et al. MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G[J]. Cancer Lett, 2008,272(2):197-205.
    [21]Pallasch C P, Patz M, Park Y J, et al. miRNA deregulation by epigenetic silencing disrupts suppression of the oncogene PLAG1 in chronic lymphocytic leukemia[J]. Blood,2009,114(15):3255-3264.
    [22]Lim L P, Lau N C, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs[J]. Nature, 2005,433(7027):769-773.
    [23]Croce C M. Causes and consequences of microRNA dysregulation in cancer[J]. Nat Rev Genet,2009,10(10):704-714.
    [24]Libert F, Parmentier M, Lefort A, et al. Complete nucleotide sequence of a putative G protein coupled receptor:RDC1[J]. Nucleic Acids Res, 1990,18(7):1917.
    [25]Heesen M, Berman M A, Charest A, et al. Cloning and chromosomal mapping of an orphan chemokine receptor:mouse RDC1[J]. Immunogenetics, 1998,47(5):364-370.
    [26]Moepps B, Nuesseler E, Braun M, et al. A homolog of the human chemokine receptor CXCR1 is expressed in the mouse[J]. Mol Immunol,2006,43(7): 897-914.
    [27]Infantino S, Moepps B, Thelen M. Expression and regulation of the orphan receptor RDC1 and its putative ligand in human dendritic and B cells[J]. J Immunol,2006,176(4):2197-2207.
    [28]Meijer J, Ogink J, Roos E. Effect of the chemokine receptor CXCR7 on proliferation of carcinoma cells in vitro and in vivo[J]. Br J Cancer,2008,99(9): 1493-1501.
    [29]Wang J, Shiozawa Y, Wang J, et al. The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer[J]. J Biol Chem,2008,283(7): 4283-4294.
    [30]Hartmann T N, Grabovsky V, Pasvolsky R, et al. A crosstalk between intracellular CXCR7 and CXCR4 involved in rapid CXCL12-triggered integrin activation but not in chemokine-triggered motility of human T lymphocytes and CD34+ cells[J]. J Leukoc Biol,2008,84(4):1130-1140.
    [31]Miao Z, Luker K E, Summers B C, et al. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature[J]. Proc Natl Acad Sci U S A,2007,104(40):15735-15740.
    [32]Thelen M, Thelen S. CXCR7, CXCR4 and CXCL 12:an eccentric trio?[J]. J Neuroimmunol,2008,198(1-2):9-13.
    [33]Hao M, Zheng J, Hou K, et al. Role of chemokine receptor CXCR7 in bladder cancer progression [J]. Biochem Pharmacol,2012.84(2):204-214.
    [34]Raman D, Baugher P J, Thu Y M, et al. Role of chemokines in tumor growth[J]. Cancer Lett,2007,256(2):137-165.
    [35]Burns J M, Summers B C, Wang Y, et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development[J]. J Exp Med,2006,203(9):2201-2213.
    [36]Balabanian K, Lagane B, Infantino S, et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes[J]. J Biol Chem,2005,280(42):35760-35766.
    [37]Boldajipour B, Mahabaleshwar H, Kardash E, et al. Control of chemokine-guided cell migration by ligand sequestration[J]. Cell,2008,132(3): 463-473.
    [38]Dambly-Chaudiere C, Cubedo N, Ghysen A. Control of cell migration in the development of the posterior lateral line:antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1[J]. BMC Dev Biol,2007,7:23.
    [39]Zabel B A, Wang Y, Lewen S, et al. Elucidation of CXCR7-mediated signaling events and inhibition of CXCR4-mediated tumor cell transendothelial migration by CXCR7 ligands[J]. J Immunol,2009,183(5):3204-3211.
    [40]Infantino S, Moepps B, Thelen M. Expression and regulation of the orphan receptor RDC1 and its putative ligand in human dendritic and B cells[J]. J Immunol,2006,176(4):2197-2207.
    [41]Sierro F, Biben C, Martinez-Munoz L, et al. Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7[J]. Proc Natl Acad Sci U S A,2007,104(37):14759-14764.
    [42]Sierro F, Biben C, Martinez-Munoz L, et al. Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7[J]. Proc Natl Acad Sci U S A,2007,104(37):14759-14764.
