小型风力机设计及风轮气动性能的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以10KW小型定桨距风力机为研究对象,利用Fluent流体计算软件,对风力机专用翼型及风轮的气动特性进行了数值模拟研究。主要完成了以下几方面的工作:
     分别选用S-A.RNGκ-ε、κ-ωSST三种湍流模型对S827、S832翼型的绕流流动进行了数值计算,通过与实验数据的对比,研究了不同湍流模型对风力机翼型气动性能的预测能力,以确定适合于本文流动问题的湍流模型。
     采用数值模拟方法分析了NACA和NREL两个系列的五种风力机翼型的气动特性,结果表明:针对S系列翼型,翼型弯度相近时,随着翼型厚度的增大,对应同一攻角的翼型升力系数有所提高,同时翼型上下面的压差阻力也增大,使得翼型的升阻比有所降低,但与薄翼型相比,较厚翼型的最佳升阻比攻角范围较宽;在适当攻角范围内,增加翼型弯度,可以提高翼型的升力系数及升阻比,使得翼型具有较宽的高升阻比范围,但是超过一定攻角范围时,翼型弯度较大的却容易发生流动分离,翼型气动性能下降;NREL风力机专用翼型较传统翼型更能满足气动性能的要求,并且翼型具有较高的能量转换效率。
     基于Wilson理论进行了10KW小型定桨距风力机叶片的气动设计,考虑了叶尖损失、叶根损失以及轴向、周向干扰因子对叶片最佳性能的影响,基于Pro/E三维造型软件实现了风力机叶片三维模型的参数化建模,构建了风力机叶片及整个风轮三维实体模型,大大提高了风轮设计与造型的效率和精度。
     最后,在额定工况和十五个非额定工况下对风轮流场进行了数值模拟,计算出不同风速下风力机的功率和效率,验证了本文所采用优化设计方法和数值模拟方法的有效性、可靠性;并对额定工况下风轮叶片的压力和速度分布进行了分析,探讨了三维旋转效应对流动特性的影响。
In this article, the research work on 10KW small fixed pitch wind turbine and using the CFD software Fluent to investigate the aerodynamic performance of special airfoils and wind rotor in numerical method. These studies mainly consist of the following aspects:
     Different turbulence models such as S-A、RNGκ-εandκ-ωSST were used to simulate airfoil S827、S832, and the computational results were compared with the experimental data, the predictability of different turbulence models to the aerodynamic performance were investigated, so as to make sure the certain turbulence models which is suitable for the flow problems in this paper.
     In this article, numerical simulation is used to analyse the aerodynamic properties of five wind turbine airfoils between the two series of NACA and NREL. The results show that:For the S series airfoil, when the airfoil curvature is similar, with the increase of the thickness airfoil, corresponding to the same angle of attack of the airfoil lift coefficient has increased, at the same time, the pressure drag on the airfoil also increased following, makes the airfoil lift-drag ratio decreased. However, when compared with the thin airfoil, the thicker airfoil has the wider range of best lift-drag ratio. Within the appropriate angle of attack, increase the airfoil curvature, can increasing the airfoil lift coefficient and lift-drag ratio, make the airfoil has a wide range of high lift-drag ratio. But beyond a certain angle of attack range, the larger airfoil curvature is prone to occur flow separation. NREL wind turbine airfoil can better meet the requirements of the aerodynamic performance than the traditional airfoils, and the airfoil has a high energy conversion efficiency.
     Based on the Wilson method, a 10KW small fixed pitch wind turbine was designed, considering various factors such as the tip losses、root of blade losses、axial and circumferential factors on the optimization of aerodynamic performance for the blade. Based on Pro/E 3D modeling software to realize the three-dimensional models of wind turbine rotor, constructed the three-dimensional solid model of the Wind Turbine Blades and rotor, thus enhanced the efficiency and precision of the design and modeling of wind wheel.
     Finally, the Fluent software was used for numerical simulation for wind turbine at rated wind speed and fifteen other speeds to calculate the wind turbine power and efficiency under different speeds. Approved the validity and reliability to the optimal design method and numerical simulation; analysed the pressure and velocity distribution of wind wheel blade at rated operating conditions, and discussed the three-dimensional rotational effect on the flow characteristics.
引文
[1]张希良.风能开发利用[M].化学工业出版社,2005.
    [2]王长贵,崔容强,周篁.新能源发电技术[M].中国电力出版社,2003.
