基于GIS平台的城市尺度下城市热岛缓减关键技术与系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市热岛效应作为一种城市灾害成为城市热环境恶化的突出表征,给城市大气环境、社会经济发展、人们身心健康所带来的危害不容低估,同时由于城市热岛引起的能源消耗也相当可观。因此,对城市热岛效应进行定性、定量分析研究,有助于改善城市热环境、降低能源消耗、实现城市人居环境的可持续发展。本论文应用遥感和GIS以及数值模拟技术,选取杭州为研究实例,着重分析城市尺度下城市热岛产生与影响机制,以探索城市热岛缓减技术与系统开发作为主要研究内容。选择从城市规划角度去研究城市热岛,将城市规划与城市环境问题结合起来,作为最基本的创新点,为协调城市内部人地系统的均衡发展、最大限度地减少人类活动对城市热环境的影响与破坏提供基本思路,具有理论和实践的双重意义。
     第一章主要对研究背景和意义进行阐述,分别对对国内外城市热岛相关研究进展综述。发现以往研究城市热岛缓减研究缺乏系统性和综合性,没有明确识别出城市热岛在不同空间尺度下的影响因素,更没有系统提出不同空间尺度下城市热岛的研究方法与缓减策略,研究大都是基于一定的现实基础,就某一方面或领域的深入展开,往往忽视了城市热岛研究的综合性。最后针对本文的研究目的,建立本文研究的技术路线,为后面的研究提供立论基础和思路框架。
     第二章重点分析多源遥感影像数据Landsat TM/ ETM+、EOS /MODIS、ASTER、NOAA/AVHRR等数据特征,系统归纳每种遥感影像不同波段的光谱特征与分辨率,并阐述了其优缺点,并根据不同遥感数据特点,分别建立一套地表温度、植被指数、土地覆盖分类以及地表反照率等遥感计算方法,为后期数据的选用、遥感影像因子的计算和城市热岛缓减模拟系统因子提取模块提供依据和模型库。
     第三章应用遥感和GIS技术,揭示了杭州城市热岛的时空变化以及空间分布规律与差异,结果显示:①自1991年以来杭州市区与郊区的年均温呈现上升趋势,城市热岛强度呈显著增大趋势。②建设用地的扩张速率与热岛高温区的增加速率成明显的正相关关系。③城市热岛中心主要分布在工业用地、商业用地以及居住用地密集区域。在前面定量分析研究基础上,深入探讨了城市尺度下城市热岛产生与影响机制,归纳为:①城郊用地向城市建设用地的快速转变是产生城市热岛的本源。②人为热的排放以及空气污染是产生热岛的重要影响因素。③城市空间格局的改变以及自然生态格局的破坏加剧了城市热岛效应。④城市用地性质的差异对城市热岛也有不同程度的影响。针对城市尺度下热岛产生机制,从城市规划角度提出了合理控制城市用地扩展规模与速度、构建开敞的城市生态空间、优化用地功能布局和交通体系、适当降低城市建筑密度等一系列城市热岛效应缓减策略。
     第四章重点分析中尺度MM5数值模拟模式和城市冠层模式,并以杭州为研究案例,运用数值模式模拟技术,通过改变杭州城市下垫面地面特征参数对气温变化做了模拟研究,结果显示:①水体被替换成城市下垫面后,模拟区域内整体平均气温升高了1.75℃。②植被替换成城市下垫面后,模拟区域内整体平均气温升高了4.26℃。③水体与植被共同被替换成城市下垫面后,模拟区域内整体平均气温升高了6.32℃。④部分城市下垫面被替换成植被后,模拟区域内整体平均温度降低了2.36℃。
     第五章第一节重点对不同规划地块的地表反照率、NDVI、建筑密度、容积率以及平均高度与地表温度之间的关系进行了深入分析,揭示了:①地表温度与NDVI、地表反照率、平均高度呈负相关关系,而建筑密度、容积率则对地表温度的作用是呈正比。②地表反照率、NDVI和建筑密度对规划地块地表温度的影响与容积率和平均高度两个因子相比更剧烈。③地表温度与NDVI和地表反照率的相关关系最为密切,相关系数分别为0.843和0.829,其次为建筑密度,相关系数分别为0.662,再次为容积率和平均高度,相关系数分别为0.429和0.416。第二节利用移动观测数据,建立一种气温精细化插值方法。利用三角网线性插值、薄条样板插值、最小曲率插值三种方法对移动观测气温数据进行插值研究,插值出精度较高的气温栅格数据,为研究城市热岛分布状况提供了最有价值的气温资料,对提高气温空间化精度更具有现实意义。
     第六章基于前五章的理论与实例研究,应用IDL语言并借助ENVI二次开发函数库的开发平台,开发出“城区热岛缓减分析与优化系统”,系统主要有四个功能模块组成:数据管理模块,遥感因子提取模块,数据统计与查询模块、分析模拟优化模块。其功能特点包括:①支持多种数据文件格式。②栅格矢量数据叠加功能。③从NOAA、MODIS、Landsat TM/ETM+、ASTER等多源遥感影像数据提取地表温度、NDVI、地表反照率等影响因子信息功能。④实现不同建设用地类型地温查询,包括规划地块地温的最值标定、平均值计算、不同时段地块地温曲线生成、不同地块地温剖面曲线生成。⑤够进行单因子线性拟合分析和多元同归分析等,用户可采用在同一地块同一地段随机采集点数据,采用曲线拟合方式获取地表温度与影响因子关系数据库。⑥气温观测数据精细化插值功能。
As an urban disaster, urban heat island effect (UHI) has been highlighted as a symbol of urban thermal environment deterioration, the adverse impacts of UHI on urban atmospheric environment, socio-economic development, people's physical and mental health cannot be underestimated. It also consumes considerable amount of energy. Therefore, it is helpful to improve the thermal environment, reduce energy consumption, and make urban human settlements development sustainable by analyzing UHI qualitatively and quantitatively. In this thesis, we employ remote sensing, GIS and numerical simulation technology to analyze the generation and impact mechanism of UHI on an urban scale in Hangzhou, and explore the UHI mitigation technology and system development. Therefore, researching UHI from the perspective of urban planning and combining the city planning and urban environmental issues can provide basic ideas for coordinating the relationship between human and land and minimizing impacts from human activities on the urban thermal environment, and thus has important significance both in theory and practice.
