不同颗粒增强方式下铝基复合材料性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒增强铝基复合材料已经在航空航天、半导体封装、汽车以及日常生活中得到了广泛的应用。目前,应用最为广泛的SiCp增强铝基复合材料大都采用外加法制备获得,这种复合材料由于颗粒较大并且颗粒与基体润湿性差,从而影响增强效果。于是,人们开始寻找其他优秀的增强相颗粒及制备工艺,科研工作者们发现TiB2颗粒具有优秀的力学及物理性能,而且其可以通过化学反应在铝基体中原位生成,原位自生的颗粒尺寸细小,与基体结合良好。本论文主要研究在增强相颗粒含量相近的情况下,对原位TiB2颗粒增强铝基复合材料与外加法制备的SiC颗粒增强铝基复合材料进行微观组织及力学与其他物理性能的比较并讨论原位合成复合材料的优势。
     本论文通过混合盐法成功原位合成7wt%TiB2颗粒增强A356铝合金复合材料。原位生成的TiB2颗粒大多呈六棱柱状,平均尺寸在300nm左右,在复合材料中大致均匀分布,晶粒呈细小等轴状或菊花状,明显比基体合金中要细小。而与之对比的是通过搅拌铸造法制备的SiCp/A356复合材料,其颗粒尺寸在15μm左右,许多颗粒带有尖棱角。7%TiB2/A356抗拉强度达到362.5MPa,弹性模量达到81.2GPa,相比基体合金分别提高了12.4%与21.6%,但塑性降低。搅拌铸造制备的SiCp/A356同样增强效果明显,且塑性下降更加明显。
     通过分析7%TiB2/A356与8%SiCp/A356复合材料的温度-阻尼谱线,可以得到以下结论:两种复合材料阻尼性能都随温度的上升而提高,并且在低频下能够获得更高的阻尼性能;在相同的频率和温度下,复合材料与基体合金阻尼性能比较的结果:7%TiB2/A356>8%SiCp/A356>A356,颗粒的引入使合金阻尼性能提高的原因主要是复合材料加工过程中产生的大量位错成为内耗源,而7%TiB2/A356阻尼性能比8%SiCp/A356优秀的原因是原位自生的TiB2颗粒较细小以及其晶粒细化效果,产生了更多的界面与晶界阻尼。本文同时在实验的基础上讨论了复合材料阻尼性能变化趋势:1增加颗粒含量可以提高阻尼性能;2铸态下复合材料阻尼性能比T6态更高;3挤压变形后也能获得更高的阻尼性能。
     本文还研究了7%TiB2/A356与8%SiCp/A356在室温下的磨损性能,发现8%SiCp/A356在整个载荷区间内,磨损率略有上升,稳定在3~6×10-6mm2,耐磨性能最好;7%TiB2/A356耐磨性能次之,磨损率也随载荷增加而增加,在载荷100N时有小幅突变;两种复合材料的耐磨性能都比基体合金A356优秀,同时也明显好于40Cr。随着摩擦终转轴速度从370rpm上升到550rpm,8%SiCp/A356的磨损率略有下降,而7%TiB2/A356则上升。分析磨损表面可知,8%SiCp/A356复合材料在低载荷下以粘着磨损机制为主,在高载荷下以粘着磨损与磨粒磨损为主,并且磨损表面容易形成机械混合层从而降低磨损量,并且在转速增加后有利于机械混合层的形成;7%TiB2/A356在低载荷下以粘着磨损为主,在高载荷下以粘着磨损与表面疲劳引起的剥层磨损为主,在转速增加后,还要考虑氧化磨损的因素。
Particles Reinforced Aluminum Matrix Composites (AMCs) have been widely used in the field of aerospace, electronic packaging, automobiles and daily life. At present, SiCp reinforced ACMs which have been most extensively applied are mostly fabricated by directly adding methods. These composites do not achieve favorable effects of reinforcement due to large-sized particles and poor wet ability between particles and matrix. Therefore, people began to look for better reinforced particles and fabricating methods. Scientists find that TiB2 particles have outstanding mechanical and other physical properties, and moreover they are able to be synthesized directly in the aluminum matrix through chemical reactions. This kind of in-situ ACMs, has small and fine particles and better bond of interfaces. So the purpose of this research is to compare the microstructures and mechanical, damping and wear performances of the ACMs at similar particle contents fabricated by these two different methods and discuss the advantages of in-situ fabricating process.
