深海平台及系泊与立管系统动力特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋平台是海洋油气资源开发的主要工具。半潜平台具有抗风浪能力强和适应水深范围广等优点,而Spar平台运动性能优良、成本相对低廉,它们都将是我国南海深海资源开发中的主要海洋工程装备。这两类深海平台都是由作为刚体的浮体结构与细长柔性构件系统(系泊缆和立管等)耦合而成的,浮体结构与细长构件相互作用,共同抵御海洋环境载荷。
     本论文研究深海半潜与Spar平台浮体/系泊/立管系统在风浪流中的时域耦合动力特性问题。第一章概要地回顾和总结了目前国内外研究进展,第二章阐述了对深海平台浮体/系泊/立管系统进行时域耦合动力分析的方法。在此基础上,开展了如下研究工作:
     在第三章中,首先对一座悬链系泊半潜平台在不规则波中的动力特性进行了数值研究,通过与模型实验结果的比较,表明了所采用方法的合理性与可靠性,并对有1根系泊缆发生断裂时该平台运动响应及其系泊缆张力特性进行了研究分析。
     同时,对一座张紧系泊半潜平台在风浪流中的动力特性进行了分析,研究了SCR与TTR两种立管对其运动响应及系泊张力特性的影响,分析了有系泊断裂时平台运动响应及其系泊/立管张力的变化特性。
     在第四章中,对一座经典式Spar平台在风浪流中的动力特性进行了分析,研究了在有风流及没有风流、有系泊断裂及没有系泊断裂等情况下,平台运动响应及其系泊/立管张力的变化特性。
     研究表明,如果忽略立管的影响,将会低估平台运动响应性能,而高估系泊极限张力。当有系泊断裂时,半潜平台纵荡和纵摇运动响应会明显增大,而Spar平台纵荡和垂荡运动明显增大,同时原来绷紧系泊缆的张力会明显增加,而松弛系泊缆的张力会减小。
Offshore structures are main tools to exploit oil and gas resources in oceans. Semi-submersible platforms have strong ability of anti-wave and wide range of operational water depths. Spar platforms have excellent motion performances and are relatively low cost. These platforms will be the primary marine engineering equipments to exploit the deep-sea resources in the South China Sea, and both of which are composed by floating vessel modeled as rigid body and flexible slender structure systems (mooring lines and marine risers), these parts interact to resist sea entironment loads.
     This paper deals with the coupled-dynamic characteristics of floating hulls/mooring lines/risers for deepwater Semi-submersible and Spar platforms in the time-domain under winds, random waves and currents. Chapter I reviews and summarizes recent progress in such areas briefly. Chapter II presents the numerical method for the coupled-dynamic analysis of a deepwateer floating structure with mooring lines/risers in the time domain. Then the following work has been carried out:
     In Chapter III, the dynamic characteristics of a Semi-submersible platform with catenary mooring lines in random waves are analyzed. The proposed method is validated by comparing with the model test results, and the motion responses of the platform and the tension characteristics of the mooring lines are analysized under the cases where one mooring line is broken.
     Moreover, the dynamic characteristics of a Semi-submersible platform with taut mooring lines in winds, random waves and currents are further analyzed. The effects of two kinds of risers (SCRs and TTRs) on the motion responses of the platform and the tension characteristics of the mooring lines are considered, and then dynamic characteristics of the platform with taut mooring lines and SCRs are analysized under the cases where some mooring lines are broken.
     In Chapter IV, the dynamic characteristics of a classic Spar in winds, random waves and currents are considered, the effects of the winds and currents on the motion responses of the platform and the tension characteristics of the mooring lines/risers are considered, and then dynamic characteristics of the platform with taut mooring lines and a TTR are analysized under the cases where some mooring lines are broken.
     Results show that the motion performances of the platforms will be underestimated, and the limit tensions of the mooring lines will be overestimated if the effects of risers are ignored. When some mooring lines are broken, the surge and pitch will increase significantly for the semi-submersible platform while the surge and heave will increase obviously for the Spar platform, moreover the tension will increase for taut mooring lines and decrease for slack ones greatly.
引文
[1]董艳秋.深海采油平台波浪载荷及响应[M]. 2005,天津:天津大学出版社.