    [43]Libura J, Drukala J, Majka M, et al. CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion[J]. Blood,2002,100(7):2597-2606.
    [44]Wang J, Shiozawa Y, Wang J, et al. The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer[J]. J Biol Chem,2008,283(7): 4283-4294.
    [45]Burns J M, Summers B C, Wang Y, et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development[J]. J Exp Med,2006,203(9):2201-2213.
    [46]Miao Z, Luker K E, Summers B C, et al. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature[J]. Proc Natl Acad Sci U S A,2007,104(40):15735-15740.
    [47]Lucchesi W, Brady G, Dittrich-Breiholz O, et al. Differential gene regulation by Epstein-Barr virus type 1 and type 2 EBNA2[J]. J Virol,2008,82(15):7456-7466.
    [48]Marechal R, Demetter P, Nagy N, et al. High expression of CXCR4 may predict poor survival in resected pancreatic adenocarcinoma[J]. Br J Cancer, 2009,100(9):1444-1451.
    [49]Manjunath N, Wu H, Subramanya S, et al. Lentiviral delivery of short hairpin RNAs[J]. Adv Drug Deliv Rev,2009,61(9):732-745.
    [50]朱煊.重组慢病毒CXCR7-shRNA对人膀胱癌细胞生物学行为影响的研究[J].
    [51]Stein J P, Quek M L, Skinner D G. Lymphadenectomy for invasive bladder cancer:Ⅰ. historical perspective and contemporary rationale [J]. BJU Int, 2006,97(2):227-231.
    [52]Shipley W U, Kaufman D S, Zehr E, et al. Selective bladder preservation by combined modality protocol treatment:long-term outcomes of 190 patients with invasive bladder cancer[J]. Urology,2002,60(1):62-67,67-68.
    [53]Liedberg F, Chebil G, Davidsson T, et al. Intraoperative sentinel node detection improves nodal staging in invasive bladder cancer[J]. J Urol,2006,175(1):84-88, 88-89.
    [54]Mishima Y, Giraldez A J, Takeda Y, et al. Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430[J]. Curr Biol, 2006,16(21):2135-2142.
    [55]Duda D G, Kozin S V, Kirkpatrick N D, et al. CXCL12 (SDFlalpha)-CXCR4/CXCR7 pathway inhibition:an emerging sensitizer for anticancer therapies?[J]. Clin Cancer Res,2011,17(8):2074-2080.
    [56]Yates T J, Knapp J, Gosalbez M, et al. C-X-C chemokine receptor 7:a functionally associated molecular marker for bladder cancer[J]. Cancer, 2013,119(1):61-71.
    [57]Garzon R, Marcucci G, Croce C M. Targeting microRNAs in cancer:rationale, strategies and challenges [J]. Nat Rev Drug Discov,2010,9(10):775-789.
    [58]Liang Y J, Wang Q Y, Zhou C X, et al. MiR-124 targets Slug to regulate epithelial-mesenchymal transition and metastasis of breast cancer [J]. Carcinogenesis,2013,34(3):713-722.
    [59]Zabaleta J. MicroRNA:A Bridge from H. pylori Infection to Gastritis and Gastric Cancer Development[J]. Front Genet,2012,3:294.
    [60]Tani S, Kusakabe R, Naruse K, et al. Genomic organization and embryonic expression of miR-430 in medaka (Oryzias latipes):insights into the post-transcriptional gene regulation in early development[J]. Gene, 2010,449(1-2):41-49.
    [61]Mishima Y, Giraldez A J, Takeda Y, et al. Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430[J]. Curr Biol, 2006,16(21):2135-2142.
    [62]Wei C, Salichos L, Wittgrove C M, et al. Transcriptome-wide analysis of small RNA expression in early zebrafish development[J]. RNA,2012,18(5):915-929.
    [63]Choi W Y, Giraldez A J, Schier A F. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430[J]. Science,2007,318 (5848):271-274.
    [64]Iwakiri S, Mino N, Takahashi T, et al. Higher expression of chemokine receptor CXCR7 is linked to early and metastatic recurrence in pathological stage I nonsmall cell lung cancer[J]. Cancer,2009,115(11):2580-2593.
