十六烷基三甲基氯化铵的减阻实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源在社会经济的发展中起着举足轻重的作用,当今社会经济正处于高速发展阶段,对能源的需求更加迫切。由于在液体中加入少量的表面活性剂可导致其流动阻力大幅度地减少,即添加剂减阻现象,此时不但流体输送过程中的摩阻系数显著下降,而且会因传热性能降低而减少沿程输送的热量(或冷量)损耗。因此在我国开展此项技术的研究对节能减排的工作具有重要的意义。表面活性剂减阻流体具有良好的流动控制性能和机械稳定性,应用前景十分广泛。
     本文针对表面活性剂在高温中的实验,在实验台原有的基础上进行了设备的升级,以满足系统对温度的要求。清水实验结果表明,清水在层流区域很好地符合Hagen-Poiseuille定律,在湍流区域符合布拉休斯定律,从而为率定减阻管道直径和CTAC水溶液的减阻实验提供了有力的证据;建立了减阻实验结果所依据的三个基准:Hagen-Poiseuille定律,布拉休斯定律以及Zakin线;推导了减阻实验所需范宁摩擦阻力系数与雷诺数的关系式。
     其次根据在铜管和紫铜管不同温度,不同浓度和不同雷诺数下进行减阻实验,从而得出了CTAC的减阻效果:在相同温度和雷诺数下,减阻效果随着溶液浓度的增加而增强;在相同浓度和雷诺数下,温度愈高,摩阻系数愈小,减阻效果愈好;当在浓度为150ppm时,CTAC溶液的减阻效果随着溶液温度的升高而增强,但是当温度达到60℃时,减阻几乎消失了,对于高浓度的情形,在温度为60℃时仍然出现明显的减阻效果;在紫铜管中,当浓度为300ppm和400ppm,温度为50和60℃时,CTAC溶液的减阻百分比达到了0.6-0.8,但是当温度达到70℃时,减阻几乎消失了,结果表明了CTAC水溶液在温度上有个适用的范围,在70℃以上效果不好,即表面活性剂对减阻都有一个上限绝对温度;减阻效果表现在一定的雷诺数范围内,当Re超过一定值时,减阻效果大幅度下降。
     最后概述了目前存在的几种和湍流联系密切的添加剂减阻机理假说。通过分析了表面活性剂的微观特征及其减阻的化学机理,以表面活性剂的物理化学性质为基础,把粘弹性和湍流猝发相结合,探讨了添加剂的减阻机理,进一步完善了湍流猝发受抑制假说。
     本文的研究成果为减阻剂CTAC应用于工程实际,提供了有益的参考。
Energy is always playing a very important part in our society. Today our economy is developing faster and faster and it relies on energy to supply the development power. Because the additive drag-reduction phenomenon, which can lead to great reduction of friction drag by adding a little surfactant into the fluid, could not only significantly reduce the friction coefficient during the fluid distribution process, but also decrease the heat loss (or cold loss) along the distribution network due to the reduction of the heat transfer. So it is of great significance for energy conservation to investigate additive drag-reduction. Based on its endurance to mechanical, chemical, actinic and thermal effect, the importance of the surfactant using in drag-reduction has been widely emphasized by engineers.
     Firstly, we improved a closed loop experimented system to meet the temperature requirements. The results indicates that the relationship between Fanning frictional factor and Reynolds number meets Hagen-Poiseuille law in laminar flow and meets Blasius law in turbulent flow so that it can accurately ensure the diameter of experimental tube and provide powerful documents for surfactant solution experiments. Then it is important to establish three principles for drag-reducing experimental results: Hagen-Poiseuille law, Blasius law and Zakin’s asymptote. It is necessary to draw the relationship between Fanning frictional factor and Reynolds number.