     The first chapter mainly elaborates on the background and significance of the research, and reviews related domestic and foreign literature on urban heat island. We "find that previous studies of urban heat island mitigation lacks systematic and integrated analyses, it does not distinguish the influencing factors of UHI as well as mitigation strategies on different spatial scales The majority of the studies are based on a specific aspect and ignores the comprehensive characteristic of UHI research. Finally, we establish a research framework, aiming to provide theoretical basis for following research.
     The second chapter focuses on analyzing the characteristics of multi-source remote sensing data such as Landsat TM/ETM+, EOS/MODIS, ASTER, NOAA/AVHRR, categorizing the spectral characteristics and resolution of different band for each remote sensing images, and presenting their advantages and disadvantages. Then, according to different characteristics of remote sensing data, the calculation methods for surface temperature, vegetation index, land cover classification and surface albedo are established respectively,, which provides the basis and model libraries for factor extraction module of UHI mitigation simulation system.
     Chapter 3, based on RS and GIS technologies, the reveals the spatial and temporal variation of UHI in Hangzhou as well as the differences of spatial distribution. The research results show:①The average annual temperature of urban and suburban areas and UHI intensity have been increased significantly since 1991.②The expansion rate of built-up land is positively correlated with the increase rate of high temperature area.③The center of UHI is mainly distributed in the industrial land, commercial land and residential land-intensive areas. Based on the previous quantitative study, we discussed the mechanism of generation and impact on urban scale. Several conclusions have been drawn as follows:①The source of UHI generation is the rapid conversion of suburban land to urban land.②Anthropogenic heat emissions and air pollution are an important factors for the UHI.③The changes of urban spatial pattern and the destruction of ecological environment aggravate the UHI.④The differences of urban land also have effects on the UHI. Corresponding to these investigated UHI generation mechanisms on urban scale, many mitigation strategis from urban planning point,such as controlling the expansion scale and speed of urban land, constructing urban ecological open space, optimizing land use and transportation system, and appropriately reducing building density of urban are put forward.
     In chapter 4, the paper mainly analyzes mesoscale numerical model MM5 and the urban canopy model, and simulates the variations of temperature by changing the characteristics of urban land surface parameters in Hangzhou city using numerical model simulation technology. The results show:①The average temperature of the whole simulation region increases by 1.75℃when water is replaced with urban land.②The average temperature of the whole simulation region increases by 4.26℃when vegetation is replaced with urban land.③The average temperature of the whole simulation region increases by 6.32℃when the water and vegetation are all replaced with urban land.④The average temperature of the whole simulation region falls 2.36℃when part of the urban land is replaced by vegetation.