    [2] James R McCaul. Outlook for floating production system. Maritime Reporter, Auguest [R]. 2003, www.imastudies.com.
    [3]唐友刚,张素侠,张若瑜,刘海笑.深海系泊系统动力特性研究进展[J].海洋平台,2008,26(1): 120-126.
    [4]栾苏,韩成才,王维旭,于兴军.半潜式海洋钻井平台的发展[J].石油矿场机械,2008,37(11): 90-93.
    [5]陈新权,刘振辉,谭家华.深海半潜式平台选型研究[J].中国海洋平台, 2008, 23(1): 8-13.
    [6]缪国平,刘应中.船舶在波浪上的运动理论[M]. 1986,上海:上海交通大学出版社.
    [7]Faltinsen O M.船舶与海洋工程环境载荷[M]. 2008,上海:上海交通大学出版社.
    [8]Pnagalila F V, Martin J P. A mehtod of estimating line tensions and motions of a Semi-submersible based on empirical data and model basis resustl [C]. OTC, 1969, 2: 90-96.
    [9]Gault A J, Cox W R. Method for Predicting geometry and loading distribution in an anchor chain from a single point mooring buoy to a buried anchorage [C]. OTC, l973,1: 309-318.
    [10]Connell G. M. Analytical studies of resonance in taut-moored system [C]. OTC, 1974, 2: 401-416.
    [11]马汝建,高学仕.悬链线锚链的非线性恢复系数[J].中国海洋平台,1994,21: 80-183.
    [12]马鉴恩,李凤来.锚泊列阵的设计研究[J].海洋工程,1996,14(2): 52-62.
    [13]黄剑,朱克强.半潜式平台两种锚泊系统的静力分析与比较[J].华东船舶工业学院学报(自然科学版),2004, 18(3):1-5.
    [14]Mark A Grosenbaug. A simple model for heave-induced dynamic tension in catenary moorings[J]. Applied Ocean Research, 2001, 23: 159-174.
    [15]余龙,谭家华.深水多成分悬链线锚泊系统优化设计及应用研究[J].华东船舶工业学院学报(自然科学版), 2004, 18(5): 8-13.
    [16]余龙,谭家华.基于准静定方法的多成分锚泊线优化[J].海洋工程, 2005, 23(1): 69-73.
    [17]陈徐均,汤雪峰等.系泊浮体布链方式优劣的理论分析[J].河海大学学报,2001, 29(5): 1-9.
    [18]陈徐均,崔维成,沈庆.对称式布置锚链系统的线性化处理[J].海洋工程,2002, 22(1): 75-79.
    [19]Adams R B. Analysis of spread mooring by dimensional function[C]. OTC, 1968, 1: 77-88.
    [20]Charles E N, Dominguez R F. Large displacement mooring dynamics[C]. OTC, 1977, 1: 19-30.
    [21]Berteaux H O. Buoy Engineering[M]. 1976, John Wiley and Sons, New York.
    [22]Korterayama W. Motions of moored floating body and dynamic tension of mooring lines in regular waves[J]. Rep. Res. Inst. Appl. Mech. 1978, X X N: 99-126.
    [23]Nakajima T, Motora S, Fujino M. On the dynamic responses of the moored object and the mooring lines in regular waves[C]. Trans. Soc. of Naval Arch of Japan, 1981, No.150.
    [24]Korterayama W, Nakamura M. Drag and inertia force coefficients derived from field tests[J]. International Journal of Offshore and Polar Engineering, 1992, 2(3): 162-167.
    [25]Toshio Nakajima. A study of the mooring dynamics of various types by lumped mass method[D]. Ph. D Thesis, University of Tokyo, 1991.
    [26]Toshio Nakajima. On the dynamic analysis of multi-component mooring lines[C]. OTC, 1982, 4309: 105-110.
    [27]李远林,吴家鸣.多锚链系泊浮筒非线性漂移运动的时域模拟[J].海洋工程,1990, 8(1): 25-33.
    [28]刘应中,缪国平,李谊乐等.系泊系统动力分析的时域方法[J].上海交通大学学报, 1997, 31(11): 7-12.