     7wt%TiB2 reinforced A356 alloys are successfully fabricated by mixing salts method. In-situ TiB2 particles of which the average size is 300nm mostly have the shape of hexahedral prism and are well distributed within the matrix alloy. Theα-Al grains appear mostly as equal axial and the grain size is much finer than that in the base alloys. SiCp/A356 as compared material fabricated by stir casting has particles has particles of 15μm and also well distributed, but majority of SiC particles have pointed edges and corners. The tensil strength andmodulus of elasticity of 7%TiB2/A356 have reached to 362.5MPa and 81.2GPa respectively, with the increace of 12.4% and 21.6%, but the plasticity has fallen off.
     The damping-temperature curves of 7%TiB2/A356 and 8%SiCp/A356 are investigated in this research, and conclusions can be drawed as follows: the damping capacity of both two composites increases with the rise of temperature, and high damping capacity are more likely to emerged in low frequency; the sequence of damping capacity of composites and base alloy is: 7%TiB2/A356>8%SiCp/A356>A356. The reason why these two composites have higher damping capacity is the dislocations generated while fabricating and which become a source of damping. That 7%TiB2/A356 has higer damping capacity can be ascribed to much more interfaces and grain boundaries result from small TiB2 particles.
     The dry wear performances of 7%TiB2/A356 and 8%SiCp/A356 are also studied, 8%SiCp/A356 is better than 7%TiB2/A356 in wear performance. Both compostes have lower wear rate than base alloy and 40Cr, and with rise of sliding speed, the wear rate of 8%SiCp/A356 has slightly decreased and that of 7%TiB2/A356 has increased. The wear mechanism of 8%SiCp/A356 at low load is mainly adhesive wear, and abrasion wear and adhesive wear at high load. A mechanical mixed layer is able to form on the wear surface so as to prevent from abrasing, and this layer is more inclined to emerge in higer siding speed. The wear mechanism of 7%TiB2/A356 is mainly adhesive wear at low load and adhesive wear and delamination wear at high load. With sliding speed increases, oxidation wear ought to be taken into consideration.
引文
[1] Taylor G I. The mechanism of plastic deformation of crystal theoretical, Proc Roy Soc, 1934, Al45, 362~404
    [2] Huber T., Degischer H.P., Lefranc G., etc, Thermal expansion studies on aluminium-matrix composites with different reinforcement architecture of SiC particles, Composites Science and Technology, 2006, 66, 2206–2217
    [3]乐永康,张迎元,颗粒增强铝基复合材料的研究现状.材料开发与应用, 1997, 5 (12), 33~39
    [4]朵军,颗粒增强铝基复合材料的研究现状、研究与开发, 2006, 4, 58-59
    [5]王文明,潘复生, Lu Yun等,碳化硅颗粒增强铝基复合材料开发与应用的研究现状,兵器材料科学与工程, 2004, 27(3), 61-67
    [6] Dubey S., Srviatsan T.S., Soboyejo W.O., Fatigue crack propagation and fracture characteristics of in-situ titanium-matrix composites, International Journal of Fatigue, 2000, 22, 161-174
    [7] Benjamin J.S., In situ preparation of Titanium base composites using a powder metallurgy technique, Metall Trans, 1970, 1, 2943-2951
    [8]刘德宝,崔春翔, AINp/Cu复合材料的热学性能,机械工程材料, 2006, 30(6), 58-62
    [9] Iizumi K., Iizami H., Sasaki T., etc, Rertive sintering of TiC-TiB2 composite prepared with mechanochemically-processed precursor,粉体および粉末冶金, 2000, 47(12), 247-1252
    [10] Lu L., Lai M.O., Wang H.Y., Synthesis of titanium diboride TiB2 and Ti-Al-b metal matrix composites, Journal of Materials Science, 2000, 35, 241-248