     In chapter 5, section I analyzes the relationship between surface temperature and land surface albedo, NDVI, building density, floor area ratio and average height of the different planning plots. The results show:①The surface temperature is negatively correlated with NDVI, surface albedo, and the average height, while positively correlated with building density and plot ratio.②Surface albedo, NDVI and the building density have more effects on land surface temperature than plot ratio and average height.③Surface temperature is most closely related with NDVI and surface albedo. The correlation coefficients are 0.843 and 0.829, followed by building density, whose correlation coefficient is 0.662. The last are the plot ratio and average height, whose correlation coefficients are 0.429 and 0.416 respectively. In section II, the paper establishes a fine interpolation of the temperature using mobile observation data, which generates accurate grid temperature data using mobile observe temperature data by the methods of triangulation linear interpolation, thin section sample interpolation and minimum curvature interpolation. This method provides the most valuable temperature data for the study of the distribution of UHI status. And it has more practical significance to improve the spacial accuracy of the temperature.
     Based on the theories and case studies of the previous five chapters, chapter 6 developes the "Urban Heat Island Mitigation Analysis and Optimization System" by employing IDL language and secondary development of library development platform of ENVI. The system has four main functional modules:data management module, remote sensing factor extraction module, data statistics query module, and analysis of simulation and optimization module. Its features include:①Supporting multiple data file formats.②overlaying raster and vector data.③Extracting information such as surface temperature, NDVI, and surface albedo from remote sensing data:NOAA、MODIS、Landsat TM/ETM+、ASTER, and so on.④Allowing inquiries into surface temperatures of different types of construction land, including demarcating the extreme on plan land, calculating the average temperature, producing the average land temperature curve at different times, producing different temperature profiles curve on different lands.⑤Allowing the single factor analysis and multiple linear regression analysis. Users can use the same block in the same location to collect point data randomly, and use curve fitting method to obtain surface temperature and the impact factor relational database.⑥Fine interpolation function using temperature observation data.
引文
[1]许学强,周一星,宁越敏.城市地理学[M].北京:高等教育出版社,1996.
    [2]周刚华,贾生华.城市土地利用要追求最佳效益-论城市化加速阶段土地资源的配置
    [J].中国土地,2001,12:18~21.
    [3]肖荣波,欧阳志云,李伟峰,等.城市热岛的生态环境效应[J].生态学报,2005,25(8):2055-2060.
    [4]Howard L. The climate of London deduced from Meteorological observations made in the metropolis and atvarious places around it[C].1833,2nded,3 vols London, J and AArch.
    [5]Ojima T.Changing Tokyo metropolitan area and its heat island model [J]. Energy and Buildings,1990/1991,1516:191-203.
    [6]Youngbae S. Influence of new town development on the urban heat island-The case of the Bundang area[J]. Journal of Environmental Sciences,2005,17(4):641-645.
    [7]Youngbae S. Influence of new town development on the urban heat island-The case of the Bundang area[J]. Journal of Environmental Sciences,2005,17(4):641-645.
    [8]Qihao W, Shihong Y. Managing the adverse thermal effects of urban development in a densely populated Chinese city[J]. Journal of Environmental Management,2004,70:145-156.
    [9]Qihao W, Shihong Y. Managing the adverse thermal effects of urban development in a densely populated Chinese city[J]. Journal of Environmental Management,2004,70:145-156.
    [10]Hanqiu X, Benqing C.Remote Sensing of The Heat Island and its Changes in Xiamen City of Se China[J]. Journal of Environmental Sciences,2004,16(2):276-281.
    [11]Bornstein R D. Observations of the urban heat island effect in New York City[J]. J Appl Meteo,1968,7:575-582.
    [12]Chandler T J. London's urban climate[J]. Geograph J,1962,127:279-302.
    [13]Taha H.Urban climates and heat islands:Albedo, evapotranspiration, and anthropogenic heat[J]. Energy and Buildings,1997,25(2):99-103.
    [14]何晓凤,蒋维楣,陈燕,等.人为热源对城市边界层结构影响的数值研究[J].地球物理学报,2007,50(1):75~83.
    [15]Jiang W M, Chen Y, He X F, et al. Study on the impact of anthropogenic heat on urban boundary layer properties[J]. Sixth International Conference on Urban Climate Preprints,2006.627-630.
    [16]孙旭东,孙孟伦,李兆元.西安市城市边界层热岛的数值模拟[J].地理研究,1994,(2):49~54.
    [17]Kratzer P A. Das stadtklima die wissenshaft,1956,90. Braunschweif, Friedr Vieweg& Sohn, 184.
    [18]Yuangao Wen,Zhiwei Lian.Influence of air conditioners utilization on urban thermal environment[J].Applied Thermal Engineering,2009,29(4):670-675.
    [19]Giridharan R, Lau S.S.Y, Ganesan S, et al. Urban design factors influencing heat island intensity in high-rise high-density environments of Hong Kong[J]. Building and Environment,2007,42(10):3669-3684.
    [20]QihaoW, Shihong Y. Managing the adverse thermal effects of urban development in a densely populated Chinese city[J]. Journal of Environmental Management,2004,70:145-156.