    [65]Raggo C, Ruhl R, McAllister S, et al. Novel cellular genes essential for transformation of endothelial cells by Kaposi's sarcoma-associated herpesvirus[J]. Cancer Res,2005,65(12):5084-5095.
    [66]Yoshida D, Nomura R, Teramoto A. Signalling pathway mediated by CXCR7, an alternative chemokine receptor for stromal-cell derived factor-1 alpha, in AtT20 mouse adrenocorticotrophic hormone-secreting pituitary adenoma cells[J]. J Neuroendocrinol,2009,21(5):481-488.
    [67]Tuck A B, Park M, Sterns E E, et al. Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma[J]. Am J Pathol,1996,148(1): 225-232.
    [68]Pure E, Assoian R K. Rheostatic signaling by CD44 and hyaluronan[J]. Cell Signal,2009,21(5):651-655.
    [69]Naor D, Wallach-Dayan S B, Zahalka M A, et al. Involvement of CD44, a molecule with a thousand faces, in cancer dissemination[J]. Semin Cancer Biol, 2008,18(4):260-267.
    [70]Yates T J, Knapp J, Gosalbez M, et al. C-X-C chemokine receptor 7:a functionally associated molecular marker for bladder cancer[J]. Cancer, 2013,119(1):61-71.
    [71]McCubrey J A, Steelman L S, Chappell W H, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance[J]. Biochim Biophys Acta,2007,1773(8):1263-1284.
    [72]Vicent S, Lopez-Picazo J M, Toledo G, et al. ERK1/2 is activated in non-small-cell lung cancer and associated with advanced tumours[J]. Br J Cancer, 2004,90(5):1047-1052.
    [73]Groblewska M, Siewko M, Mroczko B, et al. The role of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) in the development of esophageal cancer[J]. Folia Histochem Cytobiol,2012,50(1):12-19.
    [74]Bauvois B. New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers:outside-in signaling and relationship to tumor progression[J]. Biochim Biophys Acta,2012,1825(1):29-36.
    [75]Siefert S A, Sarkar R. Matrix metalloproteinases in vascular physiology and disease[J]. Vascular,2012,20(4):210-216.
    [76]Grange C, Tapparo M, Collino F, et al. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche[J]. Cancer Res,2011,71 (15):5346-5356.
    [77]Rietz A, Spiers J. The relationship between the MMP system, adrenoceptors and phosphoprotein phosphatases[J]. Br J Pharmacol,2012,166(4):1225-1243.
    [1]Arroyo J D, Chevillet J R, Kroh E M, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma[J]. Proc Natl Acad Sci U S A,2011,108(12):5003-5008.
    [2]Boeri M, Verri C, Conte D, et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer[J]. Proc Natl Acad Sci U S A,2011,108(9):3713-3718.
    [3]Chen Y, Zhu X, Zhang X, et al. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy [J]. Mol Ther, 2010,18(9):1650-1656.
    [4]Chu H, Wang M, Shi D, et al. Hsa-miR-196a2 Rs11614913 polymorphism contributes to cancer susceptibility:evidence from 15 case-control studies[J]. PLoS One,2011,6(3):e18108.
    [5]Clark M B, Mattick J S. Long noncoding RNAs in cell biology[J]. Semin Cell Dev Biol,2011,22(4):366-376.
    [6]Gee H E, Buffa F M, Camps C, et al. The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis[J]. Br J Cancer,2011,104(7):1168-1177.
    [7]Gibb E A, Brown C J, Lam W L. The functional role of long non-coding RNA in human carcinomas [J]. Mol Cancer,2011,10:38.
    [8]Rosenthal J. Market watch:upcoming market catalysts in Q4 2010[J]. Nat Rev Drug Discov,2010,9(10):755.
    [9]Hunter M P, Ismail N, Zhang X, et al. Detection of microRNA expression in human peripheral blood microvesicles[J]. PLoS One,2008,3(11):e3694.
    [10]Ruvkun G. Molecular biology. Glimpses of a tiny RNA world.[J]. Science, 2001,294(5543):797-799.