    [11] Cui Yan, Geng Lin, Yao Zhongkai, A new advance in the development of high performance SiCp/A1 composite, J Mater Sci., 1997, 13, 227
    [12]樊建忠,桑吉梅,石力开,颗粒增强铝基复合材料的研制、应用与发展,材料导报, 2001, 15(10), 55-57
    [13] Srivatsan T.S., Ihrahim I.A., Mohamed F.A., Processing techniques for particle-reinforced metal aluminum matrix composites, J Mater Sci. 199l, 26, 5965-5978
    [14] Hashim J., Looney L., Hashmi M.S.J., Metal matrix composites: production by the stir casting method, Journal of Materials Processing Technology, 1999, 92-93, 1-7
    [15] Michael D.skibo, Leucadia, David M.Schuster, etc, Process for production of metal matrix composites by casting and composite therefrom, United States patent, 4759995,1988
    [16] Michael D.skibo, Leucadia, David M.Schuster, etc, Process for preparation of composite material containing nonmetallic particles in a metallic matrix and composite materials made thereby, United States patent, 4786467, 1988
    [17]周邦昌,黄宪桂,赵新兵,碳化硅颗粒增强铝基复合材料的研究,宇航材料工艺,1993,3,25
    [18] Candan E., Ahlatci H.abrasive wear behavior of Al-SiC composites produced by pressure infiltration technical, wear, 2001, 247, 133-138
    [19] Careeno-Morelli E., Cutard T., Schalle R., Processing and characterization of aluminum based MMCs produced by gas pressure infiltration, Mat Sci Eng, 1998, A251, 48-57
    [20]祝要民,谢敬佩,李晓辉,等, SiCp/ZA27复合材料界面微结构分析及高温蠕变性能,复合材料学报, 2002, 19(4), 42~45
    [21]喻学斌,张国定,吴人洁.真空压渗铸造铝基电子封装复合材料研究.材料工程, 1994, 6(4), 9-12
    [22] Zhao Min, Wu Gaohui, Dou Zuoyong, Jiang Longtao, TiB2P/Al composite fabricated by squeeze casting technology, Materials Science and Engineering, 2004, 374 A, 303–306
    [23]王芬,林营,罗宏杰,无压渗透法制备铝基复合材料的研究现状,宇航材料工艺, 2004, 4, 7-11
    [24] Watanabe Yoshimi, Nakamura Tatsuru, Microstructure and wear resistance of hybrid Al-(Al3Ti+Al3Ni) FGMs fabricated by a centrifugal method, Intermetallics, 2001, 9, 33
    [25]程南璞,曾苏民,于文斌,等, 12%SiCP/Al复合材料制备工艺及力学性能研究,粉末冶金技术, 2006, 24(6), 417-421
    [26] Cui Yan, Geng Lin, Yao Zhongkai, A new advance in the development of high performance SiCp/A1 composite, J Mater Sci., 1997, 13, 227
    [27] Singer A G E, The principle of spray rolling of metals, Metals and Materials, 1970, 4(4), 246~257
    [28]李泽林,唐才荣,李华伦,等,喷雾沉积法制造的铝基复合材料的超塑性,复合材料学报, 1996, 13(4), 25-29
    [29]崔岩等.SiCp/6061Al复合材料的制备及界面研究[D].哈尔滨工业大学工学博士论文, 1997.
    [30] L.Chrstodoulou, D.C.Nagle, J.M.Brupbacher[P], Intemational Patent No.WO86/06366(1986)
    [31] S.C.Tjong, Z.Y.Ma. Microstructure and mechanical characteristics of in situ metal matrixcomposites. Mater.Sci.Eng. 29(2000)49-113
    [32] M.J.Koczak, K.S.kumar, US Patent[P].4,808,372(1989).
    [33] P.Sahoo, M.J.Koczak.Proceddings of the TMS Cofference on advanced Metal and Ceramic Matrix Composites[R].Feberatury,1990
    [34]陈康华等. SiCP/Al基复合材料的铝浴自蔓延反应制备及其热学性能[J].中国有色金属学报,2000,10(1):19-22.
    [35]杨滨,王锋,黄赞军,等.喷射沉积成形颗粒增强金属基复合材料制备技术的发展[J].材料导报,2001,15(3):4-6.
    [36]樊建中等.高性能铝基复合材料的颗粒分布及界面结合.宇航材料工艺, 2002, l:30-34
    [37] Guoxian LIANG. et al. Microstructure and mechanical property 2024 aluminium alloy Prepared by rapid solidification and mechanic mi11ing. Mater.Sei.Technol., 1995, 11:398-402
    [38] Kamat S V, etal. Mechanical properties of particulate reinforced aluminum matrix composites[J]. Acta Metall Mater, 1989, 37:2395-2402
    [39]喇培清等.高体积分数粒子型铝基复合材料热膨胀性能的研究.复合材料学报,1998,15(2):6-11
    [40]郭成等.SiC颗粒增强铝合金基复合材料断裂与强化机理.复合材料学报,200118(4):54-57
    [41]周清等.弥散质点和SiC颗粒复合强化铝基复合材料蠕变形变与断裂.金属学报,1998,34(1):107-112
    [42]马宗义等.碳化硅颗粒增强2124Al复合材料特性研究[J].复合材料学报,1992,9(2):37-42.