    [21]Yuangao W, Zhiwei L. Influence of air conditioners utilization on urban thermal environment [J]. Applied Thermal Engineering,2009,29(4):670-675.
    [22]Giridharan R, Lau S.S.Y, Ganesan S, Givoni B. Lowering the outdoor temperature in high-rise high-density residential developments of coastal Hong Kong:The vegetation influence[J]. Building and Environment,2008,43(10):1583-1595.
    [23]桑建国.热岛环流的动力学分析[J].气象学报,2000,58:321-327.
    [24]陈沈斌,潘莉卿.城市化对北京平均气温的影响[J].地理学报,1997,52:27~36.
    [25]徐兆生,沈建柱,王德辉.北京城市热状况及热岛形成原因的探讨[J].地理研究,1987,6(3):17~25.
    [26]边海,铁学熙.天津市夜间城市热岛的数值模拟[J].地理学报,1988,43(2):150~158.
    [27]李有,郑敬刚,杨志清,等.郑州市深秋热岛效应初探[J].河南科学,2002,5(20):553~554.
    [28]张一平,何云玲,马友鑫.昆明城市热岛效应立体分布特征[J].高原气象,2002,21(6):604~609.
    [29]Wong N H, Yu C. Study of green areas and urban heat island in a tropical city [J]. Habitat International,2004,4 (8):1-12.
    [30]Unger J, Sumeghy Z, Zoboki J. Temperature cross-section features in an urban area[J]. Atmospheric Research,2001,58:117-127.
    [31]Kuttler W, Barlag A B, Robmann F. Study of the thermal structure of a town in a narrow valley [J]. Atmospheric Environment,1996,30 (3):365-378.
    [32]严平,杨书运,王相文,等.合肥城市热岛强度及绿化效应[J].合肥工业大学学报(自然科学版),2000,23(3):348~352.
    [33]Rao P K. Remote sensing of urban heat islands from an environmental satellite[J]. Bulletin of the American Meteorological Society,1972,53:647-648.
    [34]Carlson T N, Perry E M, Schmugge T J. Remote estimation of soil moisture availability and fractional vegetation cover for agricultural fields[J]. Agricultural and Forest Meteorology,1990, 52:45-69,
    [35]Matson M E P, Mcclain D F, Mcginnis. Satellite Detection of Urban Heat Islands[J]:Monthly Weather Review,1978,106 (12):1725-1734.
    [36]Balling R.C,Brazell S.W.High resolution surface tempearature Patterns in a complex urbran terrain[J] Photogrammetric Engineering and Remote Sensing,1988,54:1289-1293.
    [37]Gallo K.P,McNab A.L.,Kart T.R.et al.The use of NOAA/AVHRR data for assessment of the urban heat island effect [J]. Journal of Applied Meteorology,1993,32:899-908.
    [38]Gallo K.R,Owen T.W.Assessment of urban heat island:A mutli-sensor Perspective for the Dallas-Ft.Worth,USA region[J].Geocarto International,1998,13:35-41.
    [39]Streutker,D.R. A remote sensing sudty of the ubran heat island of Houston, Texas[J]. Intenartional Journal of Remote Sensing,2002,23:2595-2608.
    [40]刘继韩.用NOAA的AVHRR影像进行城市热岛动态监测探索[M].北京:北京大学出版社,1991.
    [41]范心圻.北京城市热岛遥感研究的应用与效益[J].世界导弹与航天,1991,6:6~11.
    [42]范天锡.北京地区城市热岛特征的卫星遥感[J].气象,1987,13(10):29~32.
    [43]Kawashima S, Ishida T, Minomura M, et al. Relations between surface temperature and air temperature on a local scale during winter nights. Journal of Applied Meteorology,2000,39: 1570-1579.
    [44]刘志武,党安荣,雷志栋,等.利用ASTER遥感数据反演陆面温度的算法及应用研究[J].地理科学进展,2003,22(5):507~514.
    [45]Carnahan W.H. Lasron R.C.An analysis of an urban heat sink[J].Remote Sensing of Enviromnent,1990,33:65-71.
    [46]Kim H.H. Uhtan heat island[J].Intematinoal Journal of Remote Sensing,1992,13:2319-2336.
    [47]Weng Q,Lu D, et al. Schubring,J.,Estimation of land surface temperature-vegeattion abaundance relationship for ubran heat island studies[J]. Remote sensing of environment, 2004,89:467-483.
    [48]赵云升,杜嘉,宋开山,等.基于卫星遥感的夏季长春市城区热场分析[J].地理科学,2006,1(26):70~71.
    [49]方圣挥,刘俊怡.利用LANDSAT数据对武汉市进行热岛效应分析刚[J].测绘信息与工程,2005,30(2):1~2.
    [50]申双和,赵小艳,杨沈斌,等.利用ASTER数据分析南京城市地表温度分布[J].应用气象学报,2009,20(4):458~464.