    [3]Spera, D. A. edt. Wind Turbine Technology:Fundamental Concepts of Wind Turbine Engineering, ASME Press, New York,1994.
    [4]E. Hau, J. Langenbrinck, W. Palz. WEGA Large Wind Turbines, Springer-Verlag Press,1993.
    [5]Cheng Zhaoxue, Ye Zhiquan, Chen Jingyi and Bai Shibao. Aerodynamic Optimization for the Rotor of Horizontal-Axis Wind Machine, Proceedings of the International Conference on New and Renewable Energy, Beijing,1990, pp.306-312.
    [6]贺德馨等.风工程与工业空气动力学[M].国防工业出版社,2006.
    [7]陈培,杜绵银,刘杰平.风力机专用翼型发展现状及其关键气动问题分析[J].电网与清洁能源,2009,25(2):36-40.
    [8]Anders Bjorck,S-E Thor. Dynamic Stall and 3-D Effects[A].Proceeding of Europe Union Wind Energy Conference[C],1996.
    [9]Hebbark S.Mean and Turbulence Measurements in the Boundary Layer and Wake of a Symmetric Airfoil[J].Exp,Fluids,1986,(4):214-222.
    [10]Yao C,Paschal K.PIV Measurement of Airfoil Wake C Flow Turbulence Statistics and Turbulent Structures[R].AIAA-94-0085,1994.
    [11]刘宝杰,王光华,高歌.翼型近尾迹流动的PIV研究-动力学机制[J].航空动力学报,1999,14(2): 125-130.
    [12]王光华,刘宝杰,刘涛,等.翼型近尾迹流动的PIV研究-动学特性[J].航空动力学报,1999,14(2):119-124.
    [13]刘勋,鲁庆华,訾宏达,等.2MW风力机组叶片气动性能计算方法研究[J].电气技术,2009(8):68-70.
    [14]袁新,徐利军,叶枝全,叶大均.水平轴风力机翼型大攻角分离流动的数值模拟[J].太阳能学报,1997,18(1):35-40.
    [15]张士杰,袁新,叶大均.非线性双方程湍流模型用于翼型分离流动模拟[J].太阳能学报,2001,22(2):162-165.
    [16]李文华,苏明军.风力机桨叶翼型的气动特性分析[J].通用机械,2006,11:85-87.
    [17]赵伟国,李仁年,李德顺,杨从新,张玉良,李晓鹏.风力机专用翼型数值模拟中湍流模型的选择[J].西华大学学报,2007,26(6):61-65.
    [18]杨从新,李春辉,巫发明.水平轴风力机专用翼型的数值模拟研究[J].科学技术与工程,2008,17(8):4994-4997.
    [19]曲立群,汪建文,朱德臣,吴克启,高志鹰.NACA4415翼型失速特性的二维数值研究[J].内蒙古工业大学学报,2009,28(1):48-51.
    [20]张果宇,冯卫民,刘长陆,俞剑锋.6种风力机叶片翼型的气动性能数值模拟研究[J].可再生能源,2009,27(2):11-15.
    [21]Guangpeng Xu, Lakshmi N.Sankar. Computational Study of Horizontal Axis Wind Turbines. Journal of Solar Energy Engineering,ASME.Vol.122, FEBRUARY2000.
    [22]钱炜祺,符松,蔡金狮.翼型动态失速的数值研究[J].空气动力学报,2001,19(4):427-433.
    [23]S(?)rensen,N.N,J.A.Michelsen,S.Schreck.Navier-Stokes Predicitions of the NREL Phase VI Rotor in the NASA Ames 80 ft× 120ft Wind Tunnel.Wind Energy,2002; 5:151-169.
    [24]Martin O.L.Hansen, Jappe Johansen. Tip Studies Using CFD and Comparison with Tip Loss Models. Wind Energy.2004; 7:283-294.
    [25]F.Bertagnolio,N.N.S(?)rensen,F.Rasmussen. New Insight Into the Flow Around a Wind Turbine Airfoil Section.Journal of Solar Energy Engineering, ASME.Vol.127, MAY2005.
    [26]徐燕飞,席德科,田彬,孙刚.风力机设计与数值模拟分析[J].机械设计与制造,2006,(7):18-20.
    [27]张玉良,李仁年,杨从新.水平轴风力机的设计与流场特性数值预测[J].兰州理工大学学报,2007,33(2):54-57.
    [28]汪仲夏,徐宇,黄典贵,赵晓路,徐建中.Stork叶片气动性能研究[J].工程热物理学报,2008,29(11):1861-1863.