     Secondly, according to different temperatures, different concentrations and different Reynolds number, we did drag-reducing experiment for surfactant solution so as to conclude the drag-reducing effect. Drag-reducing effect improves with concentration of solution increased under the same temperature and Reynolds number. Drag-reducing effect improves with temperatuer of solution increased under the same concentration and Reynolds number. the drag-reducing effect of CTAC solution enhanced with the temperature increased at 150ppm,the reduction almost disppeared when the temperature reaches 60℃,but there shows significant drag reduction effect in the high concentration of cases at 60℃; the drag-reducing effect reaches 0.6-0.8 at 300ppm,400ppm and 50℃,60℃in the copper pipe,but the drag-reducing almost disappeared when the temperature reaches 70℃,the results show that CTAC solution have an effective temperature range, it has a bad effects in the high-temperature More than 70℃, drag-reducing surfactant has an upper absolute temperature; and it shows that it has a effective Reynolds number range,when Re exceeds a certain value, the drag-reducing effect decline quickly.
     Finally, this paper introduces some drag-reducing mechanism related in turbulence at present. Through the analysis of the drag-reducing characteristics and the micro-chemical mechanism of surfactants, based on the physical and chemical properties of surfactant, and have a combination with turbulent burst to analysis the fluid drag-reduction mechanism, and further improved the suppression of turbulent burst hypothesis.
     The paper provides an useful reference for applying CTAC to practical projects.
引文
1陆亚俊,马最良,邹平华.暖通空调.中国建筑工业出版社,2002:197~198
    2李先瑞.空调、供热水系统泵的节能.节能环保技术, 2002,30(5):25~28
    3 Toms B A. Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers A. Proc 1st Int Congress on Rheology C .North Holland, Amsterdam ,1948.135~141
    4 Li Peiwen,Kawaguchi Y,Yabe A. Feasibility study of new heat transportation system with drag2reducing surfactant additives A . The S ymposium on Energy Engineering in the 21st Century C , Pin g Cheng, ed.Wallingford: Begeu House New York ,2000.
    5 LindnerJ ,Bewersdorff H W, Heen R , et al.Drag reducing surfactant solutions in laminar and turbulent flow investigated by small angle neutron scattering and light scatteringJ . Pro gress in Colloid and Polymer Science ,1990 ,81:107~112.
    6沃良华,廖其奠.添加剂分子结构对减阻性能的影响及减阻效果的试验结果[J].上海机械学院学报, 1991, 13(1):9~10
    7 U.S.Choi and K.E.Kasza, Long-Term Degradaction of Dilute Polyackylamide Solution inTurbulent Pipe Flow, Drag-Reduction in Fluid Flows:Techniques for Friction Control,Chichester,Ellis Horwood Limited,1989,pp163~170.
    8朱蒙生,曹慧哲.紫铜管中聚丙烯酰胺水溶液抗剪切特性.节能技术. 2009,1(1):21~24
    9朱蒙生.管流添加剂减阻实验研究[D].哈尔滨.哈尔滨工业大学,2009
    10蔡伟华.聚丙烯酰胺水溶液减阻特性实验研究[D].哈尔滨:哈尔滨工业大学, 2008
    11 Mengsheng Z, Weihua C, Hui W, Pinghua Z. Experimental Study of Drag Reduction by aqueous Polyacrylamide Solution[C]. 7th International Conference on Sustainable Energy Technologies, Seoul, Korea, August, 2008
    12 Guillermo Aguilar-Mendoza, An experimental study of drag and heat transfer reductions inturbulent pipe flows for polymer and surfactant solutions, Ph.D Dissertation of University ofCalifornia Santa Barbara, August 1999.
    13 Sung-Hwan Cho, Choon-Seob Tae, M.Zaheeruddin. Effect of fluid velocity, temperature, and concentration of non-ionic surfactants on drag reduction. Energy Conversion and Management 2007(48):913~918
    14 T. Zhou, K.C. Leong, K.H. Yeo. Experimental study of heat transfer enhancement in a drag-reducing two-dimensional channel flow . International Journal of Heat and Mass Transfer 2006(49):1462~1471
    15哈尔滨建筑工程学院水力学教研室.应用聚氧化乙烯降低湍流摩阻的实验研究.力学. 1976, (4): 213~219
    16陈拥军,沈自求,添加表面活性剂减阻的试验研究,化学工业与工程, 1999,16(2):110~114
    17焦利芳,李凤臣,苏文涛,杨治金,魏进家,宇波,王屹.表面活性剂减阻剂在集中供热系统中的应用试验研究.节能技术.2008,26(3):195~201.