    [51]Mustadr J.F, Carney M.A,Sen A. The Use of satellite Data to Quantify Thernal Effluent impacts [J].Estuarine Coastal and Shelf Seience,1999,49:509-524.
    [52]王茂新,张秀,等.使用Landast TM热红外数据进行热状况插值研究[J].国土资源遥感,1991,2:38~46.
    [53]毛克彪,唐华俊,陈仲新,等.一个从ASTER数据中反演地表温度的劈窗算法[J].理论研究,2006,5:7~11.
    [54]Li J H. Study of relation between land-cover conditions and temperature based on LANDSAT TM data [J]. Remote Sensing Technology and Application,1998,13 (1):18-28.
    [55]Weng Q. Fractal analysis of Satellite-detected Urban Heat Island Effect [J]. Photogram metric Engineering& Remote Sensing,2003,69 (5):555-566.
    [56]Gillies R R, Carlson T N, Cui J, et al. A verification of the'triangle'method for obtaining surface soil water content and energy fluxes from remote measurements of the normalized difference vegetation index, NDVI and surface temperature [J]. International Journal of Remote Sensing,1997,8:3145-3166.
    [57]Owen T W, Carlson T N, Gillies R R. Remotely sensed surface parameters governing urban climate change [J]. International Journal of Remote Sensing,1998,19:1663-1681.
    [58]Gallo K P, et al. The use of a vegetation index for assessment of the urban heat island effect[J]. International Journal of Remote Sensing,1993,14:2223-2230.
    [59]Spronken-smith R A, Oke T R. The thermal regime of urban parks in two citieswith different summer climates[J]. International Journal of Remote Sensing,1998,19 (11):2085-2104.
    [60]Li J.Study of relation between land-cover conditions and temperature based on LANDSAT TM data [J]. Remote Sensing Technology and Application,1998,13 (1):18-28.
    [61]Jusufs K,Wong N H,Hagen E,et al.The influence of landuse on the urban heat island in Singapore[J].Habitate International,2007,31:232-242.
    [62]周红妹,周成虎,葛伟强,等.基于遥感和GIS的城市热场分布规律研究[J].地理学报,2001,02:191~197.
    [63]Troude F, Dupont E, Carissimo B. Mesoscale meteorological simulation in Paris: Comparisons with observation during the experiment ECLAP[J]. Boundary-Layer Meteoro,200 1,99(1):21-51.
    [64]Kanda M, Inoue Y. Numerical study on cloud lines over an urban street in the Tokyo [J]. Boundary-Layer Meteor,2001,98(2):251-273.
    [65]Myrup L Q.A numerical model of the urban heat island[J]. Journal of Applied Meteorology,1969,8(4):908-918.
    [66]Bornstein R D. The two-dimensional urbmet urban boundary layer model[J]. J Appl Meteor, 1975,14(8):1459-1477.
    [67]Carlson T N.Analysis of urban rural canopy using a surface heat flux temperature model[J] Journal of Applied Meteorology,1978,17(4):998-1013.
    [68]佟华,桑建国.北京海淀地区大气边界层的数值模拟研究[J].应用气象学报,2002,13(特刊):51~60.
    [69]徐敏,蒋维楣,季崇萍,等.北京地区气象环境数值模拟试验[J].应用气象学报,2002,13(特刊):61~68.
    [70]Kusaka H, Kondo H, KIKEGAWA Y, et al. A simple single-layer urban canopy model for atmospheric models:comparison with multi-layer and slab models[J]. Boundary-Layer Meteorology,2001,101:329-358.
    [71]Konda H, Liu F H. A study on the urban thermal enviroment obtained through one-dimensional urban canopy model[J]. Japan Soc Atmos Environ,1998,33:179-192 (in Japanese).
    [72]Vut C, Asaeda T, Ashie Y. Development of a numerical model for the evaluation of the urban thermal environment[J]. Wind Englnd Aerodyn,1999,81:181-191.
    [73]Kusaka H, Kondo H, Kikegawa Y, et al. A simple single-layer urban canopy model for atmospheric models:comparison with multi-layer and slab models[J]. Boundary-Layer Meteorology,2001,101:329-358.
    [74]Kusaka H, Kimura F. Coupling a single-layer urban canopy model with a simple atmospheric model:Impact on urban heat island simulation for an idealized case[J]. Journal of the Meteorological Society of Japan,2004,82:67-80.
    [75]Tewari M, Chen F, Wang W, et al. Implementation and verification of the unified Noah land surface model in the WRF model[C]//20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction.11-15 January,2004, Seattle, Washington.