    [29]Low Y M, Langley R S. Time and frequency domain coupled analysis of deepwater floating production systems[J]. Applied Ocean Research, 2007, 28: 371-385.
    [30]Bliek A. Dynamic analysis of single span cables[D]. Ph.D Thesis, MIT, 1994.
    [31]Thomas D O, Hearn G E. Deepwater mooring line dynamics with emphasis on sea-bed interference effects [C]. OTC ,1991, 7488: 312-326.
    [32]Webster E L. Nonlinear static and dynamic response of underwater cables using the finite element method [C]. OTC,1975, 2322(2): 754-764.
    [33]Leonard J W, Recker W W. Nonlinear dynamics of cables with low initial tension of the Engineering Mechanics [J]. Division, ASCE, 1972, 98(2): 204-234.
    [34]Nordgren R. On Computation of the Motion of Elastic Rods [J]. ASME Journal of Applied Mechanics, 1974, 777-780.
    [35]Garrett D L. Dynamic Analysis of Slender Rods [J]. Journal of Energy Resources Technology. 1982, Transactions of ASNE 104, 302-307.
    [36]Ran Z. Coupled dynamic analysis of floating structures in waves and current[D]. PhD Thesis, Texas A and M University, 2000.
    [37]Kim M H, Ran Z, Zheng W. Hull/mooring coupled dynamic analysis of a trussspar in time domain[C]. Int J Offshore Polar Engng, 2001, 11: 42-54.
    [38]Arcandra T. Hull/mooring/riser Coupled Dynamic Analysis of a Deepwater Floating Platform with Polyester Lines[D]. PhD Thesis, Texas A and M University; 2001.
    [39]陈小红,黄祥鹿.单点系泊海洋资料浮标的动力分析[J].中国造船,1995,130: 1-13.
    [40]范菊,黄样鹿.锚泊线的动力分析[J].中国造船,1999, 144: 13-20.
    [41]范菊,陈小红,黄祥鹿.锚泊线一阶运动响应对二阶锚链阻尼的影响[J].船舶力学, 2000, 4: 20-27.
    [42]Kwan C T, Bruen F J. Mooring line dynamics: comparison of time domain, frequency domain and quasi-static analysis[C]. OTC, 1988, 2: 513-521.
    [43]陈徐均,吴有生,崔维成,孙芦忠.海洋浮体二阶非线性水弹性力学分析—系泊浮体主坐标响应的频率特征[J].船舶力学,2002, 6(2): 44-57.
    [44]付世晓,范菊,陈徐均,崔维成.考虑浮体弹性变形的锚泊系统分析方法[J].船舶力学, 2004, 8(2): 47-54.
    [45]杜度,张宁,马骋,张纬康.系泊系统的时域仿真及其非线性动力学特性分析[J].船舶力学, 2005, 9(4): 37-45.
    [46]Ormberg H, Fylling I J, Larsen K, Sodahl N. Coupled analysis of vessel motions and mooring and riser system dynamics[C]. Proceedings of the 16th international conference on OMAE, 1997, 91-100.
    [47]Ormberg H, Larsen K. Coupled Analysis of Floater Motion and Mooring Dynamic for a Turret Moored Tanker [J]. Applied Ocean Research, 1998, 20: 55-67.
    [48]Kim M H, Arcandra T, Kim Y B. Variability of spar motion analysis against various design methodologies/parameters[C]. Proc 20th Offshore Mech Artic Eng. Conf, 2001, OMAE01-OFT1063.
    [49]Kim M H, Arcandra T, Kim Y B.Variability of TLP motion analysis against various design methodologies/parameters[C]. Proc 11th Int Offshore Polar Engng Conf., 2002, ISOPE 3, 169-173.
    [50]Wichers JEW, Voogt HJ, Roelofs HW, Driessen PCM. DeepStar-CTR 4401 Benchmark Model Test[R]. 2001, Technical Report No. 16417-1-OB, MARIN, Netherlands.
    [51] Kim M H, Koo B J, Mercier R M, Ward E G. Vessel/mooring/riser coupled dynamic analysis of a turret-moored FPSO compared with OTRC experiment[J]. Ocean Engineering, 2005, 32 : 1780– 1802.