    [11]Raggo C, Ruhl R, McAllister S, et al. Novel cellular genes essential for transformation of endothelial cells by Kaposi's sarcoma-associated herpesvirus[J]. Cancer Res,2005,65(12):5084-5095.
    [12]Kogure T, Lin W L, Yan I K, et al. Intercellular nanovesicle-mediated microRNA transfer:a mechanism of environmental modulation of hepatocellular cancer cell growth[J]. Hepatology,2011,54(4):1237-1248.
    [13]Lanford R E, Hildebrandt-Eriksen E S, Petri A, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection[J]. Science, 2010,327(5962):198-201.
    [14]Khaitan D, Dinger M E, Mazar J, et al. The melanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion[J]. Cancer Res, 2011,71(11):3852-3862.
    [15]McDonald J S, Milosevic D, Reddi H V, et al. Analysis of circulating microRNA: preanalytical and analytical challenges [J]. Clin Chem,2011,57(6):833-840.
    [16]Gilad S, Meiri E, Yogev Y, et al. Serum microRNAs are promising novel biomarkers[J]. PLoS One,2008,3(9):e3148.
    [17]Pasquinelli A E, Reinhart B J, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA[J]. Nature, 2000,408(6808):86-89.
    [18]Lim L P, Lau N C, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs[J]. Nature, 2005,433(7027):769-773.
    [19]Croce C M. Causes and consequences of microRNA dysregulation in cancer[J]. Nat Rev Genet,2009,10(10):704-714.
    [20]Iorio M V, Croce C M. Causes and consequences of microRNA dysregulation[J]. Cancer J,2012,18(3):215-222.
    [21]Flynt A S, Lai E C. Biological principles of microRNA-mediated regulation: shared themes amid diversity[J]. Nat Rev Genet,2008,9(11):831-842.
    [22]Wu L, Fan J, Belasco J G. MicroRNAs direct rapid deadenylation of mRNA[J]. Proc Natl Acad Sci U S A,2006,103(11):4034-4039.
    [23]Orom U A, Nielsen F C, Lund A H. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation[J]. Mol Cell, 2008,30(4):460-471.
    [24]Tang F, Hajkova P, Barton S C, et al.220-plex microRNA expression profile of a single cell[J]. Nat Protoc,2006,1(3):1154-1159.
    [25]Tang F, Hajkova P, Barton S C, et al. MicroRNA expression profiling of single whole embryonic stem cells[J]. Nucleic Acids Res,2006,34(2):e9.
    [26]Lusi E A, Passamano M, Guarascio P, et al. Innovative electrochemical approach for an early detection of microRNAs[J]. Anal Chem,2009,81(7):2819-2822.
    [27]Jemal A, Bray F, Center M M, et al. Global cancer statistics [J]. CA Cancer J Clin, 2011,61(2):69-90.
    [28]Collins K, Jacks T, Pavletich N P. The cell cycle and cancer[J]. Proc Natl Acad Sci U S A,1997,94(7):2776-2778.
    [29]Stein J P, Quek M L, Skinner D G. Lymphadenectomy for invasive bladder cancer:Ⅰ. historical perspective and contemporary rationale[J]. BJU Int, 2006,97(2):227-231.
    [30]Stein J P, Quek M L, Skinner D G. Lymphadenectomy for invasive bladder cancer. Ⅱ. technical aspects and prognostic factors[J]. BJU Int,2006,97(2): 232-237.
    [31]Shipley W U, Kaufman D S, Zehr E, et al. Selective bladder preservation by combined modality protocol treatment:long-term outcomes of 190 patients with invasive bladder cancer[J]. Urology,2002,60(1):62-67,67-68.
    [32]Liedberg F, Chebil G, Davidsson T, et al. Intraoperative sentinel node detection improves nodal staging in invasive bladder cancer[J]. J Urol,2006,175(1):84-88, 88-89.
    [33]Huang G J, Stein J P. Open radical cystectomy with lymphadenectomy remains the treatment of choice for invasive bladder cancer[J]. Curr Opin Urol, 2007,17(5):369-375.