    [76]Brown M J, Willians M D. An urban canopy parameterization for mesoscale meteorological models[C]. Proceedings of the AMS Conference on 2nd Urban Environment Symposium 2-7 november, Albuquerque, NM, Amer Meteor Soc,1998:144-147.
    [77]Masson V. A physically based scheme for the urban energy budget in atmospheric models[J]. Boundary Layer Meteorology,2000,94:357-397.
    [78]Martilli A, Clappier A, Rotach M W. A urban surface exchange parameter-zation for mesoscale models [J].Boundary-Layer Meteorology,2002,104(2):261-304.
    [79]Otte T L, Lacser A, Sylaain D, et al. Imple-mentation of an urban canopy parameterizationin a mesoscale meteorological model. Journal of Applied Meteorolo-gy,2004,43 (11):1648-1665.
    [80]Zhang H B, Sato N, Izumi T, et al. Modified RAMS-Urban model for urban heat island simulations of Chongqing,China. Journal of Applied Meteorology and Climatology,2008, 47:509-524.
    [81]王咏薇,蒋继楣,季崇萍,等.土地利用变化对城市气象环境影响的数值研究[J].南京大学学报(自然科学),2006,42(6):562~581.
    [82]蒋维楣,王咏薇,刘罡,等.多尺度城市边界层数值模拟系统[J].南京大学学报(自然科学),2007,43(3):221~237.
    [83]周荣卫,蒋维楣,何晓凤.城市冠层模式对城市气温模拟的改进[J].南京大学学报(自然科学),2008,44(3):250~257.
    [84]Duppon S, Ching J S, BYRIAN S. Introduction of urban canopy parameterization into MM5 to simulate urban meteorology at neighborhood scale[M].Presented at American Meteorological Society, Seattle,WA,2004.
    [85]李晓莉,何金海,毕宝贵,等..MM5模式中城市冠层参数化方案的设计及其数值试验[J].气象学报,2003,61(5):526~539.
    [86]宋金暖,王振会,等.建筑群对城市冠层动力、热力效应的数值试验研究[J].气象与减灾研究,2006,29(3):5~11.
    [87]Synnefa A, Santamouris M, Livada I. A study of the thermal performance of reflective coatings for the urban environment [J]. Solar Energy,2006,80:968-981.
    [88]Ihara T, Kikegawa Y, Asahi K. Changes in year round air temperature and annual energy consumption in office building areas by urban heat-island countermeasures and energy saving measures[J]. Applied Energy,2008,85(1):12-25.
    [89]Giridharan R, Lau S.S.Y, Ganesan S, Givoni B. Lowering the outdoor temperature in high-rise high-density residential developments of coastal Hong Kong:The vegetation influence[J]. Building and Environment,2008,43(10):1583-1595.
    [90]Qihao W, Dengsheng L, Jacquelyn Schubring. Estimation of land surface temperature vegetation abundance relationship for urban heat island studies[J]. Remote Sensing of Environment,2004,89:467-483.
    [91]Arthur H. Rosenfeld, Hashem A, Sarah B, Beth L. et al. Mitigation of urban heat islands: materials, utility programs, updates[J]. Energy and Buildings,1995,22:255-265.
    [92]Akbari H, Pomerantz M, Taha H.Cool Surfaces And Shade Trees To Reduce Energy Use And Improve Air Quality In Urban Areas[J]. Solar Energy,2001,70(3):295-310,2001.
    [93]Kiyoshi Sasaki, Akashi Mochida, Hiroshi Yoshino.A new method to select appropriate countermeasures against heat-island effects according to the regional characteristics of heat balance mechanism[J] Journal of Wind Engineering and Industrial Aerodynamics,2008,02(35): 1629-1639.
    [94]Haider Taha.Meso-urban meteorological and photochemical modeling of heat island mitigation[J].Atmospheric Environment,2008,42:8795-8809.
    [95]David J.Sailor, Nikolaas Dietsch.The urban heat island Mitigation Impact Screening Tool (MIST), Environmental Modelling& Software.2007,22:1529-1541.
    [96]佟华,刘辉志,李延明,等.北京夏季城市热岛现状及楔形绿地规划对缓解城市热岛的作用[J].应用气象学报,2005,16(3):357~366.
    [97]葛伟强,周红妹,杨引明,等.基于遥感和GIS的城市绿地缓解热岛效应作用研究[J].遥感技术与应用,2006,21(5):432~435.
    [98]Oke T R. City size and the urban heat island[J].Atmos. Environ,1973, (7):769-779.
    [99]Rizwan A M, Dennis Y.C. L, et al. A review on the generateon, determination and mitigateion of Urban Heat Island[J].Journal of Environmental Sciences,2008,20:120-128.
    [100]Jet P L. ASTER User Handbook Version 1[M/OL]. CA.