    [29]范忠瑶,康顺,王建录.NREL Phase VI叶片气动性能数值分析[J].工程热物理学报,2009,30(10):1665-1668.
    [30]杨瑞,李仁年,李银然,陈晓明.旋转效应对风力机叶片升力性能影响的研究[J].甘肃科学学报,2009,21(1):105-109.
    [31]Robert E Wilson, Peter B SLissaman, Stel N Walker. Aerodynamic performance of wind turbines [M]. Department of Mechanical Engineering, Oregon State University,1976.
    [32]Betz A. Sohrauben propeller mit geringstem energieverlust. Gottinger Nachr, German-y,1919.
    [33]Froude W. On the Elementary Relation between Pitch, Slip, and Propulsive Efficiency.Transations of the Institute of Naval Architects,1865, V19:76-81.
    [34]张仲柱,王会社,赵晓路等.水平轴风力机叶片气动性能研究[J].工程热物理学报.2007,28(5):781-782.
    [35]李庆宜.小型风力机设计[M].北京:机械工业出版社,1985.
    [36]Ghauert H. The elements of Aero Foil and Aircrew Theory, London, Cambridge University Press,1948.
    [37]徐国华.应用自由尾迹分析的新型桨尖旋翼气动特性研究[D].南京:南京航空航天大学,1996.
    [38]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [39]陈培,杜绵银,刘杰平.风力机专用翼型发展现状及其关键气动问题分析[J].电网与清洁能源,2009,25(2):36-38.
    [40]李德顺,李仁年,杨从新等.一种风力机专用翼型气动特性的非定常数值模拟[J].西华大学学报,2008,27(5):21-24.
    [41]吴建军.机翼绕流的三维数值模拟[D].南京:河海大学,2007.
    [42]Menter F.R.Zonal.Two equation κ-w turbulence models for aerodynamics[R].AIAA93-2906,1 993.
    [43]Splart P, Allmaras S.A.One equation turbulence model for aerodynamics flows technical report[R]. AIAA-92-0439,1992.
    [44]Yakhot Victor,Orszag:S.A,Renormation Group Analysis of Turbulence, Ⅰ:Basic Theory. Journal of ScientificComputing,1986.1(1),1-51.
    [45]D.M.Somers.The 830,831,and 832 Airfoils[R].//NREL/SR-500-36339-August 2005.
    [46]TANGLER J L, SOMERS D M., NREL Airfoil Families for HAWTs [R].//NREL/TP-442-7109, 1995.
    [47]刘雄、李钢强、陈严.小型变浆距风力机的气动优化设计[J].水电能源科学,2009,27(3):219—222.
    [48]Tony Burton, Dabid Sharpe, Nick Jenkins, Ervin Bossanyi. Wind Energy HandBook[M], John Wiley&Sons Ltd,2001.
    [49]马鹏.基于S823/S822翼型小型风力发电叶片气动特性的数值模拟[D].广西:广西大学,2008.
    [50]勒古里雷斯.D著.施鹏飞译.风力机的理论与设计[M].北京:机械工业出版社,1987.
    [51]郭新生.风能利用技术[M].北京:化学工业出版社,2007.
    [52]Beom-Seok kim. A CFD Steady on the 3-D Flow Characteristics and performance analysis of 1 MW HAWT. Beijing:The Third Wind Energy Conferecnce,2004.
    [53]Wilson RE, Lissaman PBS, Walker SN. Aerodynamic performance of wind turbines Report No.NSF/RA-760228, NTIS, Chapters I-III, Orgen State Univ[I].1976.
    [54]刘雄,陈严,叶枝全.水平轴风力机气动性能计算模型[J].太阳能学报,2005,26(6):792-799.
    [55]李人厚,张平安.精通matlab:综合辅导与指南[M].西安:西安交通大学出版社,1998.
    [56]崔彦彬,姚志岗.基于Pro/E、Fluent软件的风机叶片造型及分析[J].矿山机械,2009,30(2):191-193.
    [57]陈家权,杨新彦.风力机叶片立体图的设计[J].机电工程,2006,23(4):37-40.
    [58]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社,1998:251-252.
    [59]刘磊,徐建中.湍流模型对风力机叶片气动性能预估的影响[J].工程热物理学报,2009,30(7):1136-1139.
    [60]张明惠,雎刚,赵亮.风力机定桨距和变桨距工况下叶片风能利用特性分析[J].华东电力,2009,37(7):1210-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700