    [34]Stein J P, Lieskovsky G, Cote R, et al. Radical cystectomy in the treatment of invasive bladder cancer:long-term results in 1,054 patients[J]. J Clin Oncol, 2001,19(3):666-675.
    [35]Gottardo F, Liu C G, Ferracin M, et al. Micro-RNA profiling in kidney and bladder cancers[J]. Urol Oncol,2007,25(5):387-392.
    [36]Han Y, Chen J, Zhao X, et al. MicroRNA expression signatures of bladder cancer revealed by deep sequencing[J]. PLoS One,2011,6(3):e 18286.
    [37]Dyrskjot L, Ostenfeld M S, Bramsen J B, et al. Genomic profiling of microRNAs in bladder cancer:miR-129 is associated with poor outcome and promotes cell death in vitro[J]. Cancer Res,2009,69(11):4851-4860.
    [38]Lin T, Dong W, Huang J, et al. MicroRNA-143 as a tumor suppressor for bladder cancer[J]. J Urol,2009,181(3):1372-1380.
    [39]Han Y, Chen J, Zhao X, et al. MicroRNA expression signatures of bladder cancer revealed by deep sequencing[J]. PLoS One,2011,6(3):e18286.
    [40]Wang G, Zhang H, He H, et al. Up-regulation of microRNA in bladder tumor tissue is not common[J]. Int Urol Nephrol,2010,42(1):95-102.
    [41]Ichimi T, Enokida H, Okuno Y, et al. Identification of novel microRNA targets based on microRNA signatures in bladder cancer[J]. Int J Cancer,2009,125(2): 345-352.
    [42]Dyrskjot L, Ostenfeld M S, Bramsen J B, et al. Genomic profiling of microRNAs in bladder cancer:miR-129 is associated with poor outcome and promotes cell death in vitro[J]. Cancer Res,2009,69(11):4851-4860.
    [43]夏伟,宋涛,李洁,等.临床膀胱癌组织中miRNA的差异表达研究[J].军事医学科学院院刊,2010(6):540-542.
    [44]Neely L A, Rieger-Christ K M, Neto B S, et al. A microRNA expression ratio defining the invasive phenotype in bladder tumors[J]. Urol Oncol, 2010,28(1):39-48.
    [45]Adam L, Zhong M, Choi W, et al. miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy[J]. Clin Cancer Res,2009,15(16): 5060-5072.
    [46]Veerla S, Lindgren D, Kvist A, et al. MiRNA expression in urothelial carcinomas:important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31[J]. Int J Cancer,2009,124(9):2236-2242.
    [47]Wiklund E D, Bramsen J B, Hulf T, et al. Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer[J]. Int J Cancer, 2011,128(6):1327-1334.
    [48]Catto J W, Miah S, Owen H C, et al. Distinct microRNA alterations characterize high-and low-grade bladder cancer[J]. Cancer Res,2009,69(21):8472-8481.
    [49]O'Donnell K A, Wentzel E A, Zeller K I, et al. c-Myc-regulated microRNAs modulate E2F1 expression[J]. Nature,2005,435(7043):839-843.
    [50]Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival[J]. Cancer Res,2004,64(11):3753-3756.
    [51]Bazzini A A, Lee M T, Giraldez A J. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish[J]. Science, 2012,336(6078):233-237.
    [52]He X, He L, Hannon G J. The guardian's little helper:microRNAs in the p53 tumor suppressor network[J]. Cancer Res,2007,67(23):11099-11101.
    [53]Ji Q, Hao X, Zhang M, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells[J]. PLoS One,2009,4(8):e6816.
    [54]Gallardo E, Navarro A, Vinolas N, et al. miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer[J]. Carcinogenesis, 2009,30(11):1903-1909.
    [55]Ji J, Yamashita T, Budhu A, et al. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells[J]. Hepatology,2009,50(2):472-480.
    [56]Vinall R L, Ripoll A Z, Wang S, et al. MiR-34a chemosensitizes bladder cancer cells to cisplatin treatment regardless of p53-Rb pathway status[J]. Int J Cancer, 2012,130(11):2526-2538.
    [57]Yang X, Feng M, Jiang X, et al. miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A[J]. Genes Dev, 2009,23(20):2388-2393.