    [101]ArtisD A.CarnahanW H. Survey of em issivity variability in thermography of urban areas [J].Remote Sensing of Environment,1982,12 (4):313-329.
    [102]Weng Q,LuDS, Schubring J. Estimation of land surface temperature-vegetat ion abundan-ce relationship for urban heat island studies[J]. Remote Sensing of Environment,2004,89 (4): 467-483.
    [103]Qin Z H, Karnieli A, Berliner P. A mono-window algorithm for retrieving land surface temperature from LandsatTM data and its application to the Israel-Egypt bo rder region [J]. Internat ional Journal of Remote Sensing,2001,22 (18):3719-3746.
    [104]Jimenez-Mulnoz J C, Sobrino J A. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J].Journal of Geophysical Research,2003,108 (D22):4688-4695.
    [105]Landsat Project Science Office.Landsat 7 science data user's handbook [EB/O L].2002. U RL:http://www.gsfc. nasa. gov/IAS/handbook/handbool-toc. html, Goddard Space Flight Center, NA SA, Washington, DC.
    [106]张兆明,何国金,肖荣波,等.基于MODIS和TM数据的陆面温度反演[J].中国图象图形学报,2007,12(2):366~370.
    [107]Carlson T N, Ripley D A. On the relation between NDVI, fractional vegetation cover, and leaf area index[J]. Remote Sensing of Environment,1997,62 (3):241-252.
    [108]丁凤,徐涵秋.基于Landsat TM的3种地表温度反演算法比较分析[J].福建师范大学学报(自然科学版),2008,1(24):91~96.
    [109]覃志豪,Zhang M,Kalnieli A用NOAA-AVHRR热通道数据演算地表温度的分裂窗算法[J].国土资源遥感,2001,48(2):33~42.
    [110]覃志豪,高懋芳,秦晓敏,等.农业旱灾监测中的地表温度遥感反演方法——以MODIS数据为例[J].自然灾害学报,2005,14(4).64~71.
    [111]Kerry H, Lagouarde J P, Imbemon J.Accurate land surface temperature retrieval from AVHRR data with use of an improved splitwindow algorithm[J].Remote Sensing of Environmen,1992,41:197-209.
    [112]Qin Z,Dall'Olmo G,Karnieli A,et al.Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-AVHRR data[J].Journal of Geophysical Research,2001,106(D19):22655-22670.
    [113]Coll C, CasellosV A. A split-window algorithm for land surface temperature from advanced very high resolution radiometer data:Validation and algorithm comparison[J]. JGR,1997,102 (D14):16697-16713.
    [114]Gillespie A R,Rokugawa S,Matsunaga T,et al.A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36 (4):1113-1126.
    [115]毛克彪,唐华俊,陈仲新,等.一个从ASTER数据中反演地表温度的劈窗算法[J].遥感信息,2006,(5):7-11.
    [116]Kaufman Y. J, Gao B. C. Remote sensing of water vapor in the near IR from EOS/MODIS[J].IEEE Transactions on Geoscience and Remote Sensing,1992,(30):871-884.
    [117]Salisbury.J.W, D'Aria.D.M.Emissivity of terrestrial materials in the 8-14mm atmospheric window[J]. Remote Sens. Environ.1992(42):83-106.
    [118]Sobrino.J.A, N. Raissouni, Z.L.Li. A comparative study of land surface emissivity retrieval from NOAA data [J]. Remote Sens. Environ.2001 (75):256-266.
    [119]骆剑承,周成虎,杨艳.遥感地学智能图解模型支持下的土地覆盖土地利用分类[J].自然资源学报,2001,16(2):179~183.
    [120]张云霞,李晓兵,陈云浩.草地植被盖度的多尺度遥感与实地测量方法综述[J].地球科学进展,2003,18(1):84~93.
    [121]吕妙儿,蒲英霞,黄杏元.城市绿地监测遥感应用[J].中国园林,2000(5),16卷71期:41~44.
    [122]王艳姣,闫峰,张培群,等.基于植被指数和地表反照率影响的北京城市热岛变化[J].环境科学研究,2009,22(2):215~220.
    [123]Liang S. Narrowband to broadband conversions of land surface albedo:I Algorith-ms. Remote Sens. Environ.,2001,76:213-238.
    [124]韦玉春,黄家柱Landsat 5图像增益、偏置取值及其对行星反照率计算分析[J].地球信息科学,2006,8(1):36~40.
    [125]马霭乃.遥感信息模型[M].北京:北京大学出版社,1990.
    [126]中国科学院紫金山天文台.中国天文年历[M].北京:科学出版社,1990.
    [127]Chen T S,Ohring G. On the relationship between clear-sky planetary and surface albedos[J]. Atmos Sci,1984,41(1):156-158.