    18王辉.表面活性剂减阻特性实验研究[D].哈尔滨:哈尔滨工业大学, 2008
    19表面活性剂在节能减排技术中大有可为.综合.2008,16(15):41
    20 Kawaguchi Y, Daisaka H, Yabe A, Hishida K, etc, Existence of double diffusivity fluid layers andheat transfer characteristics in drag reducing channel flow, (1997), 2nd Int. Symposium onTurbulence, Heat and Mass Transfer.
    21 Yunying Qi, Yasuo Kawaguchi, Jacques l.zakin ,Enhanced Teat Trandfer of Drag ReducingSurfactant Solution With Fluted Tube-in-Tube Heat Exchanger, international Journal of Heat andMass Transfer 44(2001)1495~1550.
    22 Yasuo Kawaguchi, Takehiko Segawa, Ziping Feng, Peiwen Li c, Experimental study on drag-reducing channel flow with surfactant additives spatial structure of turbulence investigated by PIV system. International Journal of Heat and Fluid Flow 2002(23):700~709
    23李沛文,川口靖夫.界面活性剂添加物对水湍流阻力抑制的实验研究.西安交通大学学报. 2001,35(1)37~42
    24魏进家,川口靖夫,David J.Hart.在一种新型两性界面活性剂的减阻特性[J].化工学报, 2006, 11(57):2750~2754
    25王德忠,胡友情,王松平,周荣生.表面活性剂减阻流体湍流空间结构试验研究.热能动力工程.2004,19(2):140~143
    26王德忠,董正方,王松平,张杰.添加筛网对减阻流体湍流空间结构的影响.上海交通大学学报. 2005,11: 1842~1846
    27董正方,顾卫国,张红霞,王德忠.表面活性剂减阻流体传热与阻力关系试验研究.水动力学研究与进展.2006,26(4):494~498
    28张红霞,王德忠,顾卫国,陈汉平.表面活性剂减阻流体热边界层温度脉动及传热特性实验研究.水动力学研究与进展.2008,23(1):42~47
    29魏进家.界面活性剂减阻溶液在自由面旋转流中的流动特性研究.西安交通大学学报.2006,11:65~68
    30 F. C. Li, Y. Kawaguchi, K. Hishida. Structural analysis of turbulent transport in a heated drag-reducing channel flow with surfactant additives. Int. J Heat Mass Transfer, 2005, 48: 965~973.
    31 F. C. Li, Y. Kawaguchi, K. Hishida. Investigation on the characteristics of turbulence transport formomentum and heat in a drag-reducing surfactant solution flow, Physics of fluids, 2004, 16(9):3281~3294
    32 F. C. Li, Y. Kawaguchi, K. Hishid et al. On the Turbulence Contribution to Frictional Drag in Wall-bounded Turbulent Flow[J]. Chinese Physics Letters, 2006, 23(5):1226~1229
    33 F. C. Li, Y. Kawaguchi, K. Hishida, et al. Investigation of Turbulence Structures in a Drag-reduced Turbulent Channel Flow with Surfactant Additive Using Stereoscopic Particle Image Velocimetry[J]. Experiments in Fluids, 2006, 40:218~230
    34赵国玺.表面活性剂物理化学.北京大学出版社,北京1991.4
    35 E.Roelants, F.C.De Schryver, Parameters Affecting Aqueous Micelles Of CTAC, TTAC,And DTAC Probed By Fluorescence Quenching .Langmuir,1987, Vol.3,No.2,1987.pp209~214
    36 Debye P , Anacker EW, A Microscopy Structure of Surfactant Solution with Salt, Jl Phys Coll Chem ,1951,Vol.55,pp644~647.
    37 Pilpel N ,The Relationship Between Rheologic Characteristic And Micoscopy Structure—Study of Surfactant Additive, 1966,Trans Faraday Soc ,Vol.62,pp2941.
    38 Inaba, H., and Haruki, N.Drag Reduction and Heat Transfer Characteristics of Water Solution with Surfactant in a Straight Pipe,Proceedings of the 3rd KSME-JSME Thermal Engineering Conference, 1996,pp. 215~220.