    [43]陈永来,吕宏军,张宇玮,王琪.纳米级SiCp/6066A1复合材料的制备与力学性能的研究,宇航材料工艺2005,2:57-59
    [44]樊子民,王晓刚,田欣伟等. SiC/Al基电子封装复合材料的无压浸渗法制备与热性能研究[J].铸造技术,2009,30(6):741
    [45]褚克,贾成厂,尹法章等,高体积分数SiCp/Al复合材料电子封装盒体的制备[J].复合材料学报2006,23(6):108
    [46] S. Lakshmi, L. Lu, M. Gupta. In situ preparation of TiB2 reinforced Al based composites. Journal of Materials Processing Technology 1998, 73: 160-166.
    [47]乐永康,陈东,张亦杰等.原位TiB2颗粒增强铝基复合材料及其力学性能.特种铸造及有色合金, 2006, 26( 8): 518-520.
    [48]张学习,王德尊等.非连续增强金属基复合材料的应用[J].航空制造技术, 2002(5):35-35.
    [49] Maruyama B, Hunt W H.Discontinuously reinforced aluminum:current status and future direction.JOM,l999,(11):59
    [50]杨遇春.高新材料中异军突起的金属复合材料[J].材料科学与工艺, 1991, 9(2):7-12.
    [51] Jerome P. Commercial success for MMCs. Powder Metall1998,41(1):25
    [52] AMC Leadingedge MMCs and powder materials. Powder Metall,1997,40(2):102
    [53] Robert R Irving.Packaged for the Road.ASME, 2001
    [54] Mark A Occhionero, Richard W Adams.铝碳化硅为电子封装提供热管理解决方案.电子产品世界, 2004, 10(B):84
    [55]梁英教,车荫吕.无机物热力学数据手册[M]。沈阳:东北大学出版社, 1994.476
    [56] N.L. Yue, L. Lu, M.O. LAl. Application of thermodynamic calculation in the in-situ process of Al/TiB2 [J]. Composite Structures,1999,47:691-694
    [57] Lashmi.S, Lu L. Gupta M. In situ Preparation of TiB2 reinforced Al based composites [J].J.Mater.Sci.1998,73:160-166.
    [58]周绪明,曾建民,顾红. LSM法制备TiB2/Al复合材料净化的研究[J].铸造技术, 2005, 26(2):112-114.
    [59]钟掘,何振波.航空航天用铝合金的研究及发展方向[A].中国新材料产业发展报告(2006)--航空航天材料专辑[C], 2006
    [60] Uhlman D R,Chalmers B,Jackson K A,J.Appl.Phys.,1964,35:2986
    [61]葛庭燧.固体内耗理论基础-晶界弛豫与晶界结构.科学出版社.2000:1~35.
    [62]哈宽富.金属力学性质的微观理论.科学出版社.1983:187~190.
    [63]王从曾.材料性能学.北京工业大学出版社.2001:9~13.
    [64] A. S. Nowick, B. S. Berry. Anelastic Relaxation in Crystalline. Academic Press. New York.1972:130~132.
    [65] C.Zener. Elasticity and Anelasticity of Metals. The University of Chicago Press. Chicago.1984:41~43.
    [66]冯端.金属物理学.第三卷金属力学性能.科学出版社.1999:13~16.
    [67]张小农.金属基复合材料的阻尼行为研究.上海交通大学博士学位论文.1997:1~79.
    [68]赵稼祥.加强发展军用功能材料[J ] .材料工程, 1995, (3):311
    [69] R. Schaller. Metal matrix composites, a smart choice for high damping materials[J]. Journal of Alloys and Compounds,2003,355:131–135.
    [70]李沛勇,戴圣龙.新型高阻尼金属材料的研究进展[J].材料工程, No.1, 2000:38-41
    [71] I.G. Ritehie, Z. L. Pan. High-Damping Metals and Alloys [J]. Metallurgical Transactions A.Vol.22A, 1991:607-616
    [72] L.Parrini, R.Sehaller. Characterization of mechanical stresses in metal matrix compositesby intemal friction[J]. Acta Mater., Vol.44, No.10, 1996:3895-3903
    [73] R.J.Arsenault, M. Taya. Thermal residual`stress in metal matrix composite[J]. Acta Metall.,Vol.35, No.3,1987:651-659
    [74]顾敏.喷射共沉积颗粒增强铝基复合材料阻尼特性的研究[D].郑州:郑州大学材料加工工程, 2003:16-23.