    [52]Arcandra Tahar, Kim M H. Hull/mooring/riser coupled dynamic analysis and sensitivity study of a tanker-based FPSO[J]. Applied Ocean Research, 2003, 24: 367-382.
    [53]肖越.系泊系统时域非线性计算分析[D].大连:大连理工大学博士学位论文,2005.
    [54]Garrett D L. Coupled analysis of floating production systems[J]. Ocean engineering, 2005, 32, 802-816.
    [55]张火明.基于等效水深截断的深海平台混合模型试验方法研究[D].上海:上海交通大学博士学位论文,2005.
    [56]Chen X H, Zhang J, Peter Jonson. etc, Studies on the Dynamics of Truncated Mooring Line[C]. Fro. 10t" ISOPE Conf, 2000, 94-101.
    [57]苏志勇.混合模型试验中截断系泊缆动力特性差异研究[D].上海:上海交通大学硕士论文,2009.
    [58]Maruo H. The drift of a body floating in waves[J]. Journal of Ship Research, 1960, 4(3): 1-10.
    [59]Pinkster J A, Van Oortmerssen G.. Computation of the first and second order wave forces on bodies oscillating in regular waves[C]. Second International Conference on Numerical Ship Hydrodynamics, 1977, 136-159.
    [60]Chen Xiao-Bo Hydrodynamics in Offshore and Naval Applications-Part I[C]. The Univeisity of western Australia, perth(Australia): 6th International Conference on Hydrodynamics, 2004,11: 22-24.
    [61]Cummins W E. The impluse response function and ship motions[J]. Schifefstechnik, Band 1962, 9: 102-109.
    [62]刘应中.物体运动的时域分析—非线性理论与数值解法[M]. 1985,上海:上海交通大学出版社.
    [63]许海林.锚泊系统动力分析的几个问题[D].上海:上海交通大学硕士学位论文,2002.
    [64]王科俊.海洋运动体控制原理[M]. 2005,哈尔滨:哈尔滨工程大学出版社.
    [65]]张阳春等.石油钻采设备—第三轮国内外技术发展水平跟踪与分析[R]. 2000,北京:中国石油和石油化工设备工业协会钻采机械专业委员会.
    [66]廖谟圣.当前世界上大型、先进、的半潜式钻井平台[J].中国海洋平台,2002,17(3): 43-46.
    [67]刘海霞.深海半潜式钻井平台的发展[J].船舶, 2007.6(3):6-10.
    [68]由际昆,王言英.深水半潜式平台系泊系统设计研究[J].中国海洋平台,2009, 24(1): 24-30.
    [69]黄维平,白兴兰,李华军.国外深水钢悬链线立管研究发展现状[J].中国海洋大学学报,2009,39(1): 290-294.
    [70]李辉,任慧龙,陈北燕,冯国庆.深水半潜式平台波浪载荷计算方法研究[J].华中科技大学学报,2009,37(3): 122-125.
    [71]张威.深海半潜式钻井平台水动力性能分析[D].上海:上海交通大学硕士学位论文,2006.
    [72]张威,冯玮,谢彬.深水半潜式平台运动响应预报方法的对比分析[J].中国海上油气,2009,21(1): 61-68.
    [73]童波,杨建民,李欣.深水半潜平台悬链线式系波系统耦合动力分析[J].中国海洋平台,2008,23(6): 1-7.
    [74]童波,杨建民,李欣.深水半潜式平台系泊系统动力特性研究[J].海洋工程,2009,27 (1) : 1-7.
    [75]王世圣,谢彬,冯玮,谢文会.两种典型深水半潜式钻井平台运动特性和波浪载荷的计算分析[J].中国海上油气,2008, 20(5): 349-350.
    [76]王世圣,谢彬,曾恒一等.张海滨.3000米深水半潜式钻井平台运动性能研究[J].中国海上油气,2007, 19(4): 277-284.
    [77]由际昆,王言英.深水半潜平台绷紧索系泊系统设计研究[J].中国海洋平台,2009,24(1): 24-30.
    [78]张帆,杨建民,李润培. Spar平台的发展趋势及其关键技术[J].中国海洋平台,2005,4: 6-11.
    [79]顾罡.国外Spar平台研究与发展综述[J].舰船科学技术,2008, 30(3): 167-169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700