    39 OhlendorfD, InterIhalW,HoffmannH. Surfactant systems for drag reductbn: physico-chemical properties and rheobgical behaviour[J].RheolActa, 1986,25(5):468~486.
    40 HartrnannV, CresselyR Linear and nonlinear rheobgy of a worm like micellar system in presence of sodium bsylate [J].Rheol Acta, 1998, 37 (2):115~121.
    41 Lin Zhiqing, Zakin Jacques, Zheng Yi, etal.Comparison of the effects of dinethyl and dichbro benwate counterbns on dmgreduction, rheobgical behaviors, and micro stmctures of a cationic surfactant[J].Journal of Rheobgy, 2001.45 (4):963~981.
    42 Sugiham Gohsuke,Em Yasuyuki,Funatsu Mitsum, etal. Micelle for cnation of dodecy lammonium surfactant with mixed counterions: perfluorocar boxylate and alkane sulfonateions[J].Journal of Colbid and Interface Science, 1997, 187 (2):435~442
    43 Yamabe Takaham,Moroi Yoshikiyn Micelle formatbn of anionic surfactant with divalent counterion of separate electric charge[J].Journal of Colbid and Interface Science, 1999, 215 ( I):58~63.
    44 Hiromob Usui, Takayasu Itch, Takashi Saeki On pipe diameter effects in surfactantdrag-reducing p ipe flows [ J].Rheol Acta.1998,37(2):122~128
    45 Li F C, KawaguchiY, SegawaT. Reynolds-number dependence of turbulence stmctures in a drag-reducing surfactant solution channel flow investigated by particle inage vebcinetry[J].Physics of fluids, 2005, 17: 0751041~07510413.
    46 Hu Yuntao,Matthys Eric F. Effect of metal ions and compounds on the rheobgical properties of a drag-reducing cationic surfactant solution exhbiting shearinduced stmcture formatnn[J].Journal of Colbid and Interface Science, 1997, 186 (2):352~359.
    47 Myska J iri, L in Zhiqing, Stepanek Petr, et al Influence of salts on dynamic properties of dmg reducing surfactants[J].Non-Newtonian F1uid Mech.2001.97 ( 2~3):251~266.
    48苏为科,李杉,刘红等.减阻剂溶液的传递机理.浙江工学院学报. 1994, 63(2): 93~97
    49 Keyes D E,Abernathy F H . A model for the dynamics of polymer in laminar shear flows.Journal of Fluid Mechanics, 1987, 185:503~522
    50何钟怡,史守峡.线性剪切流中大分子的动力模型[J].哈尔滨建筑大学学报, 1999, 1:51~56
    51 Li F C,Kawaguchi Y,Yu B,et al. EXperimental study of drag-reduction mechanics for a dilute surfaCtant solution flow, International Journal of Heat and Mass Transfer,2008,51:835~843
    52 Richardson LF. Weather Prediction Numerical Process. Cambridge University Press,1922
    53崔桂香,张兆顺.圆管湍流的近壁结构.空气动力学报,2000,18:10
    54 S.J. Kline. The Structure of Turbulent Boundary layers, J. Fluid Mech, 1981, (107):297~338
    55林建忠编著.湍流的拟序结构[M].北京:机械工业出版社,1995
    56王晋军,符松孟,庆国等.湍流研究最新进展[M].科学出版社, 2001
    57 Bushnell DM,McGinley CB. Turbulence control in wall flows. Annual Review of Fluid Mechanics,1989,21:1
    58 Schoppa W.,Hussain F,Coherent structure generation in near-wall turbulence,J.Fluid Mech.,2002,vol.(453):57~108.
    59李凤臣,大岛伸行.粘弹性流体旋转流实验研究.哈尔滨工业大学学报. 2008,11(40):1773~1776
    60宁涛,郭富德.粘弹性流体混合层流动的PIV实验研究.工程热物理学报. 2009,30(4):608~610
    61李凤臣,大岛伸行.表面活性剂水溶液弹性湍流特性实验研究.哈尔滨工业大学学报. 2009,41(3):77~80
    62 Zakin J L, Myska J, Chara Z. New limiting drag reduction and velocity profile asymptotes for nonpolymeric additives systems. AICHE Journal 1996, 42: 3546~3554.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700