    [128]Wanner W,Strahler A H,Hu B,et al. Global retrieval of bidirectional reflectance and albedo over land from EOS MODIS and MISR data:Theory and algorithm [J].Geophys.Res,1997,102: 17143-17162.
    [129]Walt hall C L, Norman J M, Welles J M, et al. Simple equation to approximate the bidirection-al reflectance from vegetative canopies and bare soil surface[J].Applied Optics,1985, 24(3):383-387.
    [130]Roujean J L, Leroym, Deschamps P Y. A bidirectional reflectance model of the earth's surface for the correction of remote sensing data[J]. Geophys. Res,1992,97:20455-20468.
    [131]Lucht W,Hyman A H, Strahler A H, et al. A comparison of satellite derived spect ral albedos to ground based broadband albedo measurements modeled to satellite spatial scale for a semi-desert landscape[J]. Remote Sens. Environ,2000,74:85-98.
    [132]Lucht W, Schaaf C B, Strahler A H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models[J]. IEEET rans. Geosci.Remote Sens,2000,38:977-998.
    [133]徐涵秋,陈本清.不同时相的遥感热红外图像在研究城市热岛变化中的处理方法[J].遥感技术与应用,2003,18(3):129~133.
    [134]Brian Stone,Jr.A Remote Sensing Analysis of Residential Land Use,Forest Canopy Distribution, and Surface Heat Island Formation in the Atlanta Metropolitan Region[D].USA:Georgia Institute of Technology,2001.
    [135]Benjamin, S G. Some effects of surface heating and topography on the regional severe storm environment[D]. The Pennsylvania State University,1983,265.
    [136]Oketr. Boundary Layer Climate[M]. London:Methuan& Co. LTD.1987:274.
    [137]黄燕燕,万齐林.城市冠层过程的研究与进展[J].热带气象学报,2006,03(22):290~296.
    [138]Kusaka H, Kondo H, Kikegawa Y, et al. A simple single layer urban canopy model for atmospheric models:comparison with multi-layer and slab models[J].B-oundary Layer Meteorology,2001,101:329-358.
    [139]Raupach M R. Drag and drag partition on rough surfaces. Boundary-Layer Meteor,1992, 60(3):375-395.
    [140]Haan Peter De, Rotach Mathias W, Werfeli Maja. Modification of an operational dispersion model for urban applications[J]. Appl Meteor,2001,40(5):864-879.
    [141]Grimmond C S B, Oke T R. Aerodynamic properties of urban areas derived from analysis of surface form [J]. Appl Meteor,1999,38(9):1262-1292.
    [142]Yamada T. A numerical model study of turbulent airflow in and above a forest canopy. [J]. J Meteorol Soc, Japan.1982,60(1):439-454.
    [143]Taha Haider. Modifying a mesoscale meteorological model to better incorporate urban heat storage:a bulk-parameterization approach[J]. Appl Meteor,1999,38 (3):466-473.
    [144]王良健,包浩生,彭补拙.基于遥感与GIS的区域土地利用变化的动态监测与预测研 究[J].经济地理,2000,20(2):47~51.
    [145]陈述彭,赵英时.遥感地学分析[M].北京:测绘出版社,1990.
    [146]车生泉.城市绿地景观结构分析与生态规划一以上海市为例[M].南京:东南大学出版社,2003.
    [147]信忠保,许炯心.黄土高原地区植被覆盖时空演变对气候的响应[J].自然科学进展,2007,17(6):770~778.
    [148]Sailor D J.Simulated urban climateres ponseto modification sin surface albedo and vegeta-tivecover[J]. Appl Meteor,1995,34:1694-1704.
    [149]张克映,马友鑫,李佑荣,等.植物冠面温度气候学模拟模型的初步研究[J].气象学报,1999,57(4):473~481.
    [150]郑景云,王绍武.中国过去2000年气候变化的评估[J].地理学报,2005,60(1):21~31.
    [151]陈欢欢,李星,丁文秀Surfer 8.0等值线绘制中的十二种插值方法[J].工程地球物理学报,2007,4(1):52-57.
    [152]Franke R. Scattered Data Interpolation:Test of Some Methods[J]. M athematics of Computations,1982,33 (157):181.
    [153]刘兆平,杨进,武炜.地球物理数据网格化方法的选取[J].物探与化探,2010,34(1):93~97.
    [154]白世彪,陈哗,王建.等值线绘图软件Surfer 7.0中九种插值法介绍[J].物探化探计算技术,2002(5):157-162.
    [155]Wahba GSpline models for observational data[M].Philadelphia:Society for Industrial and Applied Mathematics,1990.
    [156]Briggs I C. Machine Contouring Using Minimum Curvature[J]. Geophysics,1974,39(1):39-40.
    [157]闫殿武.IDL可视化工具入门与提高[M].北京:机械工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700