    [58]Yang X, Feng M, Jiang X, et al. miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK.6 and CDC25A[J]. Genes Dev, 2009,23(20):2388-2393.
    [59]Jeon H S, Lee S Y, Lee E J, et al. Combining microRNA-449a/b with a HDAC inhibitor has a synergistic effect on growth arrest in lung cancer[J]. Lung Cancer, 2012,76(2):171-176.
    [60]Trang P, Medina P P, Wiggins J F, et al. Regression of murine lung tumors by the let-7 microRNA[J]. Oncogene,2010,29(11):1580-1587.
    [61]Ueda T, Volinia S, Okumura H, et al. Relation between microRNA expression and progression and prognosis of gastric cancer:a microRNA expression analysis[J]. Lancet Oncol,2010,11(2):136-146.
    [62]Lu J, Getz G, Miska E A, et al. MicroRNA expression profiles classify human cancers[J]. Nature,2005,435(7043):834-838.
    [63]Calin G A, Dumitru C D, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia[J]. Proc Natl Acad Sci U S A,2002,99(24):15524-15529.
    [64]李鹏超.人膀胱肿瘤中miR-200c和miR-141功能的初步研究[J].
    [65]Wszolek M F, Rieger-Christ K M, Kenney P A, et al. A MicroRNA expression profile defining the invasive bladder tumor phenotype[J]. Urol Oncol, 2011,29(6):794-801.
    [66]Han Y, Chen J, Zhao X, et al. MicroRNA expression signatures of bladder cancer revealed by deep sequencing[J]. PLoS One,2011,6(3):e18286.
    [67]Lin Y, Wu J, Chen H, et al. Cyclin-dependent kinase 4 is a novel target in micoRNA-195-mediated cell cycle arrest in bladder cancer cells[J]. FEBS Lett, 2012,586(4):442-447.
    [68]Fei X, Qi M, Wu B, et al. MicroRNA-195-5p suppresses glucose uptake and proliferation of human bladder cancer T24 cells by regulating GLUT3 expression[J]. FEBS Lett,2012,586(4):392-397.
    [69]He J F, Luo Y M, Wan X H, et al. Biogenesis of MiRNA-195 and its role in biogenesis, the cell cycle, and apoptosis[J]. J Biochem Mol Toxicol, 2011,25(6):404-408.
    [70]Mitchell P S, Parkin R K, Kroh E M, et al. Circulating microRNAs as stable blood-based markers for cancer detection[J]. Proc Natl Acad Sci U S A, 2008,105(30):10513-10518.
    [71]Gilad S, Meiri E, Yogev Y, et al. Serum microRNAs are promising novel biomarkers[J]. PLoS One,2008,3(9):e3148.
    [72]Puerta-Gil P, Garcia-Baquero R, Jia A Y, et al. miR-143, miR-222, and miR-452 are useful as tumor stratification and noninvasive diagnostic biomarkers for bladder cancer[J]. Am J Pathol,2012,180(5):1808-1815.
    [73]Hanke M, Hoefig K, Merz H, et al. A robust methodology to study urine microRNA as tumor marker:microRNA-126 and microRNA-182 are related to urinary bladder cancer[J]. Urol Oncol,2010,28(6):655-661.
    [74]Fendler A, Stephan C, Yousef G M, et al. MicroRNAs as regulators of signal transduction in urological tumors[J]. Clin Chem,2011,57(7):954-968.
    [75]Saito Y, Liang G, Egger G, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells[J]. Cancer Cell,2006,9(6):435-443.
    [76]Liu Y, Han Y, Zhang H, et al. Synthetic miRNA-mowers targeting miR-183-96-182 cluster or miR-210 inhibit growth and migration and induce apoptosis in bladder cancer cells[J]. PLoS One,2012,7(12):e52280.
    [77]Noguchi S, Yasui Y, Iwasaki J, et al. Replacement treatment with microRNA-143 and-145 induces synergistic inhibition of the growth of human bladder cancer cells by regulating PI3K/Akt and MAPK signaling pathways[J]. Cancer Lett,2013,328(2):353-361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700