    [75] P. L. Ratnaparkhi and J. M. Howe. Structure and Mechanical of Bonding at Diffusion-Bonded Al.SiC Interface[j]. Acta Metall. Mater., No.3,1994:811-823.
    [76] T. W. Clyne and P. J. Withers. An Introduction to Metal Matrix Composites[M]. Cambridge: Cambridge University Press, 1993: 3-10, 304.
    [77] T.A.Read.The Internal Friction of Single Metal Crystals.Phys.Rev.1940,58:371~380.
    [78] A. Granato, K. Lüker. Theory of Mechanical Damping Due to Dislocation. J. Appl. Phys. 1956, 27(6): 583-593.
    [79] A. Granato, K. Lüker. Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies.J.Appl.Phys.1956,27(7):789~805.
    [80]方前锋,葛庭燧.与位错和点缺陷交互作用有关的非线性滞弹性内耗的研究.中山大学学报(自然科学报). 2001, A40: 203~207.
    [81] T.S.Ke.Anomalous Internal Friction Associated with the Precipitation of Copper in Cold-Worked Al-Cu Alloys.Phys.Rev.1950,78:420~423.
    [82] J.Weertman.Dislocation Damping at High Temperature.J.Appl.Phys.1957,28(2):193~196.
    [83] G. Schoeck. Friccion Interna Debido A La Interaccion Entre Dislocaciones Y Atomos Solutos. Acta Metall.1963,6:617~622.
    [84] C. Zener. Elasticity and Anelastieity of Metals[M]. Chieago, IL: The University Chicago Press,1948:41-59.
    [85] D.J.Nelson, T.W.Hanwek. J.Mater.Sci., Vol.13, 1978:2429
    [86] N. N. Kishore, AGosh, B.D. Agarwal. Jurnal Reinforced Plastics and Composites, Vol.l, 1982:41
    [87] W. A. Lederman The Damping Properties of Composite Materials PhD Dissation, The Univity of Wiscomsin一Milwaukee, 1991:17-28
    [88] Wolfenden A, Wolla J M. Dynamic Mechanical Properties. In: Everett R.K., Arsenault R.J. eds., Metal Matrix Composites: Mechanisms and Properties, San Diego USA: Academic Press, 1991:287
    [89] Z. Hasin. Int, Solids Structures, l6, 1970:539
    [90] R.J.Arsenault, N.Shi. Dislocation generation due to differences between the coefficients of thermal expansion[J]. Materials Science and Engineering, 1986,80:175-187.
    [91] K.K.Chawla, A.H.Esmaeili, A.K.Datye, et al. Effect of homogeneous heterogeneousprecipitation on aging behavior of SiCp/A12014 composite[J]. Scripta Metallurgica et Materialia, vol.25,1991:1315-1319
    [92]Zhang J, Perez R J, Lavernia E J. Dislocation-induced damping in metal matrix composites[J ]. Journal of Material Science, 1993,28: 835-846.
    [93]马中华,韩福生,魏建宁等.宏观体缺陷对材料阻尼性能的影响[J],中国科学,2001,31(3):255-260
    [94] V.N.Chuvil’deev, T.G.Nieh, M.Y.Gryaznov, A.N.Sysoev and V.I.Kopylov. Low-temperature Superplasticity and Internal Friction in Microcrystalline Mg Alloys Processed by ECAP. Scripta Mater.2004,50:861~865.
    [95] CziehosH, HabigK. H, Tribologle-Handbuch, Reibung und Versehieiβ, Braunschweig:Vieweg-Verlag, Braunschweig, 1992
    [96] M.D.皮特森,W.D.怀纳.磨损控制手册.汪一麟译.机械工业出版社,1994
    [97] ArehardJ.F., Contact and rubbing of flat surface, J.Appl.Phys., 1953, (24):981-88
    [98] ZGahrK.-H., Microstructure and Wear of Materials, Amsterdam: Elsevier, 1987
    [99] Zum Gahr K.-H., Modelling of microstructural, effects abrasive wear, In: Microstructure and Mechanical Properties of Materials, oberursel: DGM-Information sgesellsehaft, 1991:171-186
    [100] Xue Qunji, Bai Mingwu, Tribological Properties of SiC whisker and molybdenum Particle reinforced aluminum Matrix composites under lubrication, Wear, 1996, (195):66-73
    [101] ZGallrK,-H·, Wear by hard Particles, Tribology International, 1998, 31(10):587-596
    [102] Nakayama K., Hashimoto H., Tribo-emission from various materials in atmosphere, Wear, 1991, (147):335